

6267 Carpinteria Ave., Suite 200 Carpinteria, CA 93013-1423 805.745.2100 Fax 805.745.1846

May 15, 2008

Mr. Keith Duval Ventura County Air Pollution Control District 669 County Square Drive Ventura, CA 93003

Re: Part 70 Annual Compliance Certification Report for Platform Grace - Reporting Period of April 1, 2007 through March 31, 2008

Dear Mr. Duval:

Pursuant to the requirements of the Title V Part 70 Federal Operating Permit No. 1493, Venoco, Inc. is submitting the Platform Grace Part 70 Annual Compliance Certification Report for the reporting period of April 1, 2007 through March 31, 2008.

It should be noted that the Platform Grace rolling 12-month equipment usage and fuel consumption data is only attached to the Compliance Certification Permit Form for Permit Condition Number 74.9N.3. This rolling 12-month data is referenced on several other Compliance Certification Permit Forms.

If you have questions or need additional information, please call me at (805) 745-2264.

Sincerely,

Patrick T. Corcoran

**Environmental Coordinator** 

Encl.

Cc: Gerardo Rios, U.S. EPA Region 9

VENTURA COUNTY
08 MAY 19 PM 1: 2

**Cover Sheet** 

Form TVPF45/07-21-03 Page 1 of 2

#### **Instructions**

This compliance certification cover sheet signed by the responsible official, Form TVPF45, must be submitted annually, on the anniversary date of the Part 70 permit; or on a more frequent schedule, if required by an applicable requirement or permit condition. To complete the compliance certification, you will need to attach the following to this sheet:

1. A completed compliance certification permit form (Form TVPF46) for each applicable requirement or Part 70 permit condition. Be sure to attach to the form any information specifically required to be submitted with the compliance certification by the applicable requirement or Part 70 permit condition. On this form, indicate the method(s) for determining compliance; if you are currently in compliance, as determined by the most recent monitoring measurement or observation; and whether the method(s) used for determining compliance indicate continuous or intermittent compliance during the period of certification. Continuous compliance should be checked if the source is in compliance as determined by all monitoring measurements required by the permit during the Intermittent compliance should be checked if any of these monitoring certification period. measurements, or any other information or data, indicates a failure to meet a term or condition of the permit, including a failure to monitor, report, or collect data as required by the permit. For example, if the permit requires an annual source test to demonstrate compliance and that annual source test indicates compliance, and no pre-test or other information indicated noncompliance during the period, compliance is considered to be continuous for the reporting period. If the answer to Question No. 4, 5 or 6 is "Yes" on compliance certification permit form TVPF46, compliance cannot be considered continuous without some further explanation or documentation.

In addition, for the time period covered by the certification, please identify any excursions or exceedances as indicated by the monitoring data. Also identify any information or data beyond the required monitoring that indicates that you are not in compliance. Note that you may cross reference any previous reports regarding compliance status that have previously been submitted to the District.

2. For each applicable requirement or Part 70 permit condition that requires compliance with a quantifiable emission rate, attach a completed quantifiable applicable requirement or Part 70 permit condition form (TVPF47) to Form TVPF46 for all emission units subject to the requirement or condition. On this form, please indicate the emission units subject to the requirement or condition; the pollutant regulated by the requirement or condition; the most recent measured emission rate, and the limited emission rate, both in units consistent with the requirement or condition; and a specific source test or monitoring record citation including the test date.

In lieu of filling out Forms TVPF46 and/or TVPF47, you may supply all of the necessary information required on the attached forms in your own format, and attach this information to Form TVPF45.

**Cover Sheet** 

Form TVPF45/07-21-03 Page 2 of 2

A copy of each compliance certification shall be submitted to EPA Region IX at the following address:

Mr. Gerardo Rios, Chief Permits Office (AIR-3) Office of Air Division EPA Region IX 75 Hawthorne Street San Francisco, CA 94105

#### Confidentiality

All information in a Part 70 permit compliance certification is public information. The Part 70 permit is also public information.

#### Certification by Responsible Official

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in this compliance certification are true, accurate, and complete.

| Signature and Title of Responsible Official: | Date:   |
|----------------------------------------------|---------|
| Ed Obland Title: Sr. Vice Pres.              | 5/15/08 |

Time Period Covered by Compliance Certification:

<u>04</u> / <u>01</u> / <u>07</u> (MM/DD/YY) to <u>03</u> / <u>31</u> / <u>08</u> (MM/DD/YY)

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### Applicable Requirement or Part 70 Permit Condition

| Citation, Including Attachment Number and/or Permit Condition Number: 71.1N1 | Description: Tanks that are equipped with vapor recovery. |
|------------------------------------------------------------------------------|-----------------------------------------------------------|
|                                                                              |                                                           |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Fugitive I&M Program under Rule 74.10 for the tank hatches and other inlet and outlet gas and liquid piping connections; storage tank vapor recovery system for each applicable tank is monitored on a quarterly basis which includes inspection of the gas compressor, hatches, relief valves, pressure regulators, and flare; dated records of the quarterly inspections and tank maintenance activities are maintained at the facility; verbal notice of maintenance activities; Annual compliance certification verifying tanks are equipped with vapor recovery

- 2. 

  Yes 
  No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
  - ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition
     ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

#### Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

<u>04</u> / <u>01</u> / <u>07</u> (MM/DD/YY) to <u>03</u> / <u>31</u> / <u>08</u> (MM/DD/YY)

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### Applicable Requirement or Part 70 Permit Condition

| Citation, Including Attachment Number | Description:                                                              |
|---------------------------------------|---------------------------------------------------------------------------|
| and/or Permit Condition Number:       | Sumps, pits, or ponds exempt from being required to have a cover which is |
| 71.4N3                                | impermeable to ROC vapors, and covers at least 90% of the liquid surface  |
|                                       | area; Low ROC exemption                                                   |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual validation/compliance certification that the tanks are exempt via independent laboratory analysis by EPA Method 8015 showing tank ROC content is < 5mg/l. See attached ROC analytical results for T-2 and T-13.

- 2. 

  Yes 

  No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
  - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An *excursion* is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- 5. During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

04 / 01 / 07 (MM/DD/YY) to 03 / 31 / 08 (MM/DD/YY)



#### Oilfield Environmental and Compliance, INC.

Venoco, Inc. - Carpinteria 5675 Carpinteria Ave.

Project: Annual Samples - Platform Gail & Grace

Project Number: [none]

Reported:

Carpinteria CA, 93013

Project Manager: Roger Westfall

23-Jan-08 08:21

#### Plt. Grace Inlet To T-13 0800092-05 (Water)

| Analyte | Result | Reporting<br>Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |
|---------|--------|--------------------|-------|----------|-------|----------|----------|--------|-------|

#### Oilfield Environmental and Compliance

#### **ROC** by 8260M

| ROC (C3-C10)                    | ND | 50     | ug/L   | 1 | A801134 | 14-Jan-08 | 14-Jan-08 | EPA 8260 |
|---------------------------------|----|--------|--------|---|---------|-----------|-----------|----------|
| Surrogate: Dibromofluoromethane |    | 105 %  | 70-130 |   | "       | "         | "         | " "      |
| Surrogate: Toluene-d8           |    | 98.0 % | 70-130 |   |         | "         | ,,        | · "      |
| Surrogate: 4-Bromofluorobenzene |    | 101 %  | 70-130 |   | "       | "         | "         | "        |

#### Plt. Grace Inlet To T-2 0800092-06 (Water)

| ,       |        |                    |       |          | ·     |          |          |        |       |
|---------|--------|--------------------|-------|----------|-------|----------|----------|--------|-------|
| Analyte | Result | Reporting<br>Limit | Units | Dilution | Batch | Prepared | Analyzed | Method | Notes |

#### Oilfield Environmental and Compliance

#### **ROC** by 8260M

| ROC (C3-C10)                    | 54 | 50     | ug/L   | 1 | A801134 | 14-Jan-08 | 14-Jan-08 | EPA 8260 |   |
|---------------------------------|----|--------|--------|---|---------|-----------|-----------|----------|---|
| Surrogate: Dibromofluoromethane |    | 104 %  | 70-130 |   | "       | "         | "         | " "      | 1 |
| Surrogate: Toluene-d8           |    | 98.7 % | 70-130 |   | "       | "         | "         | "        |   |
| Surrogate: 4-Bromofluorobenzene |    | 102 %  | 70-130 |   | "       | "         | "         | "        |   |

307 Roemer Way, Suite 300, Santa Maria, CA 93454

TEL: (805) 922-4772

FAX: (805) 925-3376

# COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### **Applicable Requirement or Part 70 Permit Condition**

| Citation, Including Attachment Number  | Description:                                                                                                              |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| and/or Permit Condition Number: 74.9N3 | Stationary Natural Gas-Fired Rich-Burn I C Engines – NO <sub>x</sub> , ROC, and CO emission limits after January 1, 1997. |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual source test of the G-03 generator using the following methods: ARB Method 100 for NO<sub>x</sub>, ARB Method 100 for CO, EPA Method 25 or EPA Method 18 for ROC, ARB Method 100 for oxygen content, and ASTM Method 1826-77 for gaseous fuel heating value. Engine inspections per the Engine Operator Inspection Plan. Inspection log containing identification and location of the generator, date and results of each emission inspection, and a summary of any emissions corrective maintenance action taken. Report submitted every 6 months consisting of the following: annual amount of fuel consumed; engine data including engine manufacturer, model number, operator identification number, and engine location, summary of maintenance and testing reports; annual source test report. See attached Rolling 12-Month data for fuel consumption. Annual source test data is attached.

2. ☑Yes ☐No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
3. Please indicate if this compliance determination method was continuous or intermittent:
☑ Continuous - All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent - One or more measurements indicate a failure to meet the Part 70 permit condition
4. ☐Yes ☑No ☐ During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 5. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."
- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment. (see attached)

Time Period Covered by Compliance Certification:

04 / 01 / 07 (MM/DD/YY) to 03 / 31 / 08 (MM/DD/YY)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Apr-07

| 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>6,087.9<br>4,452.9<br>4,452.9<br>9,540.8                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0<br>0.0<br>0.0<br>2.0<br>2.0<br>3.883.9<br>4.063.4<br>7.957.3                                                                 | 0.0<br>0.0<br>0.0<br>19.0<br>19.0<br>3,5379.5<br>3,538.9<br>8,918.4                                                                                   | 0.0<br>0.0<br>0.0<br>89.0<br>4,237.8<br>6,214.2                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                  |                                                                                                                                                       | 0.11 0.15 0.13 0.16 0.09                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -                                                                                                                                | 9100                                                                                                                                                  | 1.89 2.50 2.23 2.68 1.47                                              |
| 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>5,242.4                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5,24                                                                                                                             | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>4,452.9<br>5,24<br>9,540.8                                                                                         | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>4,452.9<br>9,540.8                                                                     | [ ] [ ] [ ] [ ] [ ] [ ]                                                                                                                               | 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                               |
| 3,89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.0<br>0.0<br>0.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.0<br>19.                                                                 |                                                                                                                                                       | 89.0<br>89.0<br>89.0<br>89.0<br>89.0<br>89.0<br>89.0<br>89.0          |
| 0.0<br>0.0<br>0.0<br>19.0<br>5,379.5<br>3,538.9<br>4,06<br>8,918.4<br>7,95                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                  | 0.0<br>0.0<br>0.0<br>154.0<br>2,634.7<br>4,100.9<br>6,735.6                                                                                           |                                                                       |
| 0.0 0.0<br>0.0 0.0<br>154.0 19.0<br>2.634.7 5,379.5 3,88<br>4,100.9 3,538.9 4,06<br>6,735.6 8,918.4 7,95                                                                                                                                                                                                                                                                                                                                                                                                         | 0.0 0.0<br>0.0 0.0<br>0.0 0.0<br>89.0 154.0<br>1.976.4 2.634.7<br>4,237.8 4,100.9<br>6,214.2 6,735.6                             | 0.0<br>0.0<br>0.0<br>89.0<br>1,976.4<br>237.8<br>4,237.8<br>4,10<br>6,214.2<br>6,73                                                                   |                                                                       |
| 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0 0.0 0.0<br>0.0 0.0 0.0<br>140.0 89.0 154.0<br>7.334.3 1.976.4 2.634.7<br>4.916.1 4.237.8 4,100.9<br>12.250.4 6,214.2 6,735.6 | 0.0 0.0<br>0.0 0.0<br>140.0 89.0 16<br>7.334.3 1.976.4 2.65<br>4,916.1 4,237.8 4,10<br>12,250.4 6,214.2 6,73                                          | 3.0<br>0.0<br>3.0<br>881.0<br>881.0<br>6.466.5<br>3.884.9<br>10.351.4 |
| 0.0         0.0         0.0         0.0           0.0         0.0         0.0         0.0           0.0         0.0         0.0         0.0           140.0         89.0         154.0         19.0           7.334.3         1976.4         2.634.7         5.379.5         3.88           4,916.1         4,237.8         4,100.9         3,538.9         4,00           12,250.4         6,214.2         6,735.6         8,918.4         7,95           0,20         0,10         0,11         0,15         0 | 3.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0                                                                                          | 3.0 0.0 0.0<br>0.0 0.0 0.0<br>881.0 140.0 89.0 116<br>6.466.5 7,334.3 1,976.4 2,66<br>3.884.9 4,916.1 4,237.8 4,116<br>10,351.4 12,250.4 6,214.2 6,72 | 88<br>8,46<br>3,86<br>10,36                                           |

<sup>a</sup> Without producing wells, crane limit is 13,344 gallyr; with any producing wells, limit is 7,344 gallyr (Well A-8 brought back to production in February 2008)

<sup>b</sup> Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP

<sup>c</sup> Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
May-07

| Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | St. and  | Schrift  | Strong. | Son Of        | Oct 08          | Sterr Ge      | 90 0                                                                                       | 1           | 2            | -0      |         |         | Monthly   | 12-Month  | Permit         |                             |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------|---------|---------------|-----------------|---------------|--------------------------------------------------------------------------------------------|-------------|--------------|---------|---------|---------|-----------|-----------|----------------|-----------------------------|
| STATE OF THE PARTY | opting   | on-inc   | on-finw | on-dac        | 00150           | QO-AON        | nec-no                                                                                     | Jan-U/      | rep-07       | Mar-07  | Apr-07  | May-07  | Units     | lotal     | Limit<br>Limit | 12-Mo & Permit Units        |
| Morth Crane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1101     | 250.0    | 0 301   | 0 000         | 0.020           | 10,5,5        | 0100                                                                                       | 10,0        | 0,0          |         |         |         |           |           |                |                             |
| South Crans                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1 0 0    | 330.0    | 400.0   | 302.0         | 0.00            | 0.40          | 7002                                                                                       | 7.01.7      | 248.0        | 144.0   | 0.0     | 0.0     | Gal/mo    | 3,524.1   | Ν              |                             |
| South Claire                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 142.0    | 120.0    | 67.2    | 200.0         | 0.96            | 150.0         | 0.0                                                                                        | 0.0         | 65.0         | 75.0    | 77.0    | 172.0   | Gal/mo    | 1,145.5   | N/A            | Galfyr                      |
| Crane Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 560.4    | 484.0    | 568.5   | 762.0         | 734.0           | 304.0         | 265.0                                                                                      | 210.7       | 313.0        | 219.0   | 77.0    | 172.0   | Gal/mo    | 4,670     | 13,344         | Galfyr <sup>a</sup>         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |         |               |                 |               |                                                                                            |             |              |         |         |         |           |           |                |                             |
| Flare Gas Consumption:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |         |               |                 |               |                                                                                            |             |              |         |         |         |           |           |                |                             |
| Planned (HP+LP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93.0     | 70.0     | 505.0   | 359.0         | 266.0           | 111.0         | 118.0                                                                                      | 114.0       | 0.66         | 119.0   | 145.0   | 145.0   | MSCF/mo   | 2.14      | ΑN             | MMSCEArr                    |
| Unplanned (HP+LP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.0      | 0.0      | 0.99    | 52.0          | 0.0             | 0.0           | 0.0                                                                                        | 0.0         | 0.0          | 1       | 0.0     | 0.0     | 1         | 0.12      | ΑN             |                             |
| Pilot Purge (HP+LP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |          | Pilot F | urge is accou | inted for in ca | culation of P | Pilot Purge is accounted for in calculation of Planned Flaring (Meter GR-81 - Meter GR-83) | (Meter GR-8 | 1 - Meter GR |         |         |         |           |           |                |                             |
| Flare Gas Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 97.0     | 70.0     | 571.0   | 411.0         | 266.0           | 111.0         | 118.0                                                                                      | 114.0       | 99.0         | 119.0   | 145.0   | 145.0   | MSCF/mo   | 2.27      | 7.19           | MMSCF/vr                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |         |               |                 |               |                                                                                            |             |              |         |         |         |           |           |                |                             |
| Generators:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          |          |         |               |                 |               |                                                                                            |             |              |         |         |         |           |           |                |                             |
| G2 (Emergency)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1,503.0  | 1,302.0  | 3,257.0 | 1,320.0       | 0.0             | 746.0         | 0.0                                                                                        | 3.558.0     | 37.0         | 00      | 622.0   | 00      | Gal/mo    | 42 345 AN | 55 000         | Caller                      |
| G3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.8      | 2.2      | 1.6     | 2.3           | 2.5             | 2.3           | 2.4                                                                                        | 1.9         | 2.3          | 2.6     | 23      | 17      | MMSCF/mo  | 25.94     | 51.10          | MMSCFArr                    |
| 48 BHP Starter Engine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0      | 35.0     | 0.0     | 40.0          | 0.0             | 0             | C                                                                                          | 10          | 0            | 0       | o c     |         | Only of   | 20.07     | 2 2 2 2 2      | Minocial Market             |
| P-19 Firewater Pump                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10.6     | 0.0      | 0.0     | 22.0          | 0.0             | 0.0           | 0.0                                                                                        | 0.0         | 00           | 000     | 0.0     | 000     | Gal/mo    | 32.60     | Evenor.        | Gollar                      |
| Portable Equipment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 52.6     | 495.0    | 264.5   | 216.0         | 156.0           | 3110          | 100                                                                                        | c           | 0            | 000     | 1210    |         | Calimo    | 4 720 00  | LAGIIIDE       | Gary                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |         |               |                 |               | 22                                                                                         | 2           | 2            | 2       | 0.151   | 92.0    | Cantilo   | 1,720.00  | Exempt         | Gallyr                      |
| Tanks Throughputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |          | -       |               |                 |               |                                                                                            | T           |              |         |         |         |           |           |                |                             |
| T-3A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0      | 0.0      | 0.0     | 0.0           | 0.0             | 0.0           | 00                                                                                         | 0.0         | C            | c       |         | 0       | Bhle/mo   | 0000      | 96             | - 11-014                    |
| T-3B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0      | 0.0      | 0.0     | 0.0           | 0               | 0             | 000                                                                                        |             | 0            | 000     | 0 0     | 000     | Dhls/mg   | 000.0     | 2 6            | ANIGON                      |
| V-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.0      | 0.0      | 0.0     | 0.0           | 00              | 000           | 000                                                                                        | 000         | 000          | 000     | 000     | 000     | Dhls/mo   | 0.000     | 0000           | MEDITY                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |         |               |                 |               |                                                                                            |             |              |         | 2       | 200     | Silverion | 000.0     | 2200           | KINGGIN                     |
| Solvent Usage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |          |         |               |                 |               |                                                                                            |             |              |         |         |         |           |           |                |                             |
| Z-Sol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3.0      | 0.0      | 0.0     | 0.0           | 0.0             | 00            | 00                                                                                         | c           | 0            | 5.0     | c       | 0       | Gallac    | 600       | VIV            | Toncher BOC at 1 64 lb/ani  |
| Enviro-Det                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.0      | 0.0      | 0.0     | 0.0           | 0.0             | 0.0           | 0.0                                                                                        | 0           | 000          | 000     | 0       | 000     | Gallmo    | 000       | 2 2            | Tonsky POC at 1.04 loygal   |
| Total Solvents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 3.0      | 0.0      | 0.0     | 0.0           | 0.0             | 0.0           | 0.0                                                                                        | 0.0         | 0.0          | 5.0     | 000     | 0.0     | Gal/mo    | 0.00      | A 4E           | Tonskyr POC                 |
| Coatings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 881.0    | 140.0    | 89.0    | 154.0         | 19.0            | 2.0           | 0.0                                                                                        | 0.0         | 0.0          | 29.3    | 7.4     | 78.8    | Gal/mo    | 1 400 51  | Fxemnt         | Gallyr                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |         |               |                 |               |                                                                                            |             |              |         |         |         |           |           |                | .()                         |
| Boats:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |          |          |         |               |                 |               |                                                                                            |             |              |         |         |         |           |           |                |                             |
| Crew Boat Fuel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6,466.5  | 7,334.3  | 1,976.4 | 2,634.7       | 5,379.5         | 3,893.9       | 5,087.9                                                                                    | 5,242.4     | 3,465.6      | 4,261.2 | 2,621.6 | 5.893.6 | Gal/mo    | 54.258    | A/A            | Gallyr                      |
| Work Boat Fuel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3,884.9  | 4,916.1  | 4,237.8 | 4,100.9       | 3,538.9         | 4,063.4       | 4,452.9                                                                                    | 0.0         | 0.0          | 1,189.7 | 4,985.8 | 0.0     | Gal/mo    | 35,370    | ΑN             | Gal/vr                      |
| Total Boat Fuel:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10,351.4 | 12,250.4 | 6,214.2 | 6,735.6       | 8,918.4         | 7,957.3       | 9.540.8                                                                                    | 5,242.4     | 3.465.6      | 5 450 9 | 7 607 4 | 5 893 6 | Gal/mo    | 89.628    | 114 481        | Salles.                     |
| Boat Emissions: tons                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |          |         |               |                 |               |                                                                                            |             |              |         |         | 200015  | 21112     | Ownion    |                | Trans.                      |
| ROC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.17     | 0.20     | 0.10    | 0.11          | 0.15            | 0.13          | 0.16                                                                                       | 60.0        | 90.0         | 60 0    | 0 13    | 0 10    | Tons/mo   | 1.40      | 4 90           | Tonshir at 33 15 lbc/MCal   |
| NOX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.90     | 3.44     | 1.74    | 1.89          | 2.50            | 2.23          | 2.68                                                                                       | 1.47        | 0.97         | 1.53    | 2 13    | 165     | Tons/mo   | 25.14     | 20 44          | Tonstur at 564 00 lbs/MGs/  |
| PM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.17     | 0.21     | 0.10    | 0.11          | 0.15            | 0.13          | 0.16                                                                                       | 60.0        | 0.06         | 0.09    | 0.13    | 0 10    | Tons/mo   | 1.50      | 4 92           | Tone for at 33 for the IMCa |
| XOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.04     | 0.05     | 0.02    | 0.03          | 0.03            | 0.03          | 0.04                                                                                       | 0.02        | 0.01         | 0.02    | 0 03    | 000     | Tons/mo   | 0.34      | 0.42           | Tonsturat 7 50 the Miles    |
| OO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.53     | 0.62     | 0.32    | 0.34          | 0.45            | 0.41          | 0.49                                                                                       | 0.27        | 0.18         | 0.28    | 0.39    | 0.30    | Tons/mo   | 4.57      | 5.84           | Tons/vr at 1.30 (US/MGal    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |          |         |               | -               |               |                                                                                            |             | 1-11-        |         | ,,,     | 5       | 21.01.5   | 177       | 5              | E SECURIOR INCOME           |

<sup>a</sup> Without producing wells, crane limit is 13,344 gallyr, with any producing wells, limit is 7,344 gallyr (Well A-8 brought back to production in February 2008)

Permit Limit for is 7.05 MMSCFlyr for HP and 0.14 MMSCFlyr for LP c Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Jun-07

|          | it Units             |             |             |            |             |                        |                     | 1               |                   |                                                         | -p              |             |                   | 16                   |                     |                     |                    |                   |     |         |         |         |                |       | .64 lb/gal                 | .43 lb/gal                 | <b>)</b> C |        |        |                 |                 |                  |                      | 1000                      | The life of the            | DSITTION                   | Sellifori<br>Sellifori     | College .                 |
|----------|----------------------|-------------|-------------|------------|-------------|------------------------|---------------------|-----------------|-------------------|---------------------------------------------------------|-----------------|-------------|-------------------|----------------------|---------------------|---------------------|--------------------|-------------------|-----|---------|---------|---------|----------------|-------|----------------------------|----------------------------|------------|--------|--------|-----------------|-----------------|------------------|----------------------|---------------------------|----------------------------|----------------------------|----------------------------|---------------------------|
|          | 12-Mo & Permit Units |             | Gallyr      | Gallyr     | Gallyra     |                        |                     | MMSCFAr         | MANCEAN           | MINIOUN                                                 | MMSCE/vr        |             | Gallyr            | MMSCFly              | Galfyr              | Galfyr              | Gal/vr             |                   |     | MBbl/yr | MBbilyr | MBbilyr |                |       | Tons/yr ROC at 1.64 lb/gal | Tons/yr ROC at 6.43 lb/gal | Tons/yr R( | Galfyr |        | nylog.          | Gallyr          | Cally            | Gally                | Tomoton of 22 de lie Mice | Tomorie of 564 On the MIC. | Tomeline at 35 to the DATE | Tonefur at 25.30 institled | Total at 1 and tostifical |
| Permit   | Limit                |             | ďΖ          | A/N        | 13,344      |                        |                     | A/N             | V/N               | 2                                                       | 7.19            |             | 55,900            | 51.10                | 7,315.00            | Exempt              | Exempt             |                   |     | 20      | 20      | 0968    |                |       | ΑΝ                         | N/A                        | 4.45       | Exempt |        | VIV             | V A             |                  | - (***)<br>-         | 4 00                      | 20 44                      | 1 02                       | 0 40                       | 78.5                      |
| 12-Month | Total                |             | 3,435.1     | 1,084.5    | 4,520       |                        |                     | 2.32            | 0 13              | 7                                                       | 2.43            |             | 10,842.00         | 26.28                | 79.00               | 36.00               | 1.675.46           |                   |     | 0000    | 0.000   | 0.000   |                |       | 0.01                       | 00.00                      | 10.01      | 519.51 |        | 52 037          | 32,020          | 04.057           | 700/20               | 4 30                      | 23.50                      | 1 41                       | 0.30                       | 7000                      |
| Monthly  | Units                | :           | Gal/mo      | Gal/mo     | Gal/mo      |                        |                     | MSCF/mo         | MSCF/mo           |                                                         | MSCF/mo         |             | Gal/mo            | MMSCF/mo             | Gal/mo              | Gal/mo              | Gal/mo             |                   |     | Bbls/mo | Bbls/mo | Bbls/mo |                |       | Gal/mo                     | Gal/mo                     | Gal/mo     | Gal/mo |        | Gal/mo          | Gal/mo          | om/leg           | Camping              | Tone/mo                   | Tons/mo                    | Tons/mo                    | Tons/mo                    | Tono/mo                   |
|          | Jun-07               | , 000       | 329.4       | 81.0       | 410.4       |                        |                     | 264.0           | 00                | 3                                                       | 264.0           |             | 0.0               | 2.1                  | 0.0                 | 14.0                | 0.0                |                   |     | 0.0     | 0.0     | 0.0     |                |       | 5.0                        | 0.0                        | 5.0        | 0.0    |        | 4 246 0         | 534.5           | 4 780 E          | 2.00 / 1             | 80 0                      | 1 34                       | 800                        | 0.02                       | 70.0                      |
|          | May-07               |             | 0.0         | 172.0      | 172.0       |                        |                     | 145.0           | 00                |                                                         | 145.0           |             | 0.0               | 1.7                  | 3.0                 | 0.0                 | 92.0               |                   |     | 0.0     | 0.0     | 0.0     |                |       | 0.0                        | 0.0                        | 0.0        | 78.8   |        | 5 893 6         | 0.0             | 5 803 B          | 0.000                | 0.10                      | 1 65                       | 0 10                       | 0.02                       | 0.30                      |
|          | Apr-07               |             | 0.0         | 77.0       | 77.0        |                        |                     | 145.0           | 0.0               |                                                         | 145.0           |             | 622.0             | 2.3                  | 0.0                 | 0.0                 | 131.0              |                   |     | 0.0     | 0.0     | 0.0     |                |       | 0.0                        | 0.0                        | 0.0        | 7.4    |        | 26216           | 4.985.8         | 7 807 4          | 1                    | 0.13                      | 2 13                       | 0.13                       | 0.03                       | 0 30                      |
|          | Mar-07               | 7440        | 0.4         | 75.0       | 219.0       |                        |                     | 119.0           | 0.0               | - Meter GR-8                                            | 119.0           |             | 0.0               | 2.6                  | 0.0                 | 0.0                 | 0.0                |                   |     | 0.0     | 0.0     | 0.0     |                |       | 5.0                        | 0.0                        | 2.0        | 29.3   |        | 4.261.2         | 1,189.7         | 5.450.0          |                      | 60 0                      | 1.53                       | 0.09                       | 0.02                       | 0.08                      |
|          | Feb-07               | 0.000       | 240.0       | 65.0       | 313.0       |                        |                     | 0.66            | 0.0               | Meter GR-81                                             | 0.66            |             | 37.0              | 2.3                  | 0.0                 | 0.0                 | 0.0                |                   | ļ   | 0.0     | 0.0     | 0.0     | 1              | - 6   | 0.0                        | 0.0                        | 0.0        | 0.0    |        | 3.465.6         | 0.0             | 3 465 6          |                      | 90.0                      | 0.97                       | 0.06                       | 0.01                       | 0.18                      |
|          | Jan-07               | 240.7       | 7.0.7       | 0.0        | 210.7       |                        |                     | 114.0           | 0.0               | culation of Planned Flaring (Meter GR-81 - Meter GR-83) | 114.0           |             | 3,558.0           | 1.9                  | 1.0                 | 0.0                 | 0.0                |                   | - 6 | 0.0     | 0.0     | 0.0     |                | 6     | 0.0                        | 0.0                        | 0.0        | 0.0    |        | 5,242.4         | 0.0             | 5 242 4          |                      | 0.09                      | 1.47                       | 0.09                       | 0.02                       | 0.27                      |
|          | Dec-06               | 285.0       | 0.00        | 0.0        | 265.0       |                        |                     | 118.0           | 0.0               | lation of Plar                                          | 118.0           | 1           | 0.0               | 2.4                  | 0.0                 | 0.0                 | 10.0               |                   |     | 0.0     | 0.0     | 0.0     |                |       | 0.0                        | 0.0                        | 0.0        | 0.0    |        | 5.087.9         | 4,452.9         | 9 540 8          |                      | 0.16                      | 2.68                       | 0.16                       | 0.04                       | 0.49                      |
|          | Nov-06               | 154.0       | 200         | 0.061      | 304.0       |                        |                     | 111.0           | 0.0               |                                                         | 111.0           |             | /46.0             | 2.3                  | 0.0                 | 0.0                 | 311.0              |                   |     | 0.0     | 0.0     | 0.0     |                | 0     | 0.0                        | 0.0                        | 0.0        | 7.0    |        | 3,893.9         | 4,063.4         | 7.957.3          |                      | 0.13                      | 2.23                       | 0.13                       | 0.03                       | 0.41                      |
|          | Oct-06               | 678.0       | 0.00        | 20.0       | 734.0       |                        |                     | 266.0           | 0.0               | Pilot Purge is accounted for in cal                     | 266.0           | - -         | 0.0               | 6.5                  | 0.0                 | 0.0                 | 156.0              | 1                 | 0   | 0.0     | 0.0     | 0.0     |                | 0     | 0.0                        | 0.0                        | 0.0        | 18.0   |        | 5,379.5         | 3,538.9         | 8.918.4          |                      | 0.15                      | 2.50                       | 0.15                       | 0.03                       | 0.45                      |
|          | Sep-06               | 562.0       | 0000        | 200.0      | 762.0       |                        |                     | 359.0           | 52.0              | Pilot Pur                                               | 411.0           | 000,        | 1,320.0           | 5.3                  | 40.0                | 22.0                | 216.0              |                   | 0   | 0.0     | 0.0     | 0.0     | +              | 000   | 0 0                        | 0.0                        | 0.0        | 0.40   |        | 2,634.7         | 4,100.9         | 6.735.6          |                      | 0.11                      | 1.89                       | 0.11                       | 0.03                       | 0.34                      |
|          | Aug-06               | 486.0       | 82.5        | 07.0       | 568.5       |                        |                     | 505.0           | 0.99              |                                                         | 571.0           | 0 252 0     | 3,237.0           | 0.0                  | 0.0                 | 0.0                 | 264.5              | +                 |     | 0.0     | 0.0     | 0.0     |                | 0     |                            | 0.0                        | 0.0        | 08:0   |        | 1,976.4         | 4,237.8         | 6,214.2          |                      | 0.10                      | 1.74                       | 0.10                       | 0.02                       | 0.32                      |
|          | 90-Jnr               | 358.0       | 128.0       | 120.0      | 484.0       | +                      |                     | 70.0            | 0.0               |                                                         | 70.0            | 7 202 0     | 1,302.0           | 2.5                  | 33.0                | 0.0                 | 495.0              |                   | 000 | 000     | 0.0     | 0.0     | $\frac{1}{1}$  | 0     | 0.00                       | 0 0                        | 7,000      | 10.0   |        | 7,334.3         | 4,916.1         | 12,250.4         |                      | 0.20                      | 3.44                       | 0.21                       | 0.05                       | 0.62                      |
| •        | Equipment            | North Crane | South Crane | Sign Cigin | Crane Total | Flore Gas Consumption: | e Gas Collsumption. | Planned (HP+LP) | Unplanned (HP+LP) | Pilot Purge (HP+LP)                                     | Flare Gas Total | Generators: | Oz (Ellielgeliky) | 40 DUD Stodey Chains | only stattel Engine | P-19 Filewater Pump | Fortable Equipment | Tanke Throughoute | 24A | 120     | GC-1    |         | Solvent I same | 7.501 | Enviro Det                 | Total Solvante             | Costinge   | o Gran | Boats: | Crew Boat Fuel: | Work Boat Fuel: | Total Boat Fuel: | Boat Emissions: tons | Roc                       | XON                        | PM                         | XOS                        | 8                         |

Without producing wells, crane limit is 13,344 gallyr; with any producing wells, limit is 7,344 gallyr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Jul-07

|                        |         |         |         |               | ľ                                   |                |                                                         |              |             |         |         |         |                  |                   |          |                            |
|------------------------|---------|---------|---------|---------------|-------------------------------------|----------------|---------------------------------------------------------|--------------|-------------|---------|---------|---------|------------------|-------------------|----------|----------------------------|
| Equipment              | Aug-06  | Sep-06  | Oct-06  | Nov-06        | Dec-06                              | Jan-07         | Feb-07                                                  | Mar-07       | Apr-07      | Mav-07  | Jun-07  | 70-hul. | Monthly<br>Units | 12-Month<br>Total | Permit   | 12-Mo & Permit Units       |
|                        |         |         |         |               |                                     |                |                                                         |              |             |         |         |         |                  |                   |          |                            |
| North Crane            | 486.0   | 562.0   | 678.0   | 154.0         | 265.0                               | 210.7          | 248.0                                                   | 144.0        | 0.0         | 0.0     | 329.4   | 0.0     | Gal/mo           | 3,077.1           | N/A      | Gallyr                     |
| South Crane            | 82.5    | 200.0   | 26.0    | 150.0         | 0.0                                 | 0.0            | 029                                                     | 75.0         | 77.0        | 172.0   | 81.0    | 96.0    | Gal/mo           | 1,054.5           | N/A      | Gallyr                     |
| Crane Total            | 568.5   | 762.0   | 734.0   | 304.0         | 265.0                               | 210.7          | 313.0                                                   | 219.0        | 77.0        | 172.0   | 410.4   | 96.0    | Gal/mo           | 4,132             | 13,344   | Gallyr <sup>a</sup>        |
|                        |         |         |         |               |                                     |                |                                                         |              |             |         |         |         |                  |                   |          |                            |
| Flare Gas Consumption: |         |         |         |               |                                     |                |                                                         |              |             |         |         |         |                  |                   |          |                            |
| Planned (HP+LP)        | 505.0   | 359.0   | 266.0   | 111.0         | 118.0                               | 114.0          | 0.66                                                    | 119.0        | 145.0       | 145.0   | 264.0   | 104.0   | MSCF/mo          | 2.35              | A/A      | MMSCF/yr                   |
| Unplanned (HP+LP)      | 0.99    | 52.0    | 0.0     | 0.0           | 0.0                                 | 0.0            | 0.0                                                     | 0.0          | 0.0         | 0.0     | 0.0     | 0.0     | MSCF/mo          | 0.12              | A/A      | MMSCF/yr                   |
| Pilot Purge (HP+LP)    |         |         | Pilot P | urge is accou | Pilot Purge is accounted for in cal | culation of PI | culation of Planned Flaring (Meter GR-81 - Meter GR-83) | (Meter GR-81 | - Meter GR- | 83)     |         |         |                  |                   |          |                            |
| Flare Gas Total        | 571.0   | 411.0   | 266.0   | 111.0         | 118.0                               | 114.0          | 99.0                                                    | 119.0        | 145.0       | 145.0   | 264.0   | 104.0   | MSCF/mo          | 2.47              | 7.19     | MMSCFlyr                   |
|                        |         |         |         |               |                                     |                |                                                         |              |             |         |         |         |                  |                   |          |                            |
| Generators:            |         |         |         |               |                                     |                |                                                         |              |             |         |         |         |                  |                   |          |                            |
| G2 (Emergency)         | 3,257.0 | 1,320.0 | 0.0     | 746.0         | 0.0                                 | 3,558.0        | 37.0                                                    | 0.0          | 622.0       | 0.0     | 0.0     | 1,004.0 | Gal/mo           | 10,544.00         | 55,900   | Gallyr                     |
| 63                     | 1.6     | 2.3     | 2.5     | 2.3           | 2.4                                 | 1.9            | 2.3                                                     | 2.6          | 2.3         | 1.7     | 2.1     | 2.1     | MMSCF/mo         | 26.18             | 51.10    | MMSCFlyr                   |
| 48 BHP Starter Engine  | 0.0     | 40.0    | 0.0     | 0.0           | 0.0                                 | 1.0            | 0.0                                                     | 0.0          | 0.0         | 3.0     | 0.0     | 20.0    | Gal/mo           | 64.00             | 7,315.00 | Galfyr                     |
| P-19 Firewater Pump    | 0.0     | 22.0    | 0.0     | 0.0           | 0.0                                 | 0.0            | 0.0                                                     | 0.0          | 0.0         | 0.0     | 14.0    | 0.0     | Gal/mo           | 36.00             | Exempt   | Gallyr                     |
| Portable Equipment     | 264.5   | 216.0   | 156.0   | 311.0         | 10.0                                | 0.0            | 0.0                                                     | 0.0          | 131.0       | 92.0    | 0.0     | 20.0    | Gal/mo           | 1,200.46          |          | Gallyr                     |
|                        |         |         |         |               |                                     |                |                                                         |              |             |         |         |         |                  |                   |          |                            |
| Tanks Throughputs      |         |         |         |               |                                     |                |                                                         |              |             |         |         |         |                  |                   |          |                            |
| T-3A                   | 0.0     | 0.0     | 0.0     | 0.0           | 0.0                                 | 0.0            | 0.0                                                     | 0.0          | 0.0         | 0.0     | 0.0     | 0.0     | Bbls/mo          | 0000              | 20       | MBbl/yr                    |
| T-3B                   | 0.0     | 0.0     | 0.0     | 0.0           | 0.0                                 | 0.0            | 0.0                                                     | 0.0          | 0.0         | 0.0     | 0.0     | 0.0     | Bbls/mo          | 0.000             | 20       | MBbl/yr                    |
| V-8                    | 0.0     | 0.0     | 0.0     | 0.0           | 0.0                                 | 0.0            | 0.0                                                     | 0.0          | 0.0         | 0.0     | 0.0     | 0.0     | Bbls/mo          | 0.000             | 3960     | MBbl/yr                    |
|                        |         |         |         |               |                                     |                |                                                         |              |             |         |         |         |                  |                   |          |                            |
| Solvent Usage          |         |         |         |               |                                     |                |                                                         |              |             |         |         |         |                  |                   |          |                            |
| Z-Sol                  | 0.0     | 0.0     | 0.0     | 0.0           | 0.0                                 | 0.0            | 0.0                                                     | 5.0          | 0.0         | 0.0     | 5.0     | 0.0     | Gal/mo           | 0.01              | A/N      | Tons/yr ROC at 1.64 lb/gal |
| Enviro-Det             | 0.0     | 0.0     | 0.0     | 0.0           | 0.0                                 | 0.0            | 0.0                                                     | 0.0          | 0.0         | 0.0     | 0.0     | 0.0     | Gal/mo           | 00:00             | A/A      | Tons/yr ROC at 6.43 lb/gal |
| Total Solvents         | 0.0     | 0.0     | 0.0     | 0.0           | 0.0                                 | 0.0            | 0.0                                                     | 5.0          | 0.0         | 0.0     | 5.0     | 0.0     | Gal/mo           | 0.01              | 4.45     | Tons/yr ROC                |
| Coatings               | 89.0    | 154.0   | 19.0    | 2.0           | 0.0                                 | 0.0            | 0.0                                                     | 29.3         | 7.4         | 78.8    | 0.0     | 33.5    | Gal/mo           | 413.01            | Exempt   | Gal/yr                     |
|                        |         |         |         |               |                                     |                |                                                         |              |             |         |         |         |                  |                   |          |                            |
| Boats:                 |         |         |         |               |                                     |                |                                                         |              |             |         |         |         |                  |                   |          |                            |
| Crew Boat Fuel:        | 1,976.4 | 2,634.7 | 5,379.5 | 3,893.9       | 5,087.9                             | 5,242.4        | 3,465.6                                                 | 4,261.2      | 2,621.6     | 5,893.6 | 4,246.0 | 1,920.0 | Gal/mo           | 46,623            | N/A      | Gal/yr                     |
| Work Boat Fuel:        | 4,237.8 | 4,100.9 | 3,538.9 | 4,063.4       | 4,452.9                             | 0.0            | 0.0                                                     | 1,189.7      | 4,985.8     | 0.0     | 534.5   | 5,782.0 | Gal/mo           | 32,886            | N/A      | Gal/yr                     |
| Total Boat Fuel:       | 6,214.2 | 6,735.6 | 8,918.4 | 7,957.3       | 9,540.8                             | 5,242.4        | 3,465.6                                                 | 5,450.9      | 7,607.4     | 5,893.6 | 4,780.5 | 7,702.0 | Gal/mo           | 79,508            | 114,481  | Gallyr                     |
| Boat Emissions: tons   |         |         |         |               |                                     |                |                                                         |              |             |         |         |         |                  |                   |          |                            |
| Roc                    | 0.10    | 0.11    | 0.15    | 0.13          | 0.16                                | 60:0           | 90.0                                                    | 60.0         | 0.13        | 0.10    | 0.08    | 0.13    | Tons/mo          | 1.32              | 1.90     | Tons/vr at 33,15 lbs/MGal  |
| NOX                    | 1.74    | 1.89    | 2.50    | 2.23          | 2.68                                | 1.47           | 76.0                                                    | 1.53         | 2.13        | 1.65    | 1.34    | 2.16    | Tons/mo          | 22.30             | 32.11    | Tons/yr at 561.00 lbs/MGa/ |
| PM                     | 0.10    | 0.11    | 0.15    | 0.13          | 0.16                                | 60.0           | 90.0                                                    | 60.0         | 0.13        | 0.10    | 0.08    | 0.13    | Tons/mo          | 1.33              | 1,92     | Tons/vr at 33.50 lbs/MGa   |
| SOx                    | 0.02    | 0.03    | 0.03    | 0.03          | 0.04                                | 0.02           | 0.01                                                    | 0.02         | 0.03        | 0.02    | 0.02    | 0.03    | Tons/mo          | 0.30              | 0.42     | Tons/yr at 7.50 lbs/MGal   |
| 00                     | 0.32    | 0.34    | 0.45    | 0.41          | 0.49                                | 0.27           | 0.18                                                    | 0.28         | 0.39        | 0:30    | 0.24    | 0.39    | Tons/mo          | 4.05              | 5.84     | Tonslyr at 102.00 lbs/MGal |

Without producing wells, crane limit is 13,344 gal/yr, with any producing wells, limit is 7,344 gal/yr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Aug-07

| Equipment              | Sep-06  | Oct-06  | Nov-06  | Dec-06                              | Jan-07          | Feb-07  | Mar-07         | Apr-07                                                  | May-07        | Jun-07  | 70-Inf  | Aug-07  | Monthly<br>Units | 12-Month<br>Total | Limit    | 12-Mo & Permit Units       |
|------------------------|---------|---------|---------|-------------------------------------|-----------------|---------|----------------|---------------------------------------------------------|---------------|---------|---------|---------|------------------|-------------------|----------|----------------------------|
| North Crane            | 0 683   | 0 023   | 454.0   | 0 390                               | 2.020           | 0070    |                |                                                         |               | ,       |         |         |                  |                   |          |                            |
| Secret Course          | 0.000   | 0.070   | 0.4.0   | 0.002                               | 210.7           | 240.0   | 144.0          | 0.0                                                     | 0.0           | 329.4   | 0.0     | 0.967   | 1                | 3,387.1           | A/A      | Galfyr                     |
| Soull Claire           | 200.0   | 0.00    | 120.0   | 0.0                                 | 0.0             | 02:0    | (5.0           | 0.77                                                    | 172.0         | 81.0    | 96.0    | 155.0   | Gal/mo           | 1,127.0           | ΑN       | Galfyr                     |
| Crane Total            | 762.0   | 734.0   | 304.0   | 265.0                               | 210.7           | 313.0   | 219.0          | 77.0                                                    | 172.0         | 410.4   | 96.0    | 951.0   | Gal/mo           | 4,514             | 13,344   | Gallyra                    |
|                        |         |         |         |                                     |                 |         |                |                                                         |               |         |         |         |                  |                   |          |                            |
| Flare Gas Consumption: |         |         |         |                                     |                 |         |                |                                                         |               |         |         |         |                  |                   |          |                            |
| Planned (HP+LP)        | 359.0   | 266.0   | 111.0   | 118.0                               | 114.0           | 0.66    | 119.0          | 145.0                                                   | 145.0         | 264.0   | 104.0   | 204.0   | MSCF/mo          | 2.05              | ΑX       | MMSCF/vr                   |
| Unplanned (HP+LP)      | 52.0    | 0.0     | 0.0     | 0.0                                 | 0.0             | 0.0     | 0.0            | 0.0                                                     | 0.0           | 0.0     | 0.0     | 0.0     | MSCF/mo          | 0.05              | ΑN       | MMSCF/vr                   |
| Pilot Purge (HP+LP)    |         |         | Pilot F | Pilot Purge is accounted for in cal | unted for in ca |         | lanned Flaring | culation of Planned Flaring (Meter GR-81 - Meter GR-83) | 1 - Meter GR. | -83)    |         |         |                  |                   |          |                            |
| Flare Gas Total        | 411.0   | 266.0   | 111.0   | 118.0                               | 114.0           | 99.0    | 119.0          | 145.0                                                   | 145.0         | 264.0   | 104.0   | 204.0   | MSCF/mo          | 2.10              | 7.19     | MMSCF/vr <sup>b</sup>      |
|                        |         |         |         |                                     |                 |         |                |                                                         |               |         |         |         |                  |                   |          |                            |
| Generators:            |         |         |         |                                     |                 |         |                |                                                         |               |         |         |         |                  |                   |          |                            |
| G2 (Emergency)         | 1,320.0 | 0.0     | 746.0   | 0.0                                 | 3,558.0         | 37.0    | 0.0            | 622.0                                                   | 0.0           | 0.0     | 1,004.0 | 3,290.0 | Gal/mo           | 10,577,00         | 55,900   | Gallyr                     |
| G3                     | 2.3     | 2.5     | 2.3     | 2.4                                 | 1.9             | 2.3     | 2.6            | 2.3                                                     | 1.7           | 2.1     | 2.1     | 0.5     | MMSCF/mo         | 25.02             | 51.10    | MMSCF/vr                   |
| 48 BHP Starter Engine  | 40.0    | 0.0     | 0.0     | 0.0                                 | 1.0             | 0.0     | 0.0            | 0.0                                                     | 3.0           | 0.0     | 20.0    | 122.0   | Gal/mo           | 186.00            | 7,315,00 | Gallyr                     |
| P-19 Firewater Pump    | 22.0    | 0.0     | 0.0     | 0.0                                 | 0.0             | 0.0     | 0.0            | 0.0                                                     | 0.0           | 14.0    | 0.0     | 0.0     | Gal/mo           | 36.00             | Exempt   | Gal/vr                     |
| Portable Equipment     | 216.0   | 156.0   | 311.0   | 10.0                                | 0.0             | 0.0     | 0.0            | 131.0                                                   | 92.0          | 0.0     | 20.0    | 49.0    | Gal/mo           | 985.00            | Exempt   | Gallyr                     |
|                        |         |         |         |                                     |                 |         |                |                                                         |               |         |         |         |                  |                   |          | .,                         |
| Tanks Throughputs      |         |         |         |                                     |                 |         |                |                                                         |               |         |         |         |                  |                   |          |                            |
| T-3A                   | 0.0     | 0.0     | 0.0     | 0.0                                 | 0.0             | 0.0     | 0.0            | 0.0                                                     | 0.0           | 0.0     | 0.0     | 0.0     | Bbls/mo          | 0.000             | 20       | WBblvr                     |
| T-3B                   | 0.0     | 0.0     | 0.0     | 0.0                                 | 0.0             | 0.0     | 0.0            | 0.0                                                     | 0.0           | 0.0     | 0.0     | 0.0     | Bbls/mo          | 0.000             | 20       | MBblyr                     |
| V-8                    | 0.0     | 0.0     | 0.0     | 0.0                                 | 0.0             | 0.0     | 0.0            | 0.0                                                     | 0.0           | 0.0     | 0.0     | 0.0     | Bbls/mo          | 0.000             | 3960     | MBblyr                     |
|                        |         |         |         |                                     |                 |         |                |                                                         |               |         |         |         |                  |                   |          |                            |
| Solvent Usage          |         |         |         |                                     |                 |         |                |                                                         |               |         |         |         |                  |                   |          |                            |
| Z-Sol                  | 0.0     | 0.0     | 0.0     | 0.0                                 | 0.0             | 0.0     | 2.0            | 0.0                                                     | 0.0           | 5.0     | 0.0     | 0.0     | Gal/mo           | 0.01              | N/A      | Tons/yr ROC at 1.64 lb/gal |
| Enviro-Det             | 0.0     | 0.0     | 0.0     | 0.0                                 | 0.0             | 0.0     | 0.0            | 0.0                                                     | 0.0           | 0.0     | 0.0     | 0.0     | Gal/mo           | 00.00             | A/N      | Tons/yr ROC at 6.43 lb/gal |
| Total Solvents         | 0.0     | 0.0     | 0.0     | 0.0                                 | 0.0             | 0.0     | 5.0            | 0.0                                                     | 0.0           | 2.0     | 0.0     | 0.0     | Gal/mo           | 0.01              | 4.45     | Tons/yr ROC                |
| Coatings               | 154.0   | 19.0    | 2.0     | 0.0                                 | 0.0             | 0.0     | 29.3           | 7.4                                                     | 78.8          | 0.0     | 33.5    | 0.0     | Gal/mo           | 324.01            | Exempt   | Galfyr                     |
|                        |         |         |         |                                     |                 |         |                |                                                         |               |         |         |         |                  |                   |          |                            |
| Boats:                 |         |         |         |                                     |                 |         |                |                                                         |               |         |         |         |                  |                   |          |                            |
| Crew Boat Fuel:        | 2,634.7 | 5,379.5 | 3,893.9 | 5,087.9                             | 5,242.4         | 3,465.6 | 4,261.2        | 2,621.6                                                 | 5,893.6       | 4,246.0 | 1,920.0 | 4,298.0 | Gal/mo           | 48,944            | N/A      | Gallyr                     |
| Work Boat Fuel:        | 4,100.9 | 3,538.9 | 4,063.4 | 4,452.9                             | 0.0             | 0.0     | 1,189.7        | 4,985.8                                                 | 0.0           | 534.5   | 5,782.0 | 2,781.5 | Gal/mo           | 31,429            | N/A      | Gallyr                     |
| Total Boat Fuel:       | 6,735.6 | 8,918.4 | 7,957.3 | 9,540.8                             | 5,242.4         | 3,465.6 | 5,450.9        | 7,607.4                                                 | 5,893.6       | 4.780.5 | 7.702.0 | 7.079.5 | Gal/mo           | 80.374            | 114.481  | Gallyr                     |
| Boat Emissions: tons   |         |         |         |                                     |                 |         |                |                                                         |               |         |         |         |                  |                   |          |                            |
| Roc                    | 0.11    | 0.15    | 0.13    | 0.16                                | 60:0            | 90.0    | 60.0           | 0.13                                                    | 0.10          | 0.08    | 0.13    | 0.12    | Tons/mo          | 1.33              | 1.90     | TonsAr at 33,15 [bs/MGa]   |
| XON                    | 1.89    | 2.50    | 2.23    | 2.68                                | 1.47            | 26.0    | 1.53           | 2.13                                                    | 1.65          | 1.34    | 2.16    | 1.99    | Tons/mo          | 22.54             | 32.11    | Tons/vr at 561,00 lbs/MGal |
| PM                     | 0.11    | 0.15    | 0.13    | 0.16                                | 60:0            | 90.0    | 60.0           | 0.13                                                    | 0.10          | 0.08    | 0.13    | 0.12    | Tons/mo          | 1.35              | 1.92     | Tons/vr at 33.50 lbs/MGai  |
| SOX                    | 0.03    | 0.03    | 0.03    | 0.04                                | 0.02            | 0.01    | 0.02           | 0.03                                                    | 0.02          | 0.02    | 0.03    | 0.03    | Tons/mo          | 0.30              | 0.42     | Tons/vr at 7.50 lbs/MGal   |
| 00                     | 0.34    | 0.45    | 0.41    | 0.49                                | 0.27            | 0.18    | 0.28           | 0.39                                                    | 0.30          | 0.24    | 0.39    | 0.36    | Tons/mo          | 4.10              | 5.84     | Tons/vr at 102.00 lbs/MGal |

<sup>a</sup> Without producing wells, crane limit is 13,344 gallyr; with any producing wells, limit is 7,344 gallyr (Well A-8 brought back to production in February 2008)

<sup>b</sup> Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP

<sup>c</sup> Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Sep-07

Without producing wells, crane limit is 13,344 gallyr; with any producing wells, limit is 7,344 gallyr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Oct-07

| Equipment              | Nov-06  | Dec-06   | Jan-07  | Feb-07                             | Mar-07         | Apr-07          | May-07                                   | Jun-07      | Jul-07                   | Aug-07  | Sen-07   | Oct-07  | Monthly<br>Units | 12-Month<br>Total | Permit   | 12-No & Permit Units          |
|------------------------|---------|----------|---------|------------------------------------|----------------|-----------------|------------------------------------------|-------------|--------------------------|---------|----------|---------|------------------|-------------------|----------|-------------------------------|
|                        |         |          |         |                                    |                |                 |                                          |             |                          |         |          |         |                  |                   |          |                               |
| North Crane            | 154.0   | 265.0    | 210.7   | 248.0                              | 144.0          | 0.0             | 0.0                                      | 329.4       | 0.0                      | 796.0   | 823.0    | 1.094.0 | Gal/mo           | 4.064.1           | A/N      | Galfyr                        |
| South Crane            | 150.0   | 0.0      | 0.0     | 65.0                               | 75.0           | 0.77            | 172.0                                    | 81.0        | 96.0                     | 155.0   | 109.5    | 146.0   | Gal/mo           | 1.126.5           | Α'N      | Gal/vr                        |
| Crane Total            | 304.0   | 265.0    | 210.7   | 313.0                              | 219.0          | 77.0            | 172.0                                    | 410.4       | 0.96                     | 951.0   | 932.5    | 1,240.0 | Gal/mo           | 5,191             | 13,344   | Gallyra                       |
| Flare Gae Consumption: |         |          |         |                                    |                |                 |                                          |             |                          |         |          |         |                  |                   |          |                               |
| Planned (HP+I P)       | 1110    | 1180     | 1140    | 000                                | 4100           | 145.0           | 146.0                                    | 0 790       | 10,00                    | 10,00   | 0,0,     | 00,     | 12000            |                   |          |                               |
| I Impanned (HP+I P)    | 0       | 000      |         | 200                                | 0.00           | 20.0            | 20.0                                     | 204:0       | 0.40                     | 204.0   | 0.40     | 1.16.0  | MSCF/mo          | 1.73              | ΨX       | MMSCF/yr                      |
| Pilot Purge (HP+LP)    | 9.0     | 500      | Pilot F | Pilot Purge is accounted for in ca | nted for in ca | culation of Pla | culation of Planned Flaring (Meter GR-81 | (Meter GR-8 | 0.0]<br>1 - Meter GR-83) | 0.0     | 24.0     | 1.0     | MSCF/mo          | 0.03              | ĕN.      | MMSCFlyr                      |
| Flare Gas Total        | 111.0   | 118.0    | 114.0   | 8                                  | 110 0          | 145.0           | 145.0                                    | 0 796       | 404                      | 1       | 0 0 7 0  | 443.0   | 11001            |                   | :        | 4                             |
|                        |         |          |         | 200                                | 2              | 202             | 2.54                                     | 704.0       | 0.45                     | 204.0   | 0.812    | 117.0   | MSCF/Mo          | 1.76              | 7.19     | MINISCHAL                     |
| Generators:            | T       | <b>+</b> |         | T                                  |                |                 | 1                                        | 1           | 1                        |         | 1        | 1       |                  |                   |          | b <sub>b.</sub> ,             |
| G2 (Emergency)         | 746.0   | 0.0      | 3.558.0 | 37.0                               | 0.0            | 622 0           | 0                                        | C           | 1 004 0                  | 3 200 0 | 220.0    | 0 88    | ca/les           | 00 202 0          | 900 93   | - 11-2                        |
| 63                     | 2.3     | 2.4      | 1.9     | 2.3                                | 2.6            | 2.3             | 17                                       | 2.1         | 21                       | 0.002,0 | 0.07     | 9       | MMSCE/mo         | 2000.00           | 33,300   | Ganyr                         |
| 48 BHP Starter Engine  | 0.0     | 0.0      | 1.0     | 0.0                                | 00             | 0               | 30                                       | 0           | 000                      | 1220    | 6450     | 0.00    | Out to to        | 00.00             | 2 346 00 | ministry)                     |
| P-19 Firewater Pump    | 0.0     | 0.0      | 0.0     | 0.0                                | 0.0            | 0.0             | 0.0                                      | 14.0        | 0.0                      | 0.00    | 55.0     | 0.00    | Gal/mo           | 80.00             | 1,315.00 | Gallyr                        |
| Portable Equipment     | 311.0   | 10.0     | 0.0     | 0.0                                | 0.0            | 1310            | 0 26                                     | 0           | 000                      | 40.0    | 0.00     | 000     | Gallmo           | 642.00            | Exemple  | Gallyr                        |
|                        |         |          |         |                                    |                |                 | 2                                        | 25          | 0.07                     | 20.01   | 20       | 0.0     | Galvillo         | 013.00            | схешри   | Galryr                        |
| Tanks Throughputs      |         |          |         |                                    |                |                 |                                          |             |                          |         | Ī        |         |                  |                   |          |                               |
| T-3A                   | 0.0     | 0.0      | 0.0     | 0.0                                | 0.0            | 0.0             | 0.0                                      | 0.0         | 0.0                      | 0.0     | 00       | 0       | Rhls/mo          | 0000              | 00       | HOME                          |
| T-3B                   | 0.0     | 0.0      | 0.0     | 0.0                                | 0.0            | 0.0             | 0.0                                      | 00          | 0                        | 0       | 0        | 000     | Bhls/mo          | 0000              | 07       | MONTH                         |
| V-8                    | 0.0     | 0.0      | 0.0     | 0.0                                | 0.0            | 0.0             | 0.0                                      | 0.0         | 0.0                      | 0.0     | 0        | 00      | Bhls/mo          | 0000              | 3960     | MBMItor                       |
|                        |         |          |         |                                    |                |                 |                                          |             |                          |         |          |         |                  |                   |          | - Communication               |
| Solvent Usage          |         |          |         |                                    |                |                 |                                          |             |                          |         |          |         |                  |                   |          |                               |
| Z-Sol                  | 0.0     | 0.0      | 0.0     | 0.0                                | 5.0            | 0.0             | 0.0                                      | 5.0         | 0.0                      | 00      | 5.0      | 5.0     | Gal/mo           | 000               | Δ/N      | Topskyr DOC at 1 64 lb/gol    |
| Enviro-Det             | 0.0     | 0.0      | 0.0     | 0.0                                | 0.0            | 0.0             | 0.0                                      | 0.0         | 0.0                      | 0.0     | 0        | 0       | Gal/mo           | 000               | N/A      | Tons/ir BOC at 6.43 lb/cal    |
| Total Solvents         | 0.0     | 0.0      | 0.0     | 0.0                                | 5.0            | 0.0             | 0.0                                      | 5.0         | 0.0                      | 0.0     | 5.0      | 5.0     | Gal/mo           | 0.02              | 4.45     | Tonsfit ROC                   |
| Coatings               | 2.0     | 0.0      | 0.0     | 0.0                                | 29.3           | 7.4             | 78.8                                     | 0.0         | 33.5                     | 0.0     | 0.0      | 0.0     | Gal/mo           | 151.01            | Exempt   | Gallyr                        |
|                        |         |          |         |                                    |                |                 |                                          |             |                          |         |          |         |                  |                   |          |                               |
| Soats:                 |         |          |         |                                    |                |                 |                                          |             |                          |         |          |         |                  |                   |          |                               |
| Crew Boat Fuel:        | 3,893.9 | 5,087.9  | 5,242.4 | 3,465.6                            | 4,261.2        | 2,621.6         | 5,893.6                                  | 4,246.0     | 1,920.0                  | 4,298.0 | 5,387.2  | 5,848.8 | Gal/mo           | 52.166            | Α.Χ.     | Gallyr                        |
| Work Boat Fuel:        | 4,063.4 | 4,452.9  | 0.0     | 0.0                                | 1,189.7        | 4,985.8         | 0.0                                      | 534.5       | 5,782.0                  | 2,781.5 | 4,856.3  | 3,833.6 | Gal/mo           | 32,479            | ΑX       | Galfyr                        |
| Total Boat Fuel:       | 7,957.3 | 9,540.8  | 5,242.4 | 3,465.6                            | 5,450.9        | 7.607.4         | 5.893.6                                  | 4.780.5     | 7,702.0                  | 7 079 5 | 10 243 5 | 9 682 4 | Gal/mo           | 84 648            | 114 481  | Callur                        |
| Boat Emissions: tons   |         |          |         |                                    |                |                 |                                          |             |                          |         |          |         | 2                |                   |          | No. 1                         |
|                        | 0.13    | 0.16     | 60.0    | 90.0                               | 0.09           | 0.13            | 0.10                                     | 0.08        | 0.13                     | 0.12    | 0.17     | 0.16    | Tons/mo          | UF L              | 1 90     | Tonshir at 33 45 [he/MGs]     |
| XON                    | 2.23    | 2.68     | 1.47    | 26.0                               | 1.53           | 2.13            | 1.65                                     | 1.34        | 2.16                     | 1.99    | 2.87     | 2.72    | Tons/mo          | 23.74             | 32.11    | Tonstyr at 561 00 lbs/MGal    |
| PM                     | 0.13    | 0.16     | 60.0    | 90.0                               | 60.0           | 0.13            | 0.10                                     | 0.08        | 0.13                     | 0.12    | 0.17     | 0.16    | Tons/mo          | CP 1              | 1 92     | Tonsfur at 32 50 the MGs      |
| SOX                    | 0.03    | 0.04     | 0.02    | 0.01                               | 0.02           | 0.03            | 0.02                                     | 0.02        | 0.03                     | 0.03    | 0.04     | 0.04    | Tons/mo          | 0.0               | 0.42     | Tonsfur at 25:50 lbs/midal    |
| 00                     | 0.41    | 0.49     | 0.27    | 0.18                               | 0.28           | 0.39            | 0.30                                     | 0.24        | 0.39                     | 0.36    | 0.52     | 0.49    | Tons/mo          | CE 9              | 5.84     | Tonefur at 102 00 lbs/MCal    |
|                        |         |          |         | -                                  |                |                 |                                          |             | 22:2                     | ,       | 2        | 5       | 2 5              | TYNE.             | 2000     | OUS(VI at 1UZ, UU 108/mcdal a |

<sup>a</sup> Without producing wells, crane limit is 13,344 galfyr, with any producing wells, limit is 7,344 galfyr (Well A-8 brought back to production in February 2008)

Permit Limit for is 7.05 MMSCFlyr for HP and 0.14 MMSCFlyr for LP <sup>c</sup> Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Nov-07

|                        |         |         |         |               |                                     | Application of  |                                                         |               |               |          |         |          | Monthly   | 12-Month | Permit   |                                         |
|------------------------|---------|---------|---------|---------------|-------------------------------------|-----------------|---------------------------------------------------------|---------------|---------------|----------|---------|----------|-----------|----------|----------|-----------------------------------------|
| Equipment              | Dec-06  | Jan-07  | Feb-07  | Mar-07        | Apr-07                              | May-07          | Jun-07                                                  | Jul-07        | Aug-07        | Sep-07   | Oct-07  | Nov-07   | Units     | Total    | Limit    | 12-Mo & Permit Units                    |
| 0 2 34                 |         |         |         |               |                                     |                 |                                                         |               |               |          |         |          |           |          |          |                                         |
| North Crane            | 265.0   | 210.7   | 248.0   | 144.0         | 0.0                                 | 0.0             | 329.4                                                   | 0.0           | 796.0         | 823.0    | 1,094.0 | 1,002.0  | Gal/mo    | 4,912.1  | ΑN       | Galfyr                                  |
| South Crane            | 0.0     | 0.0     | 65.0    | 75.0          | 77.0                                | 172.0           | 81.0                                                    | 96.0          | 155.0         | 109.5    | 146.0   | 160.0    | Gal/mo    | 1,136.5  | ΑN       | Galfyr                                  |
| Crane Total            | 265.0   | 210.7   | 313.0   | 219.0         | 77.0                                | 172.0           | 410.4                                                   | 96.0          | 951.0         | 932.5    | 1,240.0 | 1,162.0  | Gal/mo    | 6,049    | 13,344   | Gallyra                                 |
| Flare Gas Consumption; |         |         |         |               |                                     |                 |                                                         |               |               |          |         |          |           |          |          |                                         |
| Planned (HP+LP)        | 118.0   | 114.0   | 0.66    | 119.0         | 145.0                               | 145.0           | 264.0                                                   | 104 0         | 204 0         | 194 0    | 118.0   | 148.0    | Mercelmo  | 1 77     | 4/14     | - 1100111                               |
| Unplanned (HP+LP)      | 0.0     | 0.0     | 0.0     | 0.0           | 00                                  | 00              | C                                                       | 0             | 0             | 0.70     | -       | 1000     | Mece/ma   | 1.77     | Y/N      | MINISCENY                               |
| Pilot Purge (HP+LP)    |         |         | Pilot   | Jurge is acco | Pilot Purge is accounted for in cal | alculation of F | culation of Planned Flaring (Meter GR-81 - Meter GR-83) | ) (Meter GR-8 | 11 - Meter GF | 1        | 2       | 0.50     | OIII/DOIN | 0.13     | ¥        | MMSCF/yr                                |
| Flare Gas Total        | 118.0   | 114.0   | 99.0    | 119.0         | 145.0                               | 145.0           | 264.0                                                   | 104.0         | 204.0         | 218.0    | 117.0   | 251.0    | MSCF/mo   | 1.90     | 7.19     | MMSCENT                                 |
|                        |         |         |         |               |                                     |                 |                                                         |               |               |          |         |          |           |          |          |                                         |
| Generators:            |         |         |         |               |                                     |                 |                                                         |               |               |          |         |          |           |          |          | *************************************** |
| G2 (Emergency)         | 0.0     | 3,558.0 | 37.0    | 0.0           | 622.0                               | 0.0             | 0.0                                                     | 1,004.0       | 3.290.0       | 220.0    | 88.0    | 00       | Gal/mo    | 8 819 00 | 55 900   | Callyr                                  |
| 63                     | 2.4     | 1.9     | 2.3     | 2.6           | 2.3                                 | 1.7             | 2.1                                                     | 2.1           | 0.5           | 0.0      | 0.0     | 1.5      | MMSCF/mo  | 19,41    | 51 10    | MMSCEAR                                 |
| 48 BHP Starter Engine  | 0.0     | 1.0     | 0.0     | 0.0           | 0.0                                 | 3.0             | 0.0                                                     | 20.0          | 122.0         | 645.0    | 610     | 104 0    | Gal/mo    | 956.00   | 7 345 00 | College                                 |
| P-19 Firewater Pump    | 0.0     | 0.0     | 0.0     | 0.0           | 0.0                                 | 0.0             | 14.0                                                    | 0.0           | 0.0           | 55.0     | 0.0     | 53.0     | Gal/mo    | 122 00   | Exempt   | Galfyr                                  |
| Portable Equipment     | 10.0    | 0.0     | 0.0     | 0.0           | 131.0                               | 92.0            | 0.0                                                     | 20.0          | 49.0          | 0.0      | 00      | 1740     | Gal/mo    | 476.00   | Evennot  | Coller                                  |
|                        |         |         |         |               |                                     |                 |                                                         |               |               |          |         |          | Campo     | 000      | LAGIIIDI | Gairyi                                  |
| Tanks Throughputs      |         |         |         |               |                                     |                 |                                                         |               |               |          |         |          |           |          |          |                                         |
| T-3A                   | 0.0     | 0.0     | 0.0     | 0.0           | 0.0                                 | 0.0             | 0.0                                                     | 0.0           | 0.0           | 00       | 00      | 0 99     | Rhls/mo   | 9800     | UC.      | Mobilion                                |
| T-3B                   | 0.0     | 0.0     | 0.0     | 0.0           | 0.0                                 | 0.0             | 0.0                                                     | 0.0           | 0.0           | 0.0      | 00      | 099      | Bhls/mo   | 0.000    | 02       | MEMber                                  |
| V-8                    | 0.0     | 0.0     | 0.0     | 0.0           | 0.0                                 | 0.0             | 0.0                                                     | 0.0           | 0.0           | 0.0      | 0.0     | 132.0    | Bhls/mo   | 0.433    | 3960     | Mishing                                 |
|                        |         |         |         |               |                                     |                 |                                                         |               |               |          |         |          |           | 1000     |          | - Carrier                               |
| Solvent Usage          |         |         |         |               |                                     |                 |                                                         |               |               |          |         |          |           |          |          |                                         |
| Z-Sol                  | 0.0     | 0.0     | 0.0     | 5.0           | 0.0                                 | 0.0             | 5.0                                                     | 0.0           | 0.0           | 5.0      | 5.0     | 0.0      | Gal/mo    | 000      | A/N      | Tons/yr BOC at 1.64 lb/gal              |
| Enviro-Det             | 0.0     | 0.0     | 0.0     | 0.0           | 0.0                                 | 0.0             | 0.0                                                     | 0.0           | 0.0           | 0.0      | 0.0     | 0.0      | Gal/mo    | 0.00     | ξ.       | Tons/vr ROC at 6 43 lb/gal              |
| Total Solvents         | 0.0     | 0.0     | 0.0     | 2.0           | 0.0                                 | 0.0             | 5.0                                                     | 0.0           | 0.0           | 5.0      | 5.0     | 0.0      | Gal/mo    | 0.02     | 4,45     | Tons/yr ROC                             |
| Coatings               | 0.0     | 0.0     | 0.0     | 29.3          | 7.4                                 | 78.8            | 0.0                                                     | 33.5          | 0.0           | 0.0      | 0.0     | 0.0      | Gal/mo    | 149.01   | Exempt   | Gal/vr                                  |
| -70                    |         |         |         |               |                                     |                 |                                                         |               |               |          |         |          |           |          |          |                                         |
| Dodles.                |         |         |         |               |                                     |                 |                                                         |               |               |          |         |          |           |          |          |                                         |
| Crew Boat Fuel:        | 5,087.9 | 5,242.4 | 3,465.6 | 4,261.2       | 2,621.6                             | 5,893.6         | 4,246.0                                                 | 1,920.0       | 4,298.0       | 5,387.2  | 5,848.8 | 6,434.0  | Gal/mo    | 54,706   | ΑN       | Gal/vr                                  |
| Work Boat Fuel:        | 4,452.9 | 0.0     | 0.0     | 1,189.7       | 4,985.8                             | 0.0             | 534.5                                                   | 5,782.0       | 2,781.5       | 4,856.3  | 3,833.6 | 4,275.6  | Gal/mo    | 32,692   | ΑN       | Gal/yr                                  |
| Total Boat Fuel:       | 9,540.8 | 5,242.4 | 3,465.6 | 5,450.9       | 7,607.4                             | 5,893.6         | 4,780.5                                                 | 7,702.0       | 7,079.5       | 10,243.5 | 9.682.4 | 10.709.6 | Gal/mo    | 87.398   | 114 481  | Salle                                   |
| Boat Emissions: tons   |         |         |         |               |                                     |                 |                                                         |               |               |          |         |          |           |          | 100      |                                         |
| ROC                    | 0.16    | 60.0    | 90.0    | 60.0          | 0.13                                | 0.10            | 0.08                                                    | 0.13          | 0.12          | 0.17     | 0.16    | 0.18     | Tons/mo   | 1.45     | 1 90     | Tonsfur at 33 15 lbs/MGal               |
| XON                    | 2.68    | 1.47    | 0.97    | 1.53          | 2.13                                | 1.65            | 1.34                                                    | 2.16          | 1.99          | 2.87     | 2.72    | 3.00     | Tons/mo   | 24.52    | 32.41    | Tonsbrat 561 00 the Mical               |
| MA                     | 0.16    | 0.09    | 90.0    | 60.0          | 0.13                                | 0.10            | 0.08                                                    | 0.13          | 0.12          | 0.17     | 0.16    | 0.18     | Tons/mo   | 1.46     | 192      | Tone/ur at 33 50 the Miles              |
| XOS                    | 0.04    | 0.02    | 0.01    | 0.02          | 0.03                                | 0.02            | 0.02                                                    | 0.03          | 0.03          | 0.04     | 0.04    | 0.04     | Tons/mo   | 0.33     | 0.40     | Tonsivrat 7 50 he/Mgal                  |
| 8                      | 0.49    | 0.27    | 0.18    | 0.28          | 0.39                                | 0.30            | 0.24                                                    | 0.39          | 0.36          | 0.52     | 0.40    | 0.55     | Tone/mo   | 4.46     | 5.84     | Topologo 403 00 lbc/llCcl               |

Without producing wells, crane limit its 13,344 gallyr; with any producing wells, limit is 7,344 gallyr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Dec-07

| Equipment              | Jan-07  | Feb-07  | Mar-07  | Apr-67        | May-07                             | 70-mil- | Total.                                                  | Annanz                                | Con-07        | Cotto   | Mary 67  | Dec 67   | Monthly  | 12-Month                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Permit   |                                 |
|------------------------|---------|---------|---------|---------------|------------------------------------|---------|---------------------------------------------------------|---------------------------------------|---------------|---------|----------|----------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|---------------------------------|
|                        |         |         |         |               |                                    | i in    | P                                                       | P P P P P P P P P P P P P P P P P P P | TO CORD       | 1200    | 10-40N   | nec-nr   | SIIIO    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 12-MO & Permit Units            |
| North Crane            | 210.7   | 248.0   | 144.0   | 0.0           | 0.0                                | 329.4   | 0.0                                                     | 796.0                                 | 823.0         | 1.094.0 | 1 002 0  | 1 164 0  | Gal/mo   | 5 811 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A      | Calker                          |
| South Crane            | 0.0     | 65.0    | 75.0    | 77.0          | 172.0                              | 81.0    | 0.96                                                    | 155.0                                 | 109.5         | 146.0   | 160.0    | 114.0    | Gal/mo   | 1 250 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V.V      | Gallyr                          |
| Crane Total            | 210.7   | 313.0   | 219.0   | 77.0          | 172.0                              | 410.4   | 96.0                                                    | 951.0                                 | 932.5         | 1,240.0 | 1.162.0  | 1.278.0  | Gal/mo   | 7.062                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 13.344   | Gallur                          |
| 3                      |         |         |         |               |                                    |         |                                                         |                                       |               |         |          |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                 |
| riale Gas Consumption. | 1       |         |         |               |                                    |         |                                                         |                                       |               |         |          |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                 |
| Fianned (HF+LF)        | 114.0   | 0.66    | 119.0   | 145.0         | ٦                                  | 264.0   | 104.0                                                   | 204.0                                 | 194.0         | 116.0   | 146.0    | 154.0    | MSCF/mo  | 1.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ₹X       | MMSCE/vr                        |
| Unplanned (HP+LP)      | 0.0     | 0.0     | 0.0     | 0.0           | 0.0                                | 0.0     | 0.0                                                     | 0.0                                   | 24.0          | 1.0     | 105.0    | 686.0    | MSCF/mo  | 0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A/N      | MMSCEAR                         |
| Pilot Purge (HP+LP)    |         |         | Pilot   | Purge is acco | Pilot Purge is accounted for in ca |         | culation of Planned Flaring (Meter GR-81 - Meter GR-83) | Meter GR-8                            | 11 - Meter GR |         |          |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                 |
| Flare Gas Total        | 114.0   | 99.0    | 119.0   | 145.0         | 145.0                              | 264.0   | 104.0                                                   | 204.0                                 | 218.0         | 117.0   | 251.0    | 840.0    | MSCF/mo  | 2.62                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.19     | MMSCFW                          |
|                        |         |         |         |               |                                    |         |                                                         |                                       |               |         |          |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                 |
| Generators:            |         |         |         |               |                                    |         |                                                         |                                       |               |         | T        |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                 |
| G2 (Emergency)         | 3,558.0 | 37.0    | 0.0     | 622.0         | 0.0                                | 0.0     | 1,004.0                                                 | 3.290.0                               | 220.0         | 88.0    | 00       | 0        | Gal/mo   | 8 849 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 55,000   | Caller                          |
| 63                     | 1.9     | 2.3     | 2.6     | 2.3           | 1.7                                | 2.1     | 2.1                                                     | 0.5                                   | 0.0           | 0.0     | 1.5      | 2.6      | MMSCF/mo | 19.54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 51 10    | MASCEAN                         |
| 48 BHP Starter Engine  | 1.0     | 0.0     | 0.0     | 0.0           | 3.0                                | 0.0     | 20.0                                                    | 122.0                                 | 645.0         | 61.0    | 104.0    | 2118     | Gal/mo   | 4 187 RD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7 315 00 | Collive                         |
| P-19 Firewater Pump    | 0.0     | 0.0     | 0.0     | 0.0           | 0.0                                | 14.0    | 0.0                                                     | 0.0                                   | 55.0          | 00      | 53.0     | 87.0     | Gal/mo   | 00 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Evennt   | Gallyr                          |
| Portable Equipment     | 0.0     | 0.0     | 0.0     | 131.0         | 92.0                               | 0.0     | 20.0                                                    | 49.0                                  | 0.0           | 0.0     | 174.0    | 146.0    | Gal/mo   | 612.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Evemot   | Gallyn                          |
|                        |         |         |         |               |                                    |         |                                                         |                                       |               |         |          | 2        | 2        | 012.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LAGIIIDI | Gailyi                          |
| Tanks Throughputs      |         |         |         |               |                                    |         |                                                         |                                       |               |         |          |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                 |
| T-3A                   | 0.0     | 0.0     | 0.0     | 0.0           | 0.0                                | 0.0     | 0.0                                                     | 0.0                                   | 0.0           | 0.0     | 0.99     | 446.5    | Bbls/mo  | 0.513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 96       | MBbitur                         |
| 1-38                   | 0.0     | 0.0     | 0.0     | 0.0           | 0.0                                | 0.0     | 0.0                                                     | 0.0                                   | 0.0           | 0.0     | 0.99     | 446.5    | Bbls/mo  | 0.513                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2        | MBhitve                         |
| V-8                    | 0.0     | 0.0     | 0.0     | 0.0           | 0.0                                | 0.0     | 0.0                                                     | 0.0                                   | 0.0           | 0.0     | 132.0    | 893.0    | Bbls/mo  | 1.025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 3960     | Mahiw                           |
|                        |         |         |         |               |                                    |         |                                                         |                                       |               |         |          |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                 |
| Solvent Usage          |         |         |         |               |                                    |         |                                                         |                                       |               |         |          |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -        |                                 |
| Z-Sol                  | 0.0     | 0.0     | 5.0     | 0.0           | 0.0                                | 2.0     | 0.0                                                     | 0.0                                   | 5.0           | 5.0     | 0.0      | 0.6      | Gal/mo   | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A/N      | Tops/vr ROC at 1.64 lb/gal      |
| Enviro-Det             | 0.0     | 0.0     | 0.0     | 0.0           | 0.0                                | 0.0     | 0.0                                                     | 0.0                                   | 0.0           | 0.0     | 0.0      | 0.0      | Gal/mo   | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ψ/N      | Tons/vr ROC at 6.43 lb/gal      |
| Total Solvents         | 0.0     | 0.0     | 5.0     | 0.0           | 0.0                                | 2.0     | 0.0                                                     | 0.0                                   | 5.0           | 5.0     | 0.0      | 0.6      | Gal/mo   | 20 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 445      | Tonsfur ROC                     |
| Coatings               | 0.0     | 0.0     | 29.3    | 7.4           | 78.8                               | 0.0     | 33.5                                                    | 0.0                                   | 0.0           | 0.0     | 0.0      | 0.0      | Gal/mo   | 149.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Exempt   | Gallyr                          |
| 9000                   | 1       |         |         |               |                                    |         |                                                         |                                       |               |         |          |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                 |
| Cross Boat Engl.       | 7 070 3 | 0 101 0 | 7,00,   | 0,000         | 000                                |         |                                                         |                                       |               |         |          |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |                                 |
| West Dock Frei         | 9,242.4 | 3,403.0 | 4,201.2 | 2,021.6       | 5,893.6                            | 4,246.0 | 1,920.0                                                 | 4,298.0                               | 5,387.2       | 5,848.8 | 6,434.0  | 7,494.8  | Gal/mo   | 57,113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | A/A      | Gallyr                          |
| Work boat rue:         | 0.0     | 0.0     | 1,189.7 | 4,985.8       | 0.0                                | 534.5   | 5,782.0                                                 | 2,781.5                               | 4,856.3       | 3,833.6 | 4,275.6  | 4,825.1  | Gal/mo   | 33,064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ΑN       | Gallyr                          |
| Total Boat Fuel:       | 5,242.4 | 3,465.6 | 5,450.9 | 7,607.4       | 5,893.6                            | 4,780.5 | 7,702.0                                                 | 7,079.5                               | 10,243.5      | 9.682.4 | 10.709.6 | 12.319.9 | Gal/mo   | 771 06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 114.481  | Gallyr                          |
| Boat Emissions: tons   |         |         |         |               |                                    |         |                                                         |                                       |               |         |          |          |          | 11100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | -Caro                           |
| ROC                    | 0.09    | 90.0    | 0.09    | 0.13          | 0.10                               | 0.08    | 0.13                                                    | 0.12                                  | 0.17          | 0.16    | 0.18     | 0.20     | Tons/mo  | 0P 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4 00     | Tone for at 33 15 lbc (MCal     |
| NOX                    | 1.47    | 0.97    | 1.53    | 2.13          | 1.65                               | 1.34    | 2.16                                                    | 1.99                                  | 2.87          | 2.72    | 3.00     | 3.46     | Tons/mo  | 25.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 22.44    | Topelor of 661 fft the Minister |
| PM                     | 60.0    | 90.0    | 0.09    | 0.13          | 0.10                               | 0.08    | 0.13                                                    | 0.12                                  | 0.17          | 0.16    | 0.18     | 0 21     | Tons/mo  | 1.5.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4 02     | Tone hr at 32 for the minds     |
| SOx                    | 0.02    | 0.01    | 0.02    | 0.03          | 0.02                               | 0.02    | 0.03                                                    | 0.03                                  | 0.04          | 0.04    | 0.04     | 0.05     | Tons/mo  | 0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.42     | Tons/ar at 7.50 [he/MGs]        |
| ပြသ                    | 0.27    | 0.18    | 0.28    | 0.39          | 0.30                               | 0.24    | 0.39                                                    | 0.36                                  | 0.52          | 0.49    | 0.55     | 0.63     | Tons/mo  | 4.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.84     | Tons/vr at 102.00 lbs/MGal      |
|                        |         |         |         |               |                                    |         |                                                         |                                       |               |         |          |          |          | The second contract of |          |                                 |

Without producing wells, crane limit is 13,344 gal/yr, with any producing wells, limit is 7,344 gal/yr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace PTO No. 1493 Equipment Usage Rolling 12-Months Ending: Jan-08

|                        |         |         |         |              | Part of the last                   |               |               |                                                          |              |          |          |         | Monthly  | 12-Month | Permit  |                            |
|------------------------|---------|---------|---------|--------------|------------------------------------|---------------|---------------|----------------------------------------------------------|--------------|----------|----------|---------|----------|----------|---------|----------------------------|
| Equipment              | Feb-07  | Mar-07  | Apr-07  | May-07       | Jun-07                             | 70-Inc        | Aug-07        | Sep-07                                                   | Oct-07       | Nov-07   | Dec-07   | Jan-08  | Units    | Total    | Limit   | 12-Mo & Permit Units       |
| over O throw           | 0.876   | 1440    | -       | 6            | 7 000                              | 0             | 0 002         | 000                                                      | 0,00,        | 0 000 ,  | ,        |         |          |          |         |                            |
| South Crans            | 240.0   | 25.0    | 120     | 172.0        | 328.4                              | 0.0           | 0.02          | 823.0                                                    | 1,094.0      | 1,002.0  | 1,164.0  | 0.787   | Gal/mo   | 6,367.4  |         | Gallyr                     |
| South Clarie           | 0.00    | 0.67    | 2.      | 1/2.0        | 81.0                               | 96.0          | 155.0         | 109.5                                                    | 146.0        | 160.0    | 114.0    | 161.0   | Gal/mo   | 1,411.5  | N/A     | Galfyr                     |
| Crane Total            | 313.0   | 219.0   | 77.0    | 172.0        | 410.4                              | 96.0          | 951.0         | 932.5                                                    | 1,240.0      | 1,162.0  | 1,278.0  | 928.0   | Gal/mo   | 7,779    | 13,344  | Galfyr <sup>a</sup>        |
|                        |         |         |         |              |                                    |               |               |                                                          |              |          |          |         |          |          |         |                            |
| Flare Gas Consumption: |         |         |         |              |                                    |               |               |                                                          |              |          |          |         |          |          |         |                            |
| Planned (HP+LP)        | 99.0    | 119.0   | 145.0   | 145.0        | 264.0                              | 104.0         | 204.0         | 194.0                                                    | 116.0        | 146.0    | 154.0    | 176.0   | MSCF/mo  | 1.87     | ΑX      | MMSCEAR                    |
| Unplanned (HP+LP)      | 0.0     | 0.0     | 0.0     | 0.0          | 0.0                                | 0.0           | 0.0           | 24.0                                                     | 1.0          | 105.0    | 686.0    | 0.0     | MSCF/mo  | 0.82     |         | MMSCEAr                    |
| Pilot Purge (HP+LP)    |         |         | Pilot F | urge is acco | Pilot Purge is accounted for in ca | culation of P | anned Flaring | Iculation of Planned Flaring (Meter GR-81 - Meter GR-83) | 1 - Meter GR |          |          |         |          |          |         |                            |
| Flare Gas Total        | 99.0    | 119.0   | 145.0   | 145.0        | 264.0                              | 104.0         | 204.0         | 218.0                                                    | 117.0        | 251.0    | 840.0    | 176.0   | MSCF/mo  | 2.68     | 7.19    | MMSCEAR                    |
|                        |         |         |         |              |                                    |               |               | -                                                        |              |          |          |         |          |          |         |                            |
| Generators:            |         |         |         |              |                                    |               |               |                                                          |              |          |          |         |          |          |         |                            |
| G2 (Emergency)         | 37.0    | 0.0     | 622.0   | 0.0          | 0.0                                | 1,004.0       | 3,290.0       | 220.0                                                    | 88.0         | 0.0      | 0.0      | 64.0    | Gal/mo   | 5 325 00 | 006.88  | zyles                      |
| <b>G</b> 3             | 2.3     | 2.6     | 2.3     | 1.7          | 2.1                                | 2.1           | 0.5           | 0.0                                                      | 0.0          | 1.5      | 2.6      | 18      | MMSCF/mo | 19.39    |         | MMSCEAR                    |
| 48 BHP Starter Engine  | 0.0     | 0.0     | 0.0     | 3.0          | 0.0                                | 20.0          | 122.0         | 645.0                                                    | 61.0         | 104.0    | 211.8    | 68.0    | Gal/mo   | 1,234,80 | 12      | Gallyr                     |
| P-19 Firewater Pump    | 0.0     | 0.0     | 0.0     | 0.0          | 14.0                               | 0.0           | 0.0           | 55.0                                                     | 0.0          | 53.0     | 87.0     | 242.0   | Gal/mo   | 451 00   | Exempt  | Gallyr                     |
| Portable Equipment     | 0.0     | 0.0     | 131.0   | 92.0         | 0.0                                | 20.0          | 49.0          | 0.0                                                      | 0.0          | 174.0    | 146.0    | 819.0   | Gal/mo   | 1 431 00 | Fyempt  | Gallyr                     |
|                        |         |         |         |              |                                    |               |               |                                                          |              |          |          |         |          |          | 1       | i (inc)                    |
| Tanks Throughputs      |         |         |         |              |                                    |               |               |                                                          |              |          |          |         |          |          |         |                            |
| T-3A                   | 0.0     | 0.0     | 0.0     | 0.0          | 0.0                                | 0.0           | 0.0           | 0.0                                                      | 0.0          | 0.99     | 446.5    | 0.0     | Bbls/mo  | 0.513    | 20      | MBb/vr                     |
| T-3B                   | 0.0     | 0.0     | 0.0     | 0.0          | 0.0                                | 0.0           | 0.0           | 0.0                                                      | 0.0          | 0.99     | 446.5    | 0.0     | Bbls/mo  | 0,513    |         | MBbl/vr                    |
| V-8                    | 0.0     | 0.0     | 0.0     | 0.0          | 0.0                                | 0.0           | 0.0           | 0.0                                                      | 0.0          | 132.0    | 893.0    | 0.0     | Bbls/mo  | 1,025    | 3960    | MBb/vr                     |
|                        |         |         |         |              |                                    |               |               |                                                          |              |          |          |         |          |          |         |                            |
| Solvent Usage          |         |         |         |              |                                    |               |               |                                                          |              |          |          |         |          |          |         |                            |
| los-z                  | 0.0     | 5.0     | 0.0     | 0.0          | 5.0                                | 0.0           | 0.0           | 9.0                                                      | 5.0          | 0.0      | 0.6      | 0.0     | Gal/mo   | 0.02     | A/A     | Tons/yr ROC at 1.64 lb/gal |
| Enviro-Det             | 0.0     | 0.0     | 0.0     | 0.0          | 0.0                                | 0.0           | 0.0           | 0.0                                                      | 0.0          | 0.0      | 0.0      | 0.0     | Gal/mo   | 00:00    | A/N     | Tons/yr ROC at 6.43 lb/gal |
| Total Solvents         | 0.0     | 5.0     | 0.0     | 0.0          | 2.0                                | 0.0           | 0.0           | 5.0                                                      | 5.0          | 0.0      | 0.6      | 0.0     | Gal/mo   | 0.02     | 4.45    | Tons/vr ROC                |
| Coatings               | 0.0     | 29.3    | 7.4     | 78.8         | 0.0                                | 33.5          | 0.0           | 0.0                                                      | 0.0          | 0.0      | 0.0      | 0.0     | Gal/mo   | 149.01   | Exempt  | Gallyr                     |
| Danter                 |         |         |         |              |                                    |               |               |                                                          |              |          |          |         |          |          |         |                            |
| 500000                 | 0 400   | 0,00,   | 0,000   |              |                                    |               |               |                                                          |              |          |          |         |          |          |         |                            |
| Crew Boat Fuel:        | 3,465.6 | 4,261.2 | 2,621.6 | 5,893.6      | 4,246.0                            | 1,920.0       | 4,298.0       | 5,387.2                                                  | 5,848.8      | 6,434.0  | 7,494.8  | 4,599.6 | Gal/mo   | 56,470   |         | Gallyr                     |
| Work Boat Fuel:        | 0.0     | 1,189.7 | 4,985.8 | 0.0          | 534.5                              | 5,782.0       | 2,781.5       | 4,856.3                                                  | 3,833.6      | 4,275.6  | 4,825.1  | 2,948.1 | Gal/mo   | 36,012   | N/A     | Gal/yr                     |
| Total Boat Fuel:       | 3,465.6 | 5,450.9 | 7,607.4 | 5,893.6      | 4,780.5                            | 7,702.0       | 7,079.5       | 10,243.5                                                 | 9,682.4      | 10,709.6 | 12,319.9 | 7.547.7 | Gal/mo   | 92.482   | 114.481 | Galvr                      |
| Boat Emissions: tons   |         |         |         |              |                                    |               |               |                                                          |              |          |          |         |          |          |         |                            |
| ROC                    | 0.06    | 60:0    | 0.13    | 0.10         | 80:0                               | 0.13          | 0.12          | 0.17                                                     | 0.16         | 0.18     | 0.20     | 0.13    | Tons/mo  | 1.53     | 1.90    | Tonstvrat 33 15 lbs/MGal   |
| XON                    | 0.97    | 1.53    | 2.13    | 1.65         | 1.34                               | 2.16          | 1.99          | 2.87                                                     | 2.72         | 3.00     | 3.46     | 2.12    | Tons/mo  | 25.94    | 6       | Tonsivrat 561 00 lbs MGal  |
| PM                     | 90.0    | 0.09    | 0.13    | 0.10         | 80.0                               | 0.13          | 0.12          | 0.17                                                     | 0.16         | 0.18     | 0.21     | 0.13    | Tons/mo  | 1.55     |         | Tonsivrat 33 50 lbs/MGa    |
| SOx                    | 0.01    | 0.02    | 0.03    | 0.02         | 0.02                               | 0.03          | 0.03          | 40.0                                                     | 0.04         | 0.04     | 0.05     | 0.03    | Tons/mo  | 0.35     |         | Tons/vr at 7.50 lbs/MGal   |
| OS<br>OS               | 0.18    | 0.28    | 0.39    | 0:30         | 0.24                               | 0.39          | 0.36          | 0.52                                                     | 0.49         | 0.55     | 0.63     | 0.38    | Tons/mo  | 4.72     | 5.84    | Tons/yr at 102.00 lbs/MGal |

Without producing wells, crane limit is 13,344 gal/yr, with any producing wells, limit is 7,344 gal/yr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Feb-08

|                        |         |         |         |                                     |                |               |                                          |             |          |          |         |         | Monthly  | 12-Month | Permit   |                             |
|------------------------|---------|---------|---------|-------------------------------------|----------------|---------------|------------------------------------------|-------------|----------|----------|---------|---------|----------|----------|----------|-----------------------------|
| Equipment              | Mar-07  | Apr-07  | May-07  | Jun-07                              | Jul-07         | Aug-07        | Sep-07                                   | Oct-07      | Nov-07   | Dec-07   | Jan-08  | Feb-08  | Units    | Total    | Limit    | 12-Mo & Permit Units        |
|                        |         |         |         |                                     |                |               |                                          |             |          |          |         |         |          |          |          |                             |
| North Crane            | 144.0   | 0.0     | 0.0     | 329.4                               | 0.0            | 796.0         | 823.0                                    | 1,094.0     | 1,002.0  | 1,164.0  | 0.797   | 202.0   | Gal/mo   | 6,321.4  | ΑN       | Galíyr                      |
| South Crane            | 75.0    | 77.0    | 172.0   | 81.0                                | 96.0           | 155.0         | 109.5                                    | 146.0       | 160.0    | 114.0    | 161.0   | 0.0     | Gal/mo   | 1,346.5  | ΑN       | Galfyr                      |
| Crane Total            | 219.0   | 77.0    | 172.0   | 410.4                               | 96.0           | 951.0         | 932.5                                    | 1,240.0     | 1,162.0  | 1.278.0  | 928.0   | 202.0   | Gal/mo   | 7.668    | 13.344   | Galfyr                      |
|                        |         |         |         |                                     |                |               |                                          |             | ļ        |          |         |         |          |          |          |                             |
| Flare Gas Consumption: |         |         |         |                                     |                |               |                                          |             |          |          |         |         |          |          |          |                             |
| Planned (HP+LP)        | 119.0   | 145.0   | 145.0   | 264.0                               | 104.0          | 204.0         | 194.0                                    | 116.0       | 146.0    | 154.0    | 176.0   | 171.0   | MSCF/mo  | 1 94     | ΑN       | MMSCEAr                     |
| Unplanned (HP+LP)      | 0.0     | 0.0     | 0.0     | 0.0                                 | 0.0            | 0.0           | 24.0                                     | 1.0         | 105.0    | 686.0    | 0.0     | 0.0     | MSCF/mo  | 0.82     |          | MMSCEAR                     |
| Pilot Purge (HP+LP)    |         |         | Pilot F | Pilot Purge is accounted for in cal | nted for in ca | culation of P | culation of Planned Flaring (Meter GR-81 | (Meter GR-8 | ×        | l_       |         |         |          |          |          |                             |
| Flare Gas Total        | 119.0   | 145.0   | 145.0   | 264.0                               | 104.0          | 204.0         | 218.0                                    | 117.0       | 251.0    | 840.0    | 176.0   | 171.0   | MSCF/mo  | 275      | 7.19     | MMSCEAR                     |
|                        |         |         |         |                                     |                |               |                                          |             |          |          |         |         |          |          |          |                             |
| Generators:            |         |         |         |                                     |                |               |                                          |             | 1        |          |         | T       |          |          |          |                             |
| G2 (Emergency)         | 0.0     | 622.0   | 0.0     | 0.0                                 | 1,004.0        | 3.290.0       | 220.0                                    | 88.0        | 0.0      | 0.0      | 64.0    | 00      | Gal/mo   | 5 288 00 | 55 900   | Salve                       |
| 3                      | 2.6     | 2.3     | 1.7     | 2.1                                 | 2.1            | 0.5           | 0.0                                      | 0.0         | 1.5      | 2.6      | 18      | 2.6     | MMSCF/mo | 19.66    | 51.10    | MMSGEAT                     |
| 48 BHP Starter Engine  | 0.0     | 0.0     | 3.0     | 0.0                                 | 20.0           | 122.0         | 645.0                                    | 61.0        | 104.0    | 211.8    | 680     | 00      | Gal/mo   | 1 234 80 | 7.315.00 | Galler                      |
| P-19 Firewater Pump    | 0.0     | 0.0     | 0.0     | 14.0                                | 0.0            | 0.0           | 55.0                                     | 0.0         | 53.0     | 87.0     | 242.0   | 0.0     | Gal/mo   | 451 00   |          | Gallyr                      |
| Portable Equipment     | 0.0     | 131.0   | 92.0    | 0.0                                 | 20.0           | 49.0          | 0.0                                      | 0.0         | 174.0    | 146.0    | 819.0   | 0.0     | Gal/mo   | 1 431 00 | Exempt   | Gallyr                      |
|                        |         |         |         |                                     |                |               |                                          |             |          |          |         |         |          | ,        |          | (ap)                        |
| Fanks Throughputs      |         |         |         |                                     |                |               |                                          |             |          |          |         |         |          |          |          |                             |
| -3A                    | 0.0     | 0.0     | 0.0     | 0.0                                 | 0.0            | 0.0           | 0.0                                      | 0.0         | 0.99     | 446.5    | 0.0     | 217.0   | Bbls/mo  | 0.730    | 20       | MBblvr                      |
| T-3B                   | 0.0     | 0.0     | 0.0     | 0.0                                 | 0.0            | 0.0           | 0.0                                      | 0.0         | 0.99     | 446.5    | 0.0     | 217.0   | Bbls/mo  | 0.730    | 20       | MBbl/vr                     |
| 8                      | 0.0     | 0.0     | 0.0     | 0.0                                 | 0.0            | 0.0           | 0.0                                      | 0.0         | 132.0    | 893.0    | 0.0     | 434.0   | Bbls/mo  | 1,459    | 3960     | MBbl/vr                     |
|                        |         |         |         |                                     |                |               |                                          |             |          |          |         |         |          |          |          |                             |
| Solvent Usage          |         |         |         |                                     |                |               |                                          |             |          |          |         |         |          |          |          |                             |
| Z-Sol                  | 2.0     | 0.0     | 0.0     | 2.0                                 | 0.0            | 0.0           | 5.0                                      | 5.0         | 0.0      | 9.0      | 0.0     | 0.0     | Gal/mo   | 0.02     | ΝΑ       | Tons/vr ROC at 1.64 lb/qal  |
| Enviro-Det             | 0.0     | 0.0     | 0.0     | 0.0                                 | 0.0            | 0.0           | 0.0                                      | 0.0         | 0.0      | 0.0      | 0.0     | 0.0     | Gal/mo   | 00.0     | ΑN       | Tons/yr ROC at 6.43 lb/gal  |
| Total Solvents         | 5.0     | 0.0     | 0.0     | 5.0                                 | 0.0            | 0.0           | 5.0                                      | 5.0         | 0.0      | 0.6      | 0.0     | 0.0     | Gal/mo   | 0.02     | 4.45     | Tons/vr ROC                 |
| Coatings               | 29.3    | 7.4     | 78.8    | 0.0                                 | 33.5           | 0.0           | 0.0                                      | 0.0         | 0.0      | 0.0      | 0.0     | 0.0     | Gal/mo   | 149.01   | Exempt   | Gallyr                      |
|                        |         |         |         |                                     |                |               |                                          |             |          |          |         |         |          |          |          |                             |
| Boats:                 |         |         |         |                                     |                |               |                                          |             |          |          |         |         |          |          |          |                             |
| Crew Boat Fuel:        | 4,261.2 | 2,621.6 | 5,893.6 | 4,246.0                             | 1,920.0        | 4,298.0       | 5,387.2                                  | 5,848.8     | 6,434.0  | 7,494.8  | 4,599.6 | 5,280.8 | Gal/mo   | 58,286   | A/N      | Gal/vr                      |
| Work Boat Fuel:        | 1,189.7 | 4,985.8 | 0.0     | 534.5                               | 5,782.0        | 2,781.5       | 4,856.3                                  | 3,833.6     | 4,275.6  | 4,825.1  | 2,948.1 | 8.966   | Gal/mo   | 37,009   | ΑN       | Gallyr                      |
| Total Boat Fuel:       | 5,450.9 | 7,607.4 | 5,893.6 | 4,780.5                             | 7,702.0        | 7,079.5       | 10,243.5                                 | 9.682.4     | 10,709.6 | 12,319,9 | 7.547.7 | 6.277.6 | Gal/mo   | 95 294   | 114.481  | Gallyr                      |
| Boat Emissions: tons   |         |         |         |                                     |                |               |                                          |             |          |          |         |         |          |          |          |                             |
| ROC                    | 60.0    | 0.13    | 0.10    | 0.08                                | 0.13           | 0.12          | 0.17                                     | 0.16        | 0.18     | 0.20     | 0.13    | 0.10    | Tons/mo  | 1.58     | 1.90     | Tonsivr at 33.15 lbs/MGal   |
| NOX                    | 1.53    | 2.13    | 1.65    | 1.34                                | 2.16           | 1.99          | 2.87                                     | 2.72        | 3.00     | 3.46     | 2.12    | 1.76    | Tons/mo  | 26.73    | 32.11    | Tons/vr at 561 00 lbs/MGa   |
| Md                     | 60.0    | 0.13    | 0.10    | 0.08                                | 0.13           | 0.12          | 0.17                                     | 0.16        | 0.18     | 0.21     | 0.13    | 0.11    | Tons/mo  | 1.60     | 1.92     | Tons/vr at 33.50 lbs/MGa    |
| SOx                    | 0.02    | 0.03    | 0.02    | 0.02                                | 0.03           | 0.03          | 0.04                                     | 0.04        | 0.04     | 0.05     | 0.03    | 0.02    | Tons/mo  | 0,36     | 0.42     | Tons/vr at 7.50 [bs/MGal    |
| 00                     | 0.28    | 0.39    | 0.30    | 0.24                                | 0.39           | 0.36          | 0.52                                     | 0.49        | 0.55     | 0.63     | 0.38    | 0.32    | Tons/mo  | 4.86     | 28.2     | Tonelur at 402 00 the (MCal |

Without producing wells, crane limit is 13,344 gallyr, with any producing wells, limit is 7,344 gallyr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCFlyr for HP and 0.14 MMSCFlyr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace PTO No. 1493 Equipment Usage Rolling 12-Months Ending: Mar-08

| Equipment              | Aprel 7 | May-07    | 70-011  | 20701        | 70-pix                              | Sen-07         | Oct-07        | Novent                                                  | Dan 07        | 80.00   | Fob.08  | Mar DB  | Monthly           | 12-Month | Permit   | 12.Wo & Darmit I Inite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------|---------|-----------|---------|--------------|-------------------------------------|----------------|---------------|---------------------------------------------------------|---------------|---------|---------|---------|-------------------|----------|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |         | in family |         |              | in Rati                             | Š              | B             |                                                         | 10000         | ON III  |         | 200     |                   | ino:     |          | Carrie and |
| North Crane            | 0.0     | 0.0       | 329.4   | 0.0          | 796.0                               | 823.0          | 1,094.0       | 1,002.0                                                 | 1,164.0       | 767.0   | 202.0   | 175.0   | Gal/mo            | 6,352.4  | AN       | Gallyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| South Crane            | 0.77    | 172.0     | 81.0    | 0.96         | 155.0                               | 109.5          | 146.0         | 160.0                                                   | 114.0         | 161.0   | 0.0     | 78.0    | Gal/mo            | 1,349.5  | N/A      | Gal/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Crane Total            | 77.0    | 172.0     | 410.4   | 96.0         | 951.0                               | 932.5          | 1,240.0       | 1,162.0                                                 | 1,278.0       | 928.0   | 202.0   | 253.0   | Gal/mo            | 7,702    | 13,344   | Gallyra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |         |           |         |              |                                     |                |               |                                                         |               |         |         |         |                   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Flare Gas Consumption: |         |           |         |              |                                     |                |               |                                                         |               |         |         |         |                   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Planned (HP+LP)        | 145.0   | 145.0     | 264.0   | 104.0        | 204.0                               | 194.0          | 116.0         | 146.0                                                   | 154.0         | 176.0   | 171.0   | 214.0   | MSCF/mo           | 2.03     | N/A      | MMSCF/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Unplanned (HP+LP)      | 0.0     | 0.0       | 0.0     | 0.0          | 0.0                                 | 24.0           | 1.0           | 105.0                                                   | 0.989         | 0.0     | 0.0     | 2,398.0 | MSCF/mo           | 3.21     | N/A      | MMSCF/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Pilot Purge (HP+LP)    |         |           | Pilot F | urge is acco | Pilot Purge is accounted for in cal | Iculation of P | anned Flaring | culation of Planned Flaring (Meter GR-81 - Meter GR-83) | 1 - Meter GR- | 83)     |         |         |                   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Flare Gas Total        | 145.0   | 145.0     | 264.0   | 104.0        | 204.0                               | 218.0          | 117.0         | 251.0                                                   | 840.0         | 176.0   | 171.0   | 2,612.0 | MSCF/mo           | 5.25     | 7.19     | MMSCF/yr <sup>b</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        |         |           |         |              |                                     |                |               |                                                         |               |         |         |         |                   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Generators:            |         |           |         |              |                                     |                |               |                                                         |               |         |         |         |                   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| G2 (Emergency)         | 622.0   | 0.0       | 0.0     | 1,004.0      | 3,290.0                             | 220.0          | 88.0          | 0.0                                                     | 0.0           | 64.0    | 0.0     | 0.0     | Gal/mo            | 5,288.00 | 55,900   | Gallyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 63                     | 2.3     | 1.7       | 2.1     | 2.1          | 0.5                                 | 0.0            | 0.0           | 1.5                                                     | 2.6           | 1.8     | 2.6     | 3.2     | MMSCF/mo          | 20.31    | 51.10    | MMSCFtyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 48 BHP Starter Engine  | 0.0     | 3.0       | 0.0     | 20.0         | 122.0                               | 645.0          | 61.0          | 104.0                                                   | 211.8         | 0.89    | 0.0     | 28.0    | Gal/mo            | 1,262.80 | 7,315.00 | Gallyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| P-19 Firewater Pump    | 0.0     | 0.0       | 14.0    | 0.0          | 0.0                                 | 25.0           | 0.0           | 53.0                                                    | 0.78          | 242.0   | 0.0     | 19.0    | Gal/mo            | 470.00   | Exempt   | Gallyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Portable Equipment     | 131.0   | 92.0      | 0.0     | 20.0         | 49.0                                | 0.0            | 0.0           | 174.0                                                   | 146.0         | 819.0   | 0.0     | 0.0     | Gal/mo            | 1,431.00 | Exempt   | Gallyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |         |           |         |              |                                     |                |               |                                                         |               |         |         |         |                   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Tanks Throughputs      |         |           |         |              |                                     |                |               |                                                         |               |         |         |         |                   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| T-3A                   | 0.0     | 0.0       | 0.0     | 0.0          | 0.0                                 | 0.0            | 0.0           | 0.99                                                    | 446.5         | 0.0     | 217.0   | 1,309.5 | Bbls/mo           | 2.039    | 20       | MBbl/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| T-3B                   | 0.0     | 0.0       | 0.0     | 0.0          | 0.0                                 | 0.0            | 0.0           | 0.99                                                    | 446.5         | 0.0     | 217.0   | 1,309.5 | Bbls/mo           | 2.039    | 20       | MBbl/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| V-8                    | 0.0     | 0.0       | 0.0     | 0.0          | 0.0                                 | 0.0            | 0.0           | 132.0                                                   | 893.0         | 0.0     | 434.0   | 2,619.0 | Bbls/mo           | 4.078    | 3960     | MBbl/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                        |         |           |         |              |                                     |                |               |                                                         |               |         |         | ,       |                   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Solvent Usage          |         |           |         |              |                                     |                |               |                                                         |               |         |         |         |                   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Z-Sol                  | 0.0     | 0.0       | 5.0     | 0.0          | 0.0                                 | 5.0            | 5.0           | 0.0                                                     | 0.6           | 0.0     | 0.0     | 0.0     | Gal/mo            | 0.02     | N/A      | Tons/yr ROC at 1.64 lb/gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Enviro-Det             | 0.0     | 0.0       | 0.0     | 0.0          | 0.0                                 | 0.0            | 0.0           | 0.0                                                     | 0.0           | 0.0     | 0.0     | 0.0     | Gal/mo            | 00:00    | N/A      | Tons/yr ROC at 6.43 lb/gal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Total Solvents         | 0.0     | 0.0       | 5.0     | 0.0          | 0.0                                 | 5.0            | 5.0           | 0.0                                                     | 9.0           | 0.0     | 0.0     | 0.0     | Gal/mo            | 0.02     | 4.45     | Tons/yr ROC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Coatings               | 7.4     | 78.8      | 0.0     | 33.5         | 0.0                                 | 0.0            | 0.0           | 0.0                                                     | 0.0           | 0.0     | 0.0     | 0.0     | Gal/mo            | 119.71   | Exempt   | Gal/yr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                        |         |           |         |              |                                     |                |               |                                                         |               |         |         |         |                   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Cross Boot Engl.       | 2 624 6 | 2 000 3   | 0 376 7 | 1 000        | 0 000 7                             | £ 207.2        | 6 040 0       | 0 707 0                                                 | 7 404 0       | 9 500   | 0 000 3 | 1 040 4 | 1                 | 1000     | 45.74    | : #1-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Work Boat Firel:       | 4 085 B | 0.000     | 534 5   | 782 0        | 2 781 5                             | 4 856 3        | 2,010.0       | 4 275 6                                                 | 1 905 4       | 1,030.0 | 0,200.0 | 1,010.1 | Calvino<br>Col/mo | 020,04   | V/2      | Gallyl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TOTAL POST POST        | 2,000,1 | 9         | 2:00    | 0,102.0      | 2,101.3                             | t,000.2        | 0,000,0       | 4,27,0.0                                                | 4,020.1       | 2,340.1 | 990.0   | 2,104.0 | Galifilo          | CCB, 1C  | I)N      | Gallyi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Total Boat Fuel:       | 7,607.4 | 5,893.6   | 4,780.5 | 7,702.0      | 7,079.5                             | 10,243.5       | 9,682.4       | 10,709.6                                                | 12,319.9      | 7,547.7 | 6,277.6 | 3,750.7 | Gal/mo            | 93,594   | 114,481  | Gallyr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Boat Emissions: tons   |         |           |         |              |                                     |                |               |                                                         |               |         |         |         |                   |          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ROC                    | 0.13    | 0.10      | 0.08    | 0.13         | 0.12                                | 0.17           | 0.16          | 0.18                                                    | 0.20          | 0.13    | 0.10    | 90.0    | Tons/mo           | 1.55     | 1.90     | Tons/yr at 33.15 lbs/MGal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| XON                    | 2.13    | 1.65      | 1.34    | 2.16         | 1.99                                | 2.87           | 2.72          | 3.00                                                    | 3.46          | 2.12    | 1.76    | 1.05    | Tons/mo           | 26.25    | 32.11    | Tons/yr at 561.00 lbs/MGal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| PM                     | 0.13    | 0.10      | 0.08    | 0.13         | 0.12                                | 0.17           | 0.16          | 0.18                                                    | 0.21          | 0.13    | 0.11    | 90.0    | Tons/mo           | 1.57     | 1.92     | Tons/yr at 33.50 lbs/MGal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SOX                    | 0.03    | 0.02      | 0.02    | 0.03         | 0.03                                | 0.04           | 0.04          | 0.04                                                    | 0.05          | 0.03    | 0.02    | 0.01    | Tons/mo           | 0.35     | 0.42     | Tons/yr at 7.50 lbs/MGal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ဝ၁                     | 0.39    | 0.30      | 0.24    | 0.39         | 0.36                                | 0.52           | 0.49          | 0.55                                                    | 0.63          | 0.38    | 0.32    | 0.19    | Tons/mo           | 4.77     | 5.84     | Tons/yr at 102.00 lbs/MGal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

Without producing wells, crane limit is 13,344 gallyr; with any producing wells, limit is 7,344 gallyr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

### ENGINE DATA FOR THE WAUKESHA ENGINE (G-03)

**Engine Manufacturer:** 

Waukesha

Model No.:

F3521G (SI)

Serial No.:

289729

**Engine Location:** 

Turbine room, southwest corner of platform, production deck

Summary of Maintenance and Testing Reports are attached

Source Test Report: Please refer to the last source test report dated January 25, 2008

which was previously submitted to the District. Enclosed are

summary of results.

DATE;1-27-07

UNIT; G-3

HOURS;36370

**MECHANIC:** John T. Montgomery

#### **1500 HOUR SERVICE**

| REPLACE SPARK PLUGS: COMMENTS:                 | YES_x_NO           |
|------------------------------------------------|--------------------|
| CHANGE & CLEAN OIL FILTERS: COMMENTS:          | YES_xNO            |
| CHANGE CRANK CASE OIL: COMMENTS:               | YES x NO           |
| REPLACE AIR FILTER: COMMENTS:                  | YES x NO           |
| REMOVE, BLOW OUT AND TURN CATALYST I COMMENTS: | ELEMENTS: YES x NO |
| · ·                                            |                    |
| 3000 HOUR SERVI                                | CE                 |
| ACID CLEAN CATALYST ELEMENT: COMMENTS:         | YES_x_NO           |
| REPLACE O2 SENSOR<br>COMMENTS:                 | YES_xNO            |
|                                                |                    |

#### ADDITIONAL MAINTENANCE

**DATE:1-27-07** 

HOURS:36370 MECHANIC: John T. Montgomery

COMMENTS:

Per APCD rules & regulation, 74.9, Stationary Internal Combustion Engine.

### **Equipment Data**

Equipment: G-3

Description: Generator

Fuel: Natural Gas

Manufacture: Waukesha

Model: F3521GS Serial No.:28979

Horse Power: 773@1200

Rich Burn Engine

The following preventive maintenance has been perform per APCD rule & regulation, 74.9 on 1-27-207

Change spark plug- 6
Change Catalyst element
Change engine oil and filers, 16"
Change O2 sensors-2
Check valve train
Clean air filter

DATE; 6-2-2007 <u>UNIT; G-3</u>

**HOURS**; 39321

**MECHANIC: J. RICKMAN** 

#### **1500 HOUR SERVICE**

| REPLACE SPARK PLUGS: COMMENTS:                                                     | YES_X_ NO                        |
|------------------------------------------------------------------------------------|----------------------------------|
| CHANGE & CLEAN OIL FILTERS:  COMMENTS:CLEANED SPINNER FILTER, DID No FILTERS.      | YESNO<br>OT CHANGE SOCK          |
| CHANGE CRANK CASE OIL: COMMENTS:                                                   | YES_XNO                          |
| REPLACE AIR FILTER: COMMENTS:                                                      | YES _X NO                        |
| REMOVE, BLOW OUT AND TURN CATALYST EI COMMENTS:REPLACED WITH FRESH ACID WAS        | LEMENTS: YES NOX_<br>SHED UNITS. |
| 3000 HOUR SERVICE                                                                  | E                                |
| ACID CLEAN CATALYST ELEMENT: COMMENTS:                                             | YES_XNO                          |
| REPLACE O2 SENSOR<br>COMMENTS:TURBO OUT ELBOW HAS STRIPPEI<br>ORDERING NEW ELBOW . | YES_X NO<br>O O2 SENSOR PORT.    |
|                                                                                    |                                  |

ADDITIONAL MAINTENANCE

**DATE: HOURS: MECHANIC:** 

COMMENTS: ORDERING NEW SOCK OIL FILTERS, AND TURBO OUT ELBOW

Per APCD rules & regulation, 74.9, Stationary Internal Combustion Engine.

### **WORK ORDER**

### Platform Grace



| <b>Work Order No.</b>    | : GAIL-01663-(G-3           | -Grace)-072106 | 5                   |          |                 | VENOCO, INC                             |
|--------------------------|-----------------------------|----------------|---------------------|----------|-----------------|-----------------------------------------|
| Work Order Da            | <b>te:</b> <u>7/21/2006</u> | Assigned To    | John Montgomery     | Assianed | Bv:             |                                         |
|                          | on: 1500 HR Service         |                |                     |          |                 |                                         |
| –Equipment D             | ata ———                     |                |                     |          | 3               | 4                                       |
|                          |                             |                |                     |          |                 |                                         |
|                          | 3 -Grace Descrip            |                |                     |          |                 | *************************************** |
|                          |                             |                | -3521GS             | Serial N | <b>o:</b> 28979 |                                         |
| <b>Size:</b> 9 3/8 x 8 1 | <u>/2</u> HP:               | Other Info:    | Engine run RPM 1200 |          |                 | *************************************** |
| Notes: Spec G3           | 0483                        |                |                     |          | Run Hours:      |                                         |
|                          |                             |                |                     |          | Account Co      | de:                                     |
| -                        |                             |                |                     |          | 1               |                                         |
| Labor Data               |                             |                |                     |          |                 |                                         |
| Work Date                | Employee                    | lo             | Company             | Re       | gular Hours     | OT Hours                                |
|                          | John Montgomery             |                | 'enoco              |          | 4               | (                                       |
|                          |                             |                |                     |          |                 |                                         |
| Task Details             |                             |                |                     |          |                 |                                         |
| Task Notes               |                             |                |                     |          |                 |                                         |
| Task Instruction         |                             |                |                     |          |                 |                                         |
| Replace spark plug       | s Yes                       | No             |                     |          |                 |                                         |
| Change Oil Filters       | Yes                         | No             |                     |          |                 |                                         |
| Change Crank Case        | e Yes                       | No             |                     |          |                 |                                         |
| Remove Blow out          | and trun catalyst ele       | ment Yes       | No                  |          |                 |                                         |
| 3000 Hour Service        |                             |                |                     |          |                 |                                         |
| Acid clean catalyst      | element Yes                 | _ No           | _                   |          |                 |                                         |
| Replace O2 sensor        |                             |                |                     |          |                 |                                         |

| DATE; 8/17/08                  | UNIT; G-3                         | HOURS;40,622                             |   |
|--------------------------------|-----------------------------------|------------------------------------------|---|
| MECHANIC; Mil                  |                                   | UR SERVICE                               |   |
| REPLACE SPAR<br>COMMENTS: Che  | K PLUGS:<br>cked valve adjustment | YES_XNO_                                 |   |
|                                |                                   | YES_X NO_                                |   |
| CHANGE CRANI COMMENTS:         | K CASE OIL:                       | YES_XNO_                                 |   |
| REPLACE AIR F. COMMENTS; Clea  | ILTER:                            | YES NO _                                 | X |
| REMOVE, BLOW<br>COMMENTS:      | OUT AND TURN C                    | CATALYST ELEMENTS: YESNO_X               | X |
|                                | 3000 HO                           | UR SERVICE                               |   |
| COMMENTS: Cha                  | TALYST ELEMENT                    | s                                        |   |
| REPLACE O2 SE<br>COMMENTS; Rep |                                   | YES_X NO d out of catalytic element box. | ) |
| DATE.                          |                                   | L MAINTENANCE                            |   |
| COMMENTS; Cha                  | nged throttle body with           | MECHANIC:                                |   |

12/19/07

DATE;

UNIT; G-3

**HOURS;41300** 

**MECHANIC: AARON GUSHWA** 

### 1500 HOUR SERVICE

| REPLACE SPARK PLUGS:  COMMENTS:CHAMPION#519                              | YES_XNO                       |
|--------------------------------------------------------------------------|-------------------------------|
|                                                                          |                               |
| CHANGE & CLEAN OIL FILTERS:  COMMENTS:CLEANED SPINNERCHANGED SOCK FILTER | YES_X NO<br>L FILTERS AND PRE |
| CHANGE CRANK CASE OIL: COMMENTS:HDAX LOW ASH 40W                         | YES_XNO                       |
| REPLACE AIR FILTER:                                                      | YES _XNO                      |
| COMMENTS:169180#                                                         |                               |
| REMOVE, BLOW OUT AND TURN CATALYST ELEM COMMENTS:                        | ENTS: YESNOX_                 |
| 3000 HOUR SERVICE                                                        |                               |
| ACID CLEAN CATALYST ELEMENT:                                             | YES_X_NO                      |
| COMMENTS:INSTALL WITH NEW                                                | 125_X_NO                      |
| GASKETS                                                                  |                               |
| REPLACE O2 SENSOR COMMENTS:PRE CAT SENSOR                                | YES_X NO                      |
|                                                                          |                               |

#### ADDITIONAL MAINTENANCE

**DATE: HOURS: MECHANIC: AARON GUSHWA**COMMENTS:REPAIR FUEL GAS LEAK AT FLEX HOSE
REPLACE WATER PUMP BELTS AND FAN BELTS GREASE ALL FITTINGS

Per APCD rules & regulation, 74.9, Stationary Internal Combustion Engine.

**DATE**; 4/5/2007

<u>UNIT; G-3</u>

**HOURS; 37974** 

**MECHANIC: John T. Montgomery, (Monty)** 

#### **1500 HOUR SERVICE**

| REPLACE SPARK PLUGS:<br>COMMENTS:                              | YES_X_ NO           |
|----------------------------------------------------------------|---------------------|
| CHANCE & CLEAN OH EILTERG                                      | VEG V NO            |
| CHANGE & CLEAN OIL FILTERS: COMMENTS:                          | YES_X_ NO           |
| CHANGE CRANK CASE OIL:                                         | YES X NO            |
| COMMENTS:                                                      |                     |
| REPLACE AIR FILTER:                                            | YES X NO            |
| COMMENTS:                                                      |                     |
| REMOVE, BLOW OUT AND TURN CATALYS COMMENTS:Install new element | T ELEMENTS: YESNO_X |
| 3000 HOUR SER                                                  | VICE                |
| ACID CLEAN CATALYST ELEMENT:<br>COMMENTS:                      | YES NO              |
| REPLACE O2 SENSOR<br>COMMENTS:                                 | YESNO               |
| COMMILITY I D.                                                 |                     |

#### ADDITIONAL MAINTENANCE

**DATE:** 

**HOURS:** 

**MECHANIC:** 

Per APCD rules & regulation, 74.9, Stationary Internal Combustion Engine.

Quantifiable Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF47/12-21-98

| Emission Unit Description:    |                             |                                    | Pollutant: |
|-------------------------------|-----------------------------|------------------------------------|------------|
|                               |                             |                                    | $NO_x$     |
| Waukesha Engine G-03          |                             |                                    | 1,0%       |
| Measured Emission Rate:       | Limited Emission Rate:      | Specific Source Test or Monitoring |            |
| 1.3 ppm @ 15% O <sub>2</sub>  |                             | Record Citation:                   |            |
| 110 ppin @ 15 / 0 0 2         | 9 ppm @ 15% O <sub>2</sub>  | ARB Method 100                     | × .        |
|                               |                             |                                    |            |
| <u> </u>                      |                             | Test Date: 01/25/08                |            |
|                               |                             |                                    |            |
| Emission Unit Description:    |                             |                                    | Pollutant: |
| ***                           |                             |                                    | CO         |
| Waukesha Engine G-03          |                             |                                    |            |
| Measured Emission Rate:       | Limited Emission Rate:      | Specific Source Test or Monitoring |            |
| 168 ppm @ 15% O <sub>2</sub>  |                             | Record Citation:                   |            |
| 100 pp @ 1070 02              | 1600 ppm @ 15%              | ARB Method 100                     |            |
|                               | $O_2$                       |                                    |            |
|                               |                             | Test Date: 01/25/08                |            |
| Emission Unit Description     |                             |                                    |            |
| Emission Unit Description:    |                             |                                    | Pollutant: |
| Wasterday Facility C 02       |                             |                                    | ROC        |
| Waukesha Engine G-03          |                             |                                    |            |
| Measured Emission Rate:       | Limited Emission Rate:      | Specific Source Test or Monitoring |            |
| <0.5 ppm @ 15% O <sub>2</sub> | 50 mm @ 150/ O              | Record Citation:                   |            |
| 11 0 = 1 = 2                  | 50 ppm @ 15% O <sub>2</sub> | EPA Method 18                      |            |
|                               |                             | Test Date: Test Date: 01/25/08     |            |
|                               |                             | Test Date. Test Date. 01/23/08     |            |
| Emission Unit Description:    |                             |                                    | . N. H     |
| Emission Cint Description.    |                             |                                    | Pollutant: |
|                               |                             |                                    |            |
|                               |                             |                                    |            |
| Measured Emission Rate:       | Limited Emission Rate:      | Specific Source Test or Monitoring |            |
|                               |                             | Record Citation:                   |            |
|                               |                             |                                    |            |
|                               |                             | Test Date:                         |            |
|                               |                             | 1 cst Date.                        |            |
| Emission Unit Description:    |                             |                                    | Dollutont  |
|                               |                             |                                    | Pollutant: |
|                               |                             |                                    |            |
|                               |                             |                                    |            |
| Measured Emission Rate:       | Limited Emission Rate:      | Specific Source Test or Monitoring |            |
|                               |                             | Record Citation:                   |            |
|                               |                             |                                    |            |
|                               |                             | Test Date:                         |            |

### Control District COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/12-24-98 Page 1 of 2

#### Applicable Requirement or Part 70 Permit Condition

| Citation, Including Attachment Number and/or Permit Condition Number: 74.9N7 | Description: Emergency Standby Stationary Internal Combustion Engines Operated During Either an Emergency or Maintenance Operation |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
|                                                                              |                                                                                                                                    |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Records of operating hours. Date, time, duration, and reason for emergency operation. Records of engine data. Compliance is determined by logged hours of annual operation to ensure less than 50 hours per year.

- 2. 

  Yes 
  No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method is continuous or intermittent:
  - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent - One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

#### Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/12-24-98 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

04 / 01 / 07 (MM/DD/YY) to 03 / 31 / 08 (MM/DD/YY)

#### Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### Applicable Requirement or Part 70 Permit Condition

| Citation, Including Attachment Number and/or Permit Condition Number: 74.9N8 | Description: Stationary diesel-fired internal combustion engines with permitted capacity factor of 15% or less. |
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Records containing data for each engine verifying the manufacturer's specified maximum hourly fuel consumption, data specifying the actual annul usage (e.g., fuel consumption or operating hours), and data for each engine including the engine manufacturer, model no., operator identification no., and location of each engine. A report of the engine's fuel consumption is submitted to the District every 6 months. See attached rolling 12-month fuel consumption.

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
  3. Please indicate if this compliance determination method was continuous or intermittent:
  ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
  4. ☐Yes ☒No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

### Control District COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### **Applicable Requirement or Part 70 Permit Condition**

| Citation, Including Attachment Number and/or Permit Condition Number: 74.9N9 | Description: Stationary diesel-fired internal combustion engines used to power cranes and welding equipment |
|------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
|                                                                              |                                                                                                             |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Records containing data for each engine including the function (usage) of the engine, manufacturer, model number, operator identification number, and location of each engine. Routine surveillance of the diesel-fired engine to ensure that compliance is being maintained.

- Yes □No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
   Please indicate if this compliance determination method was continuous or intermittent:
   Continuous All monitoring measurements show compliance with the Part 70 permit condition □ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
   □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions if applicable? An arcurrion is defined as
- monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- 5. During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

 $\underline{04}$  /  $\underline{01}$  /  $\underline{07}$  (MM/DD/YY) to  $\underline{03}$  /  $\underline{31}$  /  $\underline{08}$  (MM/DD/YY)

## \( \text{ura County Air Pollution Control Dis( \text{ : } COMPLIANCE CERTIFICATION PERMIT FORM \)

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### **Applicable Requirement or Part 70 Permit Condition**

| Citation, Including Attachment Number | Description:                                                           |
|---------------------------------------|------------------------------------------------------------------------|
| and/or Permit Condition Number:       | Platform Grace Additional Requirements - 12-month rolling records of   |
| PO1493PC1                             | throughput and consumption as provided in the Permitted Throughput and |
| Condition No. 1                       | Consumption Limits Table in Section No. 3 of the Permit.               |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Monthly records of tank throughputs for tanks with permitted throughputs, monthly records of fuel consumption for the generators, flares, turbines (removed in September 2000), generators, cranes, boom boats, and crew and supply boats are maintained in 12-month rolling records. In addition, monthly emissions for the crew and supply boats, and wipe cleaning solvents are calculated and are maintained in 12-month rolling records. Annual compliance certification that these records are maintained. See attached 12-Month Rolling data.

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
  3. Please indicate if this compliance determination method was continuous or intermittent:
  ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
  4. ☐Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
  5. ☐Yes ☑No During the time period covered by this compliance certification, does the
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

#### Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### **Applicable Requirement or Part 70 Permit Condition**

| Citation, Including Attachment Number | Description:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and/or Permit Condition Number:       | Platform Grace Additional Requirements - Generator G-03 shall only burn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PO1493PC1                             | natural gas and no other fuel.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Condition No. 2                       | , and the second |
|                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Routine surveillance to ensure only natural gas is used. Annual compliance that only natural gas was burned in G-03.

- 2. 

  Yes 
  No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
  - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### Applicable Requirement or Part 70 Permit Condition

| Citation, Including Attachment Number and/or Permit Condition Number: PO1493PC1 Condition No. 3 | Description: Platform Grace Additional Requirements - Maximum number of oil wells (16). Platform Grace currently has 11 oil well completions. |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Authority to Construct will be obtained prior to drilling any wells, unless the activity is a redrill. Annual compliance certification that there was no increase in number of wells for this reporting period.

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the <u>most recent</u> monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
  - ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition
     ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### Applicable Requirement or Part 70 Permit Condition

| Citation, Including Attachment Number | Description:                                                                 |
|---------------------------------------|------------------------------------------------------------------------------|
| and/or Permit Condition Number:       | Platform Grace Additional Requirements - Maximum sulfur content of           |
| PO1493PC1                             | diesel fuel consumed in the crane engines, turbines and C-5B turbine starter |
| Condition No. 4                       | engines, Generator G-03, backup generator engine, and the boats.             |
|                                       |                                                                              |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Records of certifications from the fuel supplier documenting the sulfur content of each diesel fuel delivery are maintained.

- 2. Yes No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
  - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- 5. □Yes ☑No

  During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. Days In During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

## COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### Applicable Requirement or Part 70 Permit Condition

monitoring."

| Citation, Including Attachment Number and/or Permit Condition Number: PO1493PC1 | Description: Platform Grace Additional Requirements - Crew boat and work boat emission limits |
|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Condition No. 5                                                                 |                                                                                               |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Monthly records of fuel consumption from the crew and work boats are maintained. Monthly emissions are calculated for the crew and work boats and are maintained in 12-month rolling records. Annual compliance certification that these records are maintained. See attached 12-month rolling data.

- Zyes □No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
   Please indicate if this compliance determination method was continuous or intermittent:
   Continuous All monitoring measurements show compliance with the Part 70 permit condition □ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
   □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

### COMPLIANCE CERTIFICATION PERMIT FORM Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

6. □Yes ☑No

During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?

- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

# COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### Applicable Requirement or Part 70 Permit Condition

| Condition No. 6 and 7 | Citation, Including Attachment Number and/or Permit Condition Number: PO1493PC1 Condition No. 6 and 7 | Description: Platform Grace Additional Requirements - Crew boat and work boat permitted engines |
|-----------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
|-----------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Only one crew boat and one work boat was used at any given time. Records are maintained showing the days and hours that each crew boat and work boat was in service. Annual compliance certification that these records are maintained.

- ZYes □No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
   Please indicate if this compliance determination method was continuous or intermittent:
   Continuous All monitoring measurements show compliance with the Part 70 permit condition □ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- 5. During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

#### Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### **Applicable Requirement or Part 70 Permit Condition**

| Citation, Including Attachment Number and/or Permit Condition Number: PO1493PC1 Condition No. 8 | Description: Platform Grace Additional Requirements - Solvent Recordkeeping |
|-------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|                                                                                                 |                                                                             |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Records of solvent purchase and usage, along with records of solvent that is recycled or disposed of are maintained for solvents used in solvent cleaning activities, including wipe cleaning. Annual compliance certification that these records are maintained.

- Zyes □No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
   Please indicate if this compliance determination method was continuous or intermittent:
   Continuous All monitoring measurements show compliance with the Part 70 permit condition □ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- 5. During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

# COMPLIANCE CERTIFICATION PERMIT FORM

#### Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### Applicable Requirement or Part 70 Permit Condition

| Citation, Including Attachment Number | Description:           |  |
|---------------------------------------|------------------------|--|
| and/or Permit Condition Number:       | Flare fuel consumption |  |
| PO1493PC2                             |                        |  |
| Condition Nos. 1 and 4                |                        |  |
|                                       | ,                      |  |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Each flare has individual fuel meter installed to record the amount of natural gas consumed. Monthly records of volume of gas combusted in flare are maintained in 12-month rolling records. Records also differentiate between emergency (unplanned) usage and non-emergency (planned) usage. Annual compliance certification that these records are maintained. See attached 12-month rolling data.

- 2. 

  Yes 
  No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
  - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- 5. During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

#### Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### **Applicable Requirement or Part 70 Permit Condition**

| Citation, Including Attachment Number and/or Permit Condition Number: PO1493PC2 Condition Nos. 2 and 3 | Description:  Flare ignition system operation – each flare is equipped and maintained with a continuous pilot or autoignition system to ensure combustion disposal of all excess produced or recovered gases. |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                        | an excess produced of recovered gases.                                                                                                                                                                        |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Flare's ignition system is tested monthly and monthly records of the flare's ignition system tests and maintenance activities are maintained. Annual compliance certification that these records are maintained.

- 2. Yes No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
  3. Please indicate if this compliance determination method was continuous or intermittent:
  - □ Continuous All monitoring measurements show compliance with the Part 70 permit condition
     □ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### Applicable Requirement or Part 70 Permit Condition

| Citation, Including Attachment Number | Description:                                                                          |
|---------------------------------------|---------------------------------------------------------------------------------------|
| and/or Permit Condition Number:       | Caterpillar Diesel Backup Generator operation. Cannot be fired                        |
| PO1493PC3                             | simultaneously with either turbine, except during startup or shutdown                 |
|                                       | periods not to exceed 1 hour. Can only be operated during maintenance and             |
|                                       | when the turbines or Generator G-03 cannot be operated due to mechanical malfunction. |
|                                       |                                                                                       |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual compliance certification that the backup generator G-02 is only operated during maintenance testing or when the G-03 is mechanically malfunctioning. Records indicating reason for usage are maintained. Annual compliance certification that records are maintained. Turbines out of service therefore simultaneous operation was not possible. Turbines were removed from the platform in September of 2000.

- Zyes □No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
   Please indicate if this compliance determination method was continuous or intermittent:
   Continuous All monitoring measurements show compliance with the Part 70 permit condition □ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
   □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No Dur
- During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### Applicable Requirement or Part 70 Permit Condition

| Citation, Including Attachment Number        | Description:                                                                           |
|----------------------------------------------|----------------------------------------------------------------------------------------|
| and/or Permit Condition Number:<br>PO1493PC4 | Tanks designated as out of service on the permit are shut down and cannot be operated. |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual compliance certification that Tanks T-4, T-6, T-10, T-21A, T-21B, T-23, T-25, and T-22 have been shut down and had not been operated during this compliance period.

- 2. Yes No Are you currently in compliance as indicated by the <u>most recent</u> monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
  - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- 5. During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### **Applicable Requirement or Part 70 Permit Condition**

| Citation, Including Attachment Number and/or Permit Condition Number: 71.1.C | Description: Emissions of produced gas must be controlled at all times using a gas collection system that directs all gas to a fuel or sales gas system, or to a flare that combusts ROCs. |
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Fugitive I&M Program under Rule 74.10 for the gas collection system's gas and liquid piping connections; Annual compliance certification that the produced gas collection system is a closed system through a visual inspection. Flare is inspected on a quarterly basis. Records of visual and flare inspections are maintained at the facility.

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
  3. Please indicate if this compliance determination method was continuous or intermittent:
  ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
  4. ☐Yes ☒No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### **Applicable Requirement or Part 70 Permit Condition**

| Citation, Including Attachment Number and/or Permit Condition Number: 71.4.B.1 | Description: First stage sump prohibition |
|--------------------------------------------------------------------------------|-------------------------------------------|
|                                                                                |                                           |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual certification that there are no first stage production sumps at the facility. Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above? 3. Please indicate if this compliance determination method was continuous or intermittent: ☑ Continuous - All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent - One or more measurements indicate a failure to meet the Part 70 permit condition 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring." During the time period covered by this compliance certification, does the 5. □Yes ☑No monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the

applicable standard in the case of percent reduction requirement) consistent with

any averaging period specified for averaging the results of the monitoring."

#### Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No
- During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### **Applicable Requirement or Part 70 Permit Condition**

Citation, Including Attachment Number

5. □Yes ☑No

|    | Vitation Including Att                     | - I was a set Nieuwell and I                   | <del></del>                                                                            |                                                                                                                                              |                                           |
|----|--------------------------------------------|------------------------------------------------|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
|    | Citation, Including Atta                   |                                                | Description:                                                                           |                                                                                                                                              |                                           |
|    | nd/or Permit Conditio                      | n Number:                                      | Well cellar storage prohibition                                                        |                                                                                                                                              |                                           |
| 17 | 71.4.B.3                                   |                                                |                                                                                        |                                                                                                                                              |                                           |
|    |                                            |                                                |                                                                                        |                                                                                                                                              |                                           |
| ce | rtification in the ap  Please indicate the | oplicable requirent<br>the method(s) that      | nent or Part 70 permit condi                                                           | compliance. Indicate the fi                                                                                                                  | -                                         |
| Α  |                                            | ·1 1·                                          |                                                                                        |                                                                                                                                              |                                           |
| AI | inual ceruncation                          | including routine                              | surveillance and visual ins                                                            | spections that no crude oil o                                                                                                                | r petroleum                               |
| ma | iterial was stored i                       | n a well cellar e                              | scept during periods of equ                                                            | ipment maintenance or wel                                                                                                                    | l workover,                               |
|    |                                            |                                                | n 5 days. No well cellars a                                                            |                                                                                                                                              | •                                         |
|    |                                            |                                                |                                                                                        | 20 on Flatform Grace.                                                                                                                        |                                           |
| 2. | ☑Yes □No                                   |                                                | ntly in compliance as independent observation as described a                           | icated by the most recent bove?                                                                                                              | monitoring                                |
| 3. | Please indicate if                         | this compliance                                | determination method was o                                                             | continuous or intermittent:                                                                                                                  |                                           |
|    | ☐ Continuous - ☐ Intermittent -            | All monitoring r<br>One or more me             | neasurements show complia<br>asurements indicate a failur                              | ance with the Part 70 permit<br>to meet the Part 70 permit                                                                                   | condition<br>condition                    |
| 4. | □Yes ☑No                                   | monitoring data "a departure fi monitoring und | indicate any excursions, if<br>rom an indicator or surro<br>der the applicable require | is compliance certification applicable? An excursion is egate parameter range esta ement or Part 70 permit cified for averaging the results. | s defined as<br>blished for<br>condition, |
|    |                                            |                                                |                                                                                        |                                                                                                                                              |                                           |

monitoring data indicate any exceedances, if applicable?

During the time period covered by this compliance certification, does the

defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with

any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

# COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### Applicable Requirement or Part 70 Permit Condition

| Citation, Including Attachment Number and/or Permit Condition Number: 74.6 | Description: Surface cleaning and degreasing requirements including ROC content limits, application and storage requirements |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Records of current material list of ROC-containing material used in solvent cleaning activities are maintained. Routine surveillance of the applicable solvent cleaning activities is also performed.

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the <u>most recent</u> monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
  - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- 5. During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. Days During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

# COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### **Applicable Requirement or Part 70 Permit Condition**

| Citation, Including Attachment Number and/or Permit Condition Number: | Description: Fugitive leak and leak inspection requirements for components at crude oil |  |
|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--|
| 74.10                                                                 | production and processing facilities.                                                   |  |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Weekly visual inspections of pumps, including but not limited to rod pumps and compressor pumps for liquid leaks. Quarterly monitoring of the following components for gaseous leaks using EPA Reference Method 21: valves, packing seals on dump lever arms connected to gas traps, separators, or vessels, hatches on non-vapor recovery tanks, and polished rod stuffing boxes. All other components not exempt are monitored annually. Routine surveillance of the applicable components is also performed and includes verification of proper operation and equipment and inspection requirements are met. Detected leaks are visibly tagged with the date leak is detected, and repaired no later than 21 days (critical components are at next scheduled shutdown, but no later than 3 months). Repair is reinspected within one week of repair. Records of the following are maintained: location, type, description of each leaking component inspected, and name of any operating unit where each leaking component is found; date of leak detection and method of detection; date that leak is repaired and date of re-check; identification of leaks from critical process units; number of components inspected, number and percentage of leaking components found, categorized by groups: hatches, polished rod stuffing boxes, dumplever arms, valves (not open-ended), open-ended lines, flanges (if designated as exempt), other components.

- 2. ■Yes □No Are you currently in compliance as indicated by the <u>most recent</u> monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
  - ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/12-24-98 Page 2 of 2

5. □Yes ☑No

During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

6. □Yes ☑No

During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?

- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

## COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### Applicable Requirement or Part 70 Permit Condition

| Citation, Including Attachment Number | Description:                                                                               |
|---------------------------------------|--------------------------------------------------------------------------------------------|
| and/or Permit Condition Number: 74.22 | Natural gas-fired, fan-type central furnaces $-NO_x$ limits and certification requirements |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual certification including a formal survey identifying each furnace, whether it was installed before or after May 31, 1994, and for those installed after May 31, 1994, information indicating that the certification is contained on the furnace nameplate, or that the furnace is included on a District-provided list of certified furnaces. Platform Grace does not have any natural gas-fired, fan-type central furnaces.

- 5. Days During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### Applicable Requirement or Part 70 Permit Condition

| Citation, Including Attachment Number | Description:                   |
|---------------------------------------|--------------------------------|
| and/or Permit Condition Number:       | Abrasive blasting requirements |
| 74.1                                  | 5 - 1                          |
|                                       |                                |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Routine surveillance including assuring that operation and equipment requirements are being met, and visual inspections to ensure there are no opacity violations of each abrasive blasting operation are performed. Records including date of operation, type of abrasive blasting media used, identity, size, and location of item blasted, whether the operation was conducted inside or outside a permanent building, and CARB certifications for the abrasives used are maintained.

- 2. 

  Yes 
  No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
  - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/12-24-98 Page 1 of 2

#### **Applicable Requirement or Part 70 Permit Condition**

| escription:                          |
|--------------------------------------|
| arge Water Heaters and Small Boilers |
|                                      |
|                                      |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual certification including a formal survey identifying each large water heater or small boiler, whether it was installed before or after December 31, 1999, or December 31, 2000 and for those installed after December 31, 1999, or December 31, 2000, information indicating that the certification is contained on the unit's nameplate, or that the unit is included on a District-provided list of certified water heaters, boilers, steam generators and process heaters. Platform Grace does not have any of the applicable units.

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?

  3. Please indicate if this compliance determination method is continuous or intermittent:

  ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition

  ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition

  4. ☐Yes ☒No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- 5. □Yes ☑No

  During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

#### Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/12-24-98 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

 $\underline{04}$  /  $\underline{01}$  /  $\underline{07}$  (MM/DD/YY) to  $\underline{03}$  /  $\underline{31}$  /  $\underline{08}$  (MM/DD/YY)

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### **Applicable Requirement or Part 70 Permit Condition**

| Citation, Including Attachment Number | Description:                       |
|---------------------------------------|------------------------------------|
| and/or Permit Condition Number:       | Architectural coating requirements |
| 74.2                                  |                                    |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Routine surveillance and records including specifying the usage of compliant coatings and maintaining VOC records of coatings used (MSDSs are maintained). VOC content of coatings are measured using EPA Method 24, VOC content of exempt organic compounds are measured using CARB Method 432, and acid content of pretreatment wash primers are measured using ASTM Method D 1613-85, and metal content of metallic pigmented coatings are measured using SCAQMD Method 311-91.

- ZYes □No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
   Please indicate if this compliance determination method was continuous or intermittent:
   ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition
   □ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
   □ Yes ☑No During the time period covered by this compliance certification, does the
- During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- 5. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. The Mo During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

### COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### Applicable Requirement or Part 70 Permit Condition

| Citation, Including Attachment Number | Description:                            |
|---------------------------------------|-----------------------------------------|
| and/or Permit Condition Number:       | National emission standard for asbestos |
| 40CFR61.M                             |                                         |
|                                       |                                         |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual compliance certification that compliance with 40 CFR 61 Subpart M is met if an asbestos demolition or renovation activity occurs. None has occurred during this reporting period.

- 2. 

  Yes 
  No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
  - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- 5. During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### Applicable Requirement or Part 70 Permit Condition

| Citation, Including Attachment Number     | Description:                                                                                                              |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| and/or Permit Condition Number: PO1493PC5 | Stationary Natural Gas-Fired Rich-Burn I C Engines – BACT NO <sub>x</sub> , ROC, and CO emission limits. CAM Requirements |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual source test of the G-03 generator using the following methods: ARB Method 100 for NO<sub>x</sub>, ARB Method 100 for CO, EPA Method 25 or EPA Method 18 for ROC, ARB Method 100 for oxygen content, and ASTM Method 1826-77 for gaseous fuel heating value. Annual source test also to obtain air to fuel ratio set point. Quarterly monitoring and recordkeeping of set point. Annual Source Test was previously submitted. Summary of source test data is attached. Annual compliance certification that daily NOx measurements utilizing a portable analyzer are being recorded, Annual source testing to validate portable analyzer measured concentrations. Daily portable analyzer readings are attached. Source test validation report was previously submitted.

- 2. Yes No Are you currently in compliance as indicated by the <u>most recent</u> monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
  - ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition
     ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

| 5. □Yes ☑No During the time period covered by this compliance certificati                   | n, does the  |
|---------------------------------------------------------------------------------------------|--------------|
| monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a     |              |
| is detected by monitoring that provides data in terms of an emission limitation or stan     | ard and that |
| indicates that emissions (or opacity) are greater than the applicable emission limitation o | standard (or |
| less than the applicable standard in the case of percent reduction requirement) consist     | ent with any |
| averaging period specified for averaging the results of the monitoring."                    | •            |

- 6. The Month of the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment. (Form TVPF47 is included with Attachment 74.9N3)

Time Period Covered by Compliance Certification:

MONTH: APRIL

|     | INI' | TIAL NOX/CO TEST                  |       | CORRECTIVE ACTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1 | SECONDARY NOX                                          | CO TEST | 2.5                  |
|-----|------|-----------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------|---------|----------------------|
|     |      | Initial Reading<br>(ppmv @ 15%O2) | Time  | Corrective Actions Taken<br>(In the event that initial test result is greater than 9 ppmv @ 15% O2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | Secondary<br>Reading<br>(ppmv @ 15% O2)<br>(if needed) | Time    | Tester's<br>Initials |
| Day | Nox  | CO                                |       | The second secon | Nox | CO                                                     | rine    | IIIIuais             |
| 1   | 9    | 525                               | 6:06  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JT                   |
| 2   | 8    | 467                               | 7:15  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JT                   |
| 3   | 9    | 424                               | 4:45  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JM                   |
| 4   | 7    | 414                               | 7:27  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JM                   |
| 5   | 8    | 599                               | 5:19  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JM                   |
| 6   | 4    | 139                               | 6:42  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JM                   |
| 7   | 3    | 94                                | 4:38  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        | .,      | JM                   |
| 8   | 0    | 534                               | 5:12  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JM                   |
| 9   | 3    | 96                                | 5:42  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JM                   |
| 10  | 3    | 154                               | 2:27  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JM                   |
| 11  | 3    | 908                               | 6:57  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | FM                   |
| 12  | 3    | 955                               | 6:00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | FM                   |
| 13  | 3    | 181                               | 6:37  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | FM                   |
| 14  | 3    | 94                                | 7:15  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | FM                   |
| 15  | 3    | 95                                | 7:42  | )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                                        |         | FM                   |
| 16  | 3    | 111                               | 7:42  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | FM                   |
| 17  | 4    | 64                                | 4:05  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JT                   |
| 18  | 4    | 284                               | 5:26  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | SM                   |
| 19  | 3    | 148                               | 4:45  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JTM                  |
| 20  | 3    | 209                               | 5:33  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | SM                   |
| 21  | 3    | 342                               | 5:10  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | SM                   |
| 22  | 4    | 157                               | 19:07 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JTM                  |
| 23  | 3    | 499                               | 4:46  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JTM                  |
| 24  | 4    | 763                               | 19:33 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | FM                   |
| 25  | 6    | 952                               | 8:14  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JT                   |
| 26  | 5    | 1162                              | 8:26  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JT/CB                |
| 27  | 0    | 1467                              | 6:26  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | СВ                   |
| 28  | 3    | 1411                              | 7:50  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | СВ                   |
| 29  | 5    | 1349                              | 7:50  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | СВ                   |
| 30  | 3    | 545                               | 20:35 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JT                   |
|     |      |                                   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         |                      |

MONTH: MAY

| <del>                                     </del> | INIT | TIAL NOX/CO TEST                  |       | CORRECTIVE ACTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |     | SECONDARY NOX                                          | CO TEST | 1 2 2 3              |
|--------------------------------------------------|------|-----------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------|---------|----------------------|
|                                                  |      | Initial Reading<br>(ppmv @ 15%O2) | Time  | Corrective Actions Taken<br>(In the event that initial test result is greater than 9 ppmv @ 15% O2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | Secondary<br>Reading<br>(ppmv @ 15% O2)<br>(if needed) | Time    | Tester's<br>Initials |
| Day                                              | Nox  | CO                                |       | The state of the s | Nox | CO                                                     | Tille   | minais               |
| 1                                                | 3    | 183                               | 5:02  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JT                   |
| 2                                                | 4    | 114                               | 8:35  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JM                   |
| 3                                                | 3    | 98                                | 5:12  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JM                   |
| 4                                                | 3    | 108                               | 5:30  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JM                   |
| 5                                                | 0    | 258                               | 5:44  | / · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |     |                                                        |         | JM                   |
| 6                                                | 4    | 1005                              | 7:26  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JM                   |
| 7                                                | 4    | 351                               | 4:40  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JM                   |
| 8                                                | 3    | 255                               | 5:25  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | SM                   |
| 9                                                | 3    | 1524                              | 6:30  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | СВ                   |
| 10                                               | 3    | 1201                              | 7:00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | СВ                   |
| 11                                               | 6    | 393                               | 9:00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | СВ                   |
| 12                                               | 4    | 292                               | 9:45  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | СВ                   |
| 13                                               | 3    | 427                               | 7:45  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | СВ                   |
| 14                                               | 3    | 1023                              | 10:20 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | СВ                   |
| 15                                               | 4    | 363                               | 5:30  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        | -       | JT                   |
| 16                                               | 3    | 158                               | 9:48  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | FS/FM                |
| 17                                               | 4    | 491                               | 6:54  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | FS                   |
| 18                                               | 3    | 717                               | 10:30 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | FS                   |
| 19                                               | 3    | 704                               | 8:40  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | FS                   |
| 20                                               | 3    | 148                               | 19:58 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | SM                   |
| 21                                               | 3    | 157                               | 9:47  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | FS                   |
| 22                                               | 3    | 503                               | 4:03  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | SM                   |
| 23                                               | 3    | 625                               | 7:45  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | СВ                   |
| 24                                               | 3    | 909                               | 9:47  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | СВ                   |
| 25                                               | 6    | 279                               | 6:25  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | СВ                   |
| 26                                               | 3    | 1062                              | 9:24  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | СВ                   |
| 27                                               | 5    | 611                               |       | Roller on printer is sticking                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                                        |         | СВ                   |
| 28                                               | 3    | 1097                              | 8:04  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | СВ                   |
| 29                                               | 0    | 177                               | 4:33  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | JT .                 |
| 30                                               | 3    | 325                               | 7:00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | FS                   |
| 31                                               | 5    | 481                               | 5:39  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |         | FS                   |

MONTH: JUNE

| · · · · · | INI | TIAL NOX/CO TEST                  |       | CORRECTIVE ACTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5   | SECONDARY NOX                                          | /CO TEST |                      |
|-----------|-----|-----------------------------------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------|----------|----------------------|
|           |     | Initial Reading<br>(ppmv @ 15%O2) | Time  | Corrective Actions Taken<br>(In the event that initial test result is greater than 9 ppmv @ 15% O2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     | Secondary<br>Reading<br>(ppmv @ 15% O2)<br>(if needed) | Time     | Tester's<br>Initials |
| Day       | Nox | CO                                |       | (in the cost of th | Nox | CO                                                     | inne     | muais                |
| 1         | 6   | 448                               | 5:25  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | FS                   |
| 2         | 0   | 1219                              | 15:42 | G-3 DOWN 10 HOURS FOR MAINTENANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |     |                                                        |          | FM                   |
| 3         | 0   | 1042                              | 6:34  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | FM                   |
| 4         | 0   | 457                               | 6:19  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | FM                   |
| 5         | 6   | 335                               | 10:18 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | J.T                  |
| 6         | 0   | 282                               | 8:05  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | J.T                  |
| 7         | 0   | 195                               | 6:34  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | J.T                  |
| 8         | 8   | 610                               | 6:33  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | J.T                  |
| 9         | 0   | 426                               | 6:55  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | J.T                  |
| 10        | 8   | 358                               | 7:00  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | J.T                  |
| 11        | 3   | 796                               | 6:26  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | J.T                  |
| 12        | 3   | 361                               | 7:26  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | F.M                  |
| 13        | 3   | 366                               | 6:03  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | S.M                  |
| 14        | 4   | 1075                              | 6:23  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | FM                   |
| 15        | 0   | 242                               | 5:19  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     | ,                                                      |          | FM                   |
| 16        | 3   | 368                               | 5:38  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | S.M                  |
| 17        | 8   | 366                               | 13:11 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | S.M                  |
| 18        | 3   | 218                               | 5:40  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | S.M                  |
| 19        | 3   | 622                               | 4:30  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | FS                   |
| 20        | 8   | 203                               | 7:44  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | СВ                   |
| 21        |     |                                   |       | G-3 down @ 05:50 before reading.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                                                        |          | LM                   |
| 22        | 6   | 801                               | 18:33 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | JT                   |
| 23        | 8   | 192                               | 9:01  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | СВ                   |
| 24        | 3   | 101                               | 6:38  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | СВ                   |
| 25        | 0   | 911                               | 6:30  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | СВ                   |
| 26        | 0   | 120                               | 4:53  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | J.T                  |
| 27        | 3   | 125                               | 5:15  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | S.M                  |
| 28        | 3   | 88                                | 8:30  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          | FM                   |
| 29        | 0   | 0                                 | 0:00  | G-3 was down G-2 was running.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     |                                                        |          | F.S                  |
| 30        | 0   | 0                                 | 0:00  | G-3 still down                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     |                                                        |          | F.S                  |
|           |     |                                   |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |     |                                                        |          |                      |

MONTH: JULY

| Initial Reading (ppmv @ 15%O2)   Corrective Actions Taken (In the event that initial test result is greater than 9 ppmv @ 15% O2)   Nox                                              | Secondary Reading ppmv @ 15% O2) (if needed) CO | Tester's Initials FM\FEB F.M F.S |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|----------------------------------|
| Day         Nox         CO         Nox           1         0         145         16:13           2         6         136         6:36           3         4         114         4:44 | CO                                              | FM\FEB                           |
| 2     6     136     6:36       3     4     114     4:44                                                                                                                              |                                                 | F.M                              |
| 3 4 114 4:44                                                                                                                                                                         |                                                 | F.M                              |
|                                                                                                                                                                                      |                                                 |                                  |
| 4 4 412 6:25                                                                                                                                                                         |                                                 |                                  |
|                                                                                                                                                                                      |                                                 | J.T                              |
| 5 8 1288 11:47                                                                                                                                                                       |                                                 | L.M                              |
| 6 0 291 7:08                                                                                                                                                                         |                                                 | J.T/L.M                          |
| 7 3 1210 8:28                                                                                                                                                                        |                                                 | J.T                              |
| 8 2 557 7:49                                                                                                                                                                         |                                                 | L.M                              |
| 9 2 261 7:09                                                                                                                                                                         |                                                 | J.T                              |
| 10 2 164 6:36                                                                                                                                                                        |                                                 | C.B                              |
| 11 2 301 6:23                                                                                                                                                                        |                                                 | S.M                              |
| 12 2 250 8:14                                                                                                                                                                        |                                                 | FM                               |
| 13 2 126 5:46                                                                                                                                                                        |                                                 | FB                               |
| _14 2 754 6:00                                                                                                                                                                       |                                                 | FM                               |
| 15 2 160 6:00                                                                                                                                                                        |                                                 | FB                               |
| 16 1 152 6:30                                                                                                                                                                        |                                                 | F.M                              |
| 17 4 535 12:57                                                                                                                                                                       |                                                 | LM                               |
| 18 2 509 7:18                                                                                                                                                                        |                                                 | JT                               |
| 19 2 531 7:19                                                                                                                                                                        |                                                 | JT                               |
| 20 2 266 7:20                                                                                                                                                                        |                                                 | JT                               |
| 21 3 806 6:22                                                                                                                                                                        |                                                 | JT                               |
| 22 3 628 6:18                                                                                                                                                                        |                                                 | JT                               |
| 23 2 308 6:26                                                                                                                                                                        |                                                 | JT                               |
| 24 2 887 5:54                                                                                                                                                                        |                                                 | СВ                               |
| 25 2 161 6:30                                                                                                                                                                        |                                                 | FM                               |
| 26 2 1342 11:50 took reading @11:50 got called off job hit print @12:09 on 7-27-07                                                                                                   |                                                 | SM.                              |
| 27 OUT OF SERVICE                                                                                                                                                                    |                                                 |                                  |
| 28 OUT OF SERVICE                                                                                                                                                                    |                                                 |                                  |
| 29 OUT OF SERVICE                                                                                                                                                                    |                                                 |                                  |
| 30 OUT OF SERVICE                                                                                                                                                                    |                                                 |                                  |
| OUT OF SERVICE                                                                                                                                                                       |                                                 |                                  |

MONTH: AUGUST YEAR: 2007

| -   | INITIAL NOX/CO TEST |                                   |       | MONTH: AUGUST<br>CORRECTI | YEAR: 2007<br>VE ACTIONS                             |     | SECONDARY NOX                                          | /CO TEST | 5 9 6 4              |
|-----|---------------------|-----------------------------------|-------|---------------------------|------------------------------------------------------|-----|--------------------------------------------------------|----------|----------------------|
|     |                     | Initial Reading<br>(ppmv @ 15%O2) | Time  | Corrective                | Actions Taken<br>It is greater than 9 ppmv @ 15% O2) |     | Secondary<br>Reading<br>(ppmv @ 15% O2)<br>(if needed) | Time     | Tester's<br>Initials |
| Day | Nox                 | СО                                |       |                           |                                                      | Nox | CO                                                     | rille    | initials             |
| 1   | ,                   |                                   |       | OUT OF                    | SERVICE                                              |     |                                                        |          |                      |
| 2   |                     |                                   |       | OUT OF                    | SERVICE                                              |     |                                                        |          |                      |
| 3   |                     |                                   | ,     | OUT OF                    | SERVICE                                              |     |                                                        |          |                      |
| 4   | 4                   | 584                               | 17:56 | G-3 BACK (                | DN @ 14:32hrs                                        |     |                                                        |          | LM                   |
| 5   | 2                   |                                   | 7:49  |                           |                                                      |     |                                                        |          | JT                   |
| 6   | 2                   |                                   | 8:06  |                           |                                                      |     |                                                        |          | JT                   |
| 7   | 3                   | 134                               | 8:13  |                           |                                                      |     |                                                        |          | СВ                   |
| 8   | 3                   | 504                               | 5:15  |                           |                                                      |     |                                                        |          | SM                   |
| 9   | 4                   | 470                               | 0:00  |                           |                                                      |     |                                                        |          | SM                   |
| 10  |                     |                                   |       | OUT OF                    | SERVICE                                              |     |                                                        |          | OW                   |
| 11  |                     |                                   |       | į                         |                                                      |     |                                                        |          |                      |
| 12  |                     |                                   |       |                           |                                                      |     |                                                        |          |                      |
| 13  |                     |                                   |       |                           |                                                      |     |                                                        |          |                      |
| 14  |                     |                                   |       |                           |                                                      |     |                                                        |          |                      |
| 15  |                     |                                   |       |                           |                                                      |     |                                                        |          |                      |
| 16  |                     |                                   |       |                           |                                                      |     |                                                        |          |                      |
| 17  |                     |                                   |       |                           |                                                      |     |                                                        |          |                      |
| 18  |                     |                                   |       |                           |                                                      |     |                                                        |          |                      |
| 19  |                     |                                   |       |                           |                                                      |     |                                                        |          |                      |
| 20  |                     |                                   |       |                           |                                                      |     |                                                        |          |                      |
|     |                     |                                   |       |                           |                                                      |     |                                                        |          |                      |
| 21  |                     |                                   |       |                           |                                                      |     |                                                        |          |                      |
| 22  |                     |                                   |       |                           |                                                      |     |                                                        |          |                      |
| 23  |                     |                                   |       |                           |                                                      |     |                                                        |          |                      |
| 24  | $\dashv$            |                                   |       |                           |                                                      |     |                                                        |          |                      |
| 25  |                     |                                   | -     |                           |                                                      |     |                                                        |          |                      |
| 26  |                     |                                   |       |                           |                                                      |     |                                                        |          |                      |
| 27  |                     |                                   |       |                           |                                                      |     |                                                        |          |                      |
| 28  |                     |                                   |       |                           |                                                      |     |                                                        |          |                      |
| 29  | _                   |                                   |       |                           |                                                      |     |                                                        |          |                      |
| 30  |                     |                                   |       |                           |                                                      |     |                                                        |          |                      |
| 31  |                     |                                   |       | <u> </u>                  |                                                      |     |                                                        |          |                      |

MONTH: SEPTEMBER

|     | INIT | IAL NOX/CO TEST                   |      | CORRECTIVE ACTIONS                                                                                  |     | SECONDARY NOX                                          | CO TEST | 1 2 2 3              |
|-----|------|-----------------------------------|------|-----------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------|---------|----------------------|
|     |      | Initial Reading<br>(ppmv @ 15%O2) | Time | Corrective Actions Taken<br>(In the event that initial test result is greater than 9 ppmv @ 15% O2) |     | Secondary<br>Reading<br>(ppmv @ 15% O2)<br>(if needed) | Time    | Tester's<br>Initials |
| Day | Nox  | CO                                |      |                                                                                                     | Nox | CO                                                     | Time    | initials             |
| 1   |      |                                   | -    | NOT IN USE                                                                                          | ļ   |                                                        |         |                      |
| 2   |      |                                   |      | NOT IN USE                                                                                          | ļ   |                                                        |         |                      |
| 3   |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 4   |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 5   |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 6   |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 7   |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 8   |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 9   |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 10  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 11  |      | 1                                 |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 12  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 13  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 14  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 15  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 16  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 17  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 18  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 19  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 20  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 21  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 22  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 23  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 24  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 25  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 26  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 27  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 28  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 29  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 30  |      |                                   |      | NOT IN USE                                                                                          |     |                                                        |         |                      |
| 31  |      |                                   |      |                                                                                                     |     |                                                        |         | SM                   |
|     | L    |                                   |      |                                                                                                     |     |                                                        | I       | OIVI                 |

MONTH: OCTOBER

| Initial Reading (prime @ 15% Oz)   Corrective Actions Taken (prime @ 15% Oz)   Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |     | INI | TIAL NOX/CO TEST                  |      | CORRECTIVE ACTIONS                                                                               |     | SECONDARY NOX           | CO TEST |          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----------------------------------|------|--------------------------------------------------------------------------------------------------|-----|-------------------------|---------|----------|
| Day   Nox   CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |     |     | Initial Reading<br>(ppmv @ 15%O2) | Time | Corrective Actions Taken (In the event that initial test result is greater than 9 ppmv @ 15% O2) |     | Reading (ppmv @ 15% O2) | Time    |          |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Day | Nox | СО                                |      | ,                                                                                                | Nox | CO                      | 11110   | initials |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1   |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| NOT IN USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2   |     |                                   |      | NOT IN USE                                                                                       |     |                         |         | ,        |
| S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3_  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| NOT IN USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4   |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| NOT IN USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5   |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 8         NOT IN USE           9         NOT IN USE           10         NOT IN USE           11         NOT IN USE           12         NOT IN USE           13         NOT IN USE           14         NOT IN USE           15         NOT IN USE           16         NOT IN USE           17         NOT IN USE           18         NOT IN USE           19         NOT IN USE           20         NOT IN USE           21         NOT IN USE           22         NOT IN USE           23         NOT IN USE           24         NOT IN USE           25         NOT IN USE           26         NOT IN USE           27         NOT IN USE           28         NOT IN USE           30         NOT IN USE | 6   |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 9 NOT IN USE 10 NOT IN USE 11 NOT IN USE 12 NOT IN USE 13 NOT IN USE 14 NOT IN USE 15 NOT IN USE 16 NOT IN USE 17 NOT IN USE 18 NOT IN USE 19 NOT IN USE 20 NOT IN USE 21 NOT IN USE 22 NOT IN USE 23 NOT IN USE 24 NOT IN USE 25 NOT IN USE 26 NOT IN USE 27 NOT IN USE 28 NOT IN USE 30 NOT IN USE                                                                                                                                                                                                                                                                                                                                                                                                                | 7   |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8   |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9   |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 11  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 14         NOT IN USE           15         NOT IN USE           16         NOT IN USE           17         NOT IN USE           18         NOT IN USE           19         NOT IN USE           20         NOT IN USE           21         NOT IN USE           22         NOT IN USE           23         NOT IN USE           24         NOT IN USE           25         NOT IN USE           26         NOT IN USE           27         NOT IN USE           28         NOT IN USE           29         NOT IN USE           NOT IN USE         NOT IN USE           NOT IN USE         NOT IN USE           NOT IN USE         NOT IN USE                                                                       | 12  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 13  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 14  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 15  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 18       NOT IN USE         19       NOT IN USE         20       NOT IN USE         21       NOT IN USE         22       NOT IN USE         23       NOT IN USE         24       NOT IN USE         25       NOT IN USE         26       NOT IN USE         27       NOT IN USE         28       NOT IN USE         29       NOT IN USE         30       NOT IN USE                                                                                                                                                                                                                                                                                                                                                 | 16  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 17  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 20         NOT IN USE           21         NOT IN USE           22         NOT IN USE           23         NOT IN USE           24         NOT IN USE           25         NOT IN USE           26         NOT IN USE           27         NOT IN USE           28         NOT IN USE           29         NOT IN USE           30         NOT IN USE                                                                                                                                                                                                                                                                                                                                                               | 18  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 21         NOT IN USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 19  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 22       NOT IN USE         23       NOT IN USE         24       NOT IN USE         25       NOT IN USE         26       NOT IN USE         27       NOT IN USE         28       NOT IN USE         29       NOT IN USE         30       NOT IN USE         NOT IN USE       NOT IN USE                                                                                                                                                                                                                                                                                                                                                                                                                             | 20  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 23       NOT IN USE         24       NOT IN USE         25       NOT IN USE         26       NOT IN USE         27       NOT IN USE         28       NOT IN USE         29       NOT IN USE         30       NOT IN USE         NOT IN USE       NOT IN USE                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 24       NOT IN USE         25       NOT IN USE         26       NOT IN USE         27       NOT IN USE         28       NOT IN USE         29       NOT IN USE         30       NOT IN USE         NOT IN USE       NOT IN USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 25         NOT IN USE           26         NOT IN USE           27         NOT IN USE           28         NOT IN USE           29         NOT IN USE           30         NOT IN USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 26         NOT IN USE           27         NOT IN USE           28         NOT IN USE           29         NOT IN USE           30         NOT IN USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 24  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 27         NOT IN USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 25  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 28         NOT IN USE           29         NOT IN USE           30         NOT IN USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 29 NOT IN USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 27  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| 30 NOT IN USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28  |     |                                   |      | NOT IN USE                                                                                       |     |                         |         |          |
| NOT IN USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 29  |     |                                   |      | NOT IN USE                                                                                       | 4   |                         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 30  |     |                                   |      |                                                                                                  |     |                         |         |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 31  |     |                                   |      |                                                                                                  |     |                         |         |          |

|     | INIT | AL NOX/CO TEST                    |       | MONTH: NOVEMBER YEAR: 2007                                              |                        | UNIT: G-3                                                |      |          |
|-----|------|-----------------------------------|-------|-------------------------------------------------------------------------|------------------------|----------------------------------------------------------|------|----------|
|     |      | Initial Reading<br>(ppmv @ 15%O2) | Time  | Corrective Actions Taken                                                |                        | Secondary NOX<br>Secondary<br>Reading<br>(ppmv @ 15% O2) |      | Tester's |
| Day | Nox  | CO                                | Time  | (In the event that initial test result is greater than 9 ppmv @ 15% O2) | Nox                    | (if needed)<br>CO                                        | Time | Initials |
| 1   |      |                                   |       | NOT IN USE                                                              |                        |                                                          |      |          |
| 2   |      | ,                                 |       | NOT IN USE                                                              |                        |                                                          |      |          |
| 3   |      | ****                              |       | NOT IN USE                                                              |                        |                                                          |      |          |
| 4   |      |                                   |       | NOT IN USE                                                              |                        |                                                          | -    |          |
| 5   | 1.8  | 1462                              | 22:16 |                                                                         |                        |                                                          |      | J.T.     |
| 6   |      |                                   |       | NOT IN USE                                                              |                        |                                                          |      |          |
| 7   | 8.5  | 1575                              |       |                                                                         |                        |                                                          |      | J.T.     |
| 8   |      |                                   |       | NOT IN USE                                                              |                        |                                                          |      | 0.11.    |
| 9   |      |                                   |       | NOT IN USE                                                              |                        |                                                          |      |          |
| 10  |      |                                   |       | NOT IN USE                                                              |                        |                                                          |      |          |
| 11  |      |                                   |       | NOT IN USE                                                              |                        |                                                          |      |          |
| 12  | 9    | 737                               | 16:37 |                                                                         |                        |                                                          |      | L.M.     |
| 13  | 7.4  | 438                               | 14:34 |                                                                         |                        |                                                          |      |          |
| 14  | 7.7  | 1090                              | 12:00 |                                                                         |                        |                                                          |      | A.G.     |
| 15  | 7    | 1464                              | 8:02  |                                                                         |                        |                                                          |      | M.R.     |
| 16  | 8.3  | 1489                              | 7:58  |                                                                         |                        |                                                          |      | M.R.     |
| 17  | 7.3  | 620                               | 8:04  |                                                                         |                        |                                                          |      | M.R.     |
| 18  | 4.5  | 650                               | 9:00  |                                                                         |                        |                                                          |      | M.R.     |
| 19  | 7.0  | 000                               | 9.00  | MISSED DEADINGS                                                         | $\vdash \vdash \vdash$ |                                                          |      | M.R.     |
| 20  | 6.2  | 1400                              | 7,40  | MISSED READINGS                                                         |                        |                                                          |      |          |
| 21  | 7.5  | 1428                              | 7:40  |                                                                         |                        |                                                          |      | M.R.     |
|     |      | 1213                              | 10:00 |                                                                         |                        |                                                          |      | A.G.     |
| 22  | 7.8  | 665                               | 7:37  |                                                                         | -                      |                                                          |      | A.G.     |
| 23  | 9    | 1111                              | 7:44  |                                                                         |                        |                                                          |      | A.G.     |
| 24  | 6.6  | 936                               | 7:26  |                                                                         |                        |                                                          |      | A.G.     |
| 25  | 8.4  | 1534                              | 7:27  |                                                                         |                        |                                                          |      | A.G.     |
| 26  | 7.6  | 792                               | 9:42  |                                                                         |                        |                                                          |      | A.G.     |
| 27  | 8.9  | 903                               | 7:09  | ·                                                                       |                        |                                                          |      | A.G.     |
| 28  |      | -                                 |       | MISSED READINGS                                                         |                        |                                                          |      |          |
| 29  |      |                                   |       | MISSED READINGS                                                         |                        |                                                          |      |          |
| 30  | 7.5  | 951                               | 7:11  |                                                                         |                        |                                                          |      | M.R.     |
|     |      |                                   |       |                                                                         |                        |                                                          |      |          |

MONTH: DECEMBER YEAR:2007

|     | IN  | ITIAL NOX/CO TES                  | To do to | CORRECTIVE ACTIONS                                                                                  |     | SECONDARY NOX                                          | CO TES | T S                  |
|-----|-----|-----------------------------------|----------|-----------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------|--------|----------------------|
|     |     | Initial Reading<br>(ppmv @ 15%O2) | Time     | Corrective Actions Taken<br>(In the event that initial test result is greater than 9 ppmv @ 15% O2) |     | Secondary<br>Reading<br>(ppmv @ 15% O2)<br>(if needed) | Time   | Tester's<br>Initials |
| Day | Nox | CO                                |          |                                                                                                     | Nox | CO                                                     | rane   | IIIIIII              |
| 1   | 8.3 | 346                               | 7:21     |                                                                                                     |     |                                                        |        | MR                   |
| 2   | 8.8 | 1420                              | 7:26     | •                                                                                                   |     |                                                        | ,      | MR                   |
| 3   | 8.1 | 912                               | 7:46     |                                                                                                     |     |                                                        |        | MR                   |
| 4   | 8.1 | 1297                              | 8:53     |                                                                                                     |     |                                                        |        | MR                   |
| 5   | 6.2 | 1148                              | 8:40     |                                                                                                     |     |                                                        |        | AG                   |
| 6   | 5.8 | 828                               | 16:50    |                                                                                                     |     |                                                        |        | AG                   |
| 7   | 9   | 40                                | 7:24     |                                                                                                     |     |                                                        |        | AG                   |
| 8   | 7.6 | 187                               | 8:21     |                                                                                                     |     |                                                        |        | AG                   |
| 9   | 7.5 | 606                               | 8:44     |                                                                                                     |     |                                                        |        | AG                   |
| 10  | 7.8 | 1136                              | 16:11    | -                                                                                                   |     |                                                        |        | AG                   |
| 11  | 7.5 | 879                               | 7:03     |                                                                                                     |     |                                                        |        | A.G.                 |
| 12  | 3.8 | 502                               | 8:01     |                                                                                                     |     |                                                        |        | MR                   |
| 13  | 7.2 | 929                               | 7:04     |                                                                                                     |     |                                                        |        | MR                   |
| 14  | 6.8 | 327                               | 7:15     |                                                                                                     |     |                                                        |        | MR                   |
| 15  | 7.1 | 559                               | 6:49     |                                                                                                     |     |                                                        |        | MR                   |
| 16  | 6.1 | 1163                              | 7:49     |                                                                                                     |     |                                                        |        | MR                   |
| 17  | 6.8 | 1311                              | 7:05     |                                                                                                     |     |                                                        |        | MR                   |
| 18  | 8.2 | 1176                              | 8:05     |                                                                                                     |     |                                                        |        | MR                   |
| 19  | 9   | 1183                              | 10:36    |                                                                                                     |     |                                                        |        | AG                   |
| 20  | 7.8 | 1032                              | 6:31     |                                                                                                     |     |                                                        |        | AG                   |
| 21  | 8.4 | 1518                              | 6:21     |                                                                                                     |     |                                                        |        | AG                   |
| 22  | 8.6 | 1162                              | 6:30     |                                                                                                     |     |                                                        |        | AG                   |
| 23  | 1.6 | 950                               | 12:28    |                                                                                                     |     |                                                        |        | AG                   |
| 24  | 5.4 | 939                               | 6:30     |                                                                                                     |     |                                                        |        | AG                   |
| 25  | 8.5 | 1395                              | 8:06     |                                                                                                     |     |                                                        |        | AG                   |
| 26  | 8.5 | 1452                              | 7:17     |                                                                                                     |     |                                                        |        | AG                   |
| 27  | 3.7 | 1288                              | 7:40     |                                                                                                     |     |                                                        |        | DG                   |
| 28  | 3.3 | 1437                              | 7:29     |                                                                                                     |     |                                                        |        | DG                   |
| 29  | 3   | 1490                              | 1:43     |                                                                                                     |     |                                                        |        | OJ .                 |
| 30  | 2.8 | 1316                              | 2:55     |                                                                                                     |     |                                                        |        | วา                   |
| 31  | 3.9 | 1565                              | 1:30     |                                                                                                     |     |                                                        |        | DJ                   |

Month: Jan

Year: 2008

|     | INIT | AL NOX/CO TEST                    | T     | CORRECTIVE ACTIONS                                                                                  | 32  | SECONDARY NOX                                          | CO TEST |                      |
|-----|------|-----------------------------------|-------|-----------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------|---------|----------------------|
|     |      | Initial Reading<br>(ppmv @ 15%O2) | Time  | Corrective Actions Taken<br>(In the event that initial test result is greater than 9 ppmv @ 15% O2) |     | Secondary<br>Reading<br>(ppmv @ 15% O2)<br>(if needed) | Time    | Tester's<br>Initials |
| Day | Nox  | co                                |       |                                                                                                     | Nox | со                                                     |         |                      |
| 1_  | 5.7  | 995                               | 2:28  |                                                                                                     |     |                                                        |         | DJ                   |
| 2   | 8.2  | 1399                              | 6:41  |                                                                                                     |     |                                                        |         | DJ                   |
| 3   | 7.6  | 989                               |       |                                                                                                     |     |                                                        |         | AG                   |
| 4   | 8    | 448                               | 18:05 |                                                                                                     |     |                                                        |         | AG                   |
| 5   |      |                                   |       | DOWN FOR MAINTENANCE                                                                                |     |                                                        |         |                      |
| 6   |      |                                   |       | DOWN FOR MAINTENANCE                                                                                |     |                                                        |         |                      |
| 7   |      |                                   |       | DOWN FOR MAINTENANCE                                                                                |     |                                                        |         |                      |
| 8   |      |                                   |       | DOWN FOR MAINTENANCE                                                                                |     |                                                        |         |                      |
| 9   | 8    | 112                               | 8:10  |                                                                                                     |     |                                                        |         | DJ                   |
| 10  | 8.3  | 297                               | 6:28  |                                                                                                     |     |                                                        |         | DJ                   |
| 11  | 8.8  | 574                               | 9:44  |                                                                                                     |     |                                                        |         | DJ                   |
| 12  | 8.4  | 883                               | 7:44  |                                                                                                     |     |                                                        |         | DJ                   |
| 13  | 8.7  | 374                               | 7:22  |                                                                                                     |     |                                                        |         | DJ                   |
| 14  | 8.3  | 808                               | 6:59  |                                                                                                     |     |                                                        |         | DJ                   |
| 15  | 8.8  | 653                               | 7:48  |                                                                                                     |     |                                                        |         | DJ                   |
| 16  |      |                                   |       | DOWN FOR MAINTENANCE NEW HEADS                                                                      |     |                                                        |         |                      |
| 17  |      |                                   |       | DOWN FOR MAINTENANCE                                                                                |     |                                                        |         |                      |
| 18  |      |                                   |       | DOWN FOR MAINTENANCE                                                                                |     |                                                        |         |                      |
| 19  | 8.6  | 751                               | 11:00 |                                                                                                     |     |                                                        |         | LM                   |
| 20  | 2    | 496                               | 8:08  |                                                                                                     |     |                                                        |         | LM                   |
| 21  | 8    | 1260                              | 11:02 |                                                                                                     |     |                                                        |         | LM                   |
| 22  | 7.7  | 240                               | 15:03 |                                                                                                     |     |                                                        |         | AG                   |
| 23  | 0.9  | 821                               | 7:30  |                                                                                                     |     |                                                        |         | FM                   |
| 24  | 4.9  | 824                               | 6:01  |                                                                                                     |     |                                                        |         | FM                   |
| 25  | 4.4  | 526                               |       | SOURCE TESTED                                                                                       |     |                                                        |         | FM                   |
| 26  | 7.8  | 907                               | 6:11  |                                                                                                     |     |                                                        |         |                      |
| 27  | 7.1  | 242                               | 5:11  |                                                                                                     |     |                                                        |         | FM                   |
| 28  | 8.9  | 801                               | 7:09  |                                                                                                     |     |                                                        |         | FM                   |
| 29  | 4.8  |                                   | 12:12 |                                                                                                     |     |                                                        |         | FB                   |
| 30  | 5.6  | 196                               | 9:11  |                                                                                                     |     |                                                        |         | LM                   |
|     | 7.4  |                                   |       |                                                                                                     |     |                                                        |         | LM                   |
| 31  | 1.4  | 902                               | 13:08 |                                                                                                     |     |                                                        |         | LM                   |

Month: FEB

Year: 2008

|     | INIT | AL NOX/CO TEST                    |       | CORRECTIVE ACTIONS                                                                                  |     | SECONDARY NOX                                          | ICO TEST |          |
|-----|------|-----------------------------------|-------|-----------------------------------------------------------------------------------------------------|-----|--------------------------------------------------------|----------|----------|
|     |      | Initial Reading<br>(ppmv @ 15%O2) | Time  | Corrective Actions Taken<br>(In the event that initial test result is greater than 9 ppmv @ 15% O2) |     | Secondary<br>Reading<br>(ppmv @ 15% O2)<br>(if needed) |          | Tester's |
| Day | Nox  | CO                                |       |                                                                                                     | Nox | CO                                                     | Time     | Initials |
| 1   | 5.5  | 147                               | 10:46 |                                                                                                     |     |                                                        |          | LM       |
| 2   | 8.8  | 802                               | 14:51 |                                                                                                     |     | *                                                      |          | LM       |
| 3   | 7.7  | 789                               | 10:29 |                                                                                                     |     |                                                        |          | LM       |
| 4   | 6.4  | 967                               | 14:23 |                                                                                                     |     |                                                        |          | LM       |
| 5   |      |                                   |       | G-3 DOWN FOR MAINTENANCE                                                                            |     |                                                        |          |          |
| 6   | 7.5  | 972                               | 19:56 |                                                                                                     |     |                                                        |          | FM       |
| 7   | 5.4  | 1047                              | 18:08 |                                                                                                     |     |                                                        |          | FM       |
| 8   | 5.8  | 1357                              | 18:40 |                                                                                                     |     |                                                        |          | FM       |
| 9   | 7    | 866                               | 20:13 |                                                                                                     |     |                                                        |          | FM       |
| 10  | 5.9  | 1090                              | 19:47 |                                                                                                     |     |                                                        |          | FM       |
| 11  | 6.7  | 920                               | 19:53 |                                                                                                     |     |                                                        |          | FM       |
| 12  | 7.3  | 1112                              | 8:35  |                                                                                                     |     |                                                        |          | LM       |
| 13  | 7    | 831                               | 10:51 |                                                                                                     |     |                                                        |          | LM       |
| 14  | 5.4  | 1493                              | 10:54 |                                                                                                     |     |                                                        |          | LM       |
| 15  | 5.8  | 1388                              | 11:08 |                                                                                                     |     |                                                        |          | LM       |
| 16  | 2.6  | 943                               | 21:52 |                                                                                                     |     |                                                        |          | FM       |
| 17  | 2.6  | 566                               | 19:19 |                                                                                                     |     |                                                        |          | FM       |
| 18  | 4.1  | 409                               | 18:06 |                                                                                                     |     |                                                        |          | FM       |
| 19  | 5.8  | 203                               | 7:09  |                                                                                                     |     |                                                        |          | FM       |
| 20  | 6.1  | 398                               | 11:03 |                                                                                                     |     |                                                        |          | JT       |
| 21  | 3.9  | 38                                | 8:24  |                                                                                                     |     |                                                        |          | JT       |
| 22  | 5    | 485                               | 8:12  |                                                                                                     |     |                                                        |          | JT       |
| 23  | 5.6  | 1035                              | 11:37 |                                                                                                     |     |                                                        |          | JT       |
| 24  | 5.9  | 1110                              | 16;51 |                                                                                                     |     |                                                        |          | JT       |
| 25  | 6.7  | 1185                              | 8:28  |                                                                                                     |     |                                                        |          | JT       |
| 26  | 4.9  | 95                                | 12:49 |                                                                                                     |     |                                                        |          | SM       |
| 27  | 6.7  | 162                               | 7:42  |                                                                                                     |     |                                                        |          | SM       |
| 28  | 6.1  | 1639                              | 12:49 |                                                                                                     |     |                                                        |          | SM       |
| 29  | 5.3  | 127                               | 12:10 |                                                                                                     |     |                                                        |          | SM       |
| 30  |      |                                   |       |                                                                                                     |     |                                                        |          |          |
| 31  |      |                                   |       |                                                                                                     |     |                                                        |          |          |
|     |      |                                   |       |                                                                                                     |     |                                                        |          |          |

Month: MARCH Year: 2008

|     | INITI | AL NOX/CO TEST                    |       | Month: MARCH Year: 2008  CORRECTIVE ACTIONS                                                         | 2        | SECONDARY NOX                                          | /CO TEST |                      |
|-----|-------|-----------------------------------|-------|-----------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------|----------|----------------------|
|     |       | Initial Reading<br>(ppmv @ 15%O2) | Time  | Corrective Actions Taken<br>(In the event that initial test result is greater than 9 ppmv @ 15% O2) |          | Secondary<br>Reading<br>(ppmv @ 15% O2)<br>(if needed) | Time     | Tester's<br>Initials |
| Day | Nox   | co                                |       | ,,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,,                                                             | Nox      | CO                                                     | Tille    | minuais              |
| 1   |       |                                   |       | Portable Analyzer being repaired                                                                    |          |                                                        |          |                      |
| 2   | 10.6  | 80                                | 9:08  | Portable Analyzer being repaired                                                                    | 4        | 148                                                    | 5:19     | SM                   |
| 3   | 4     | 148                               | 5:19  |                                                                                                     |          |                                                        |          | SM                   |
| 4   | 6.5   | 305                               | 19:43 |                                                                                                     |          |                                                        |          | JT                   |
| 5   | 4.2   | 624                               | 18:43 |                                                                                                     |          |                                                        |          | JT/WC                |
| 6   | 7.4   | 1102                              | 21:03 |                                                                                                     |          |                                                        |          | JT                   |
| 7   | 3.3   | 551                               | 18:40 |                                                                                                     |          |                                                        |          | wc                   |
| 8   | 6.4   | 488                               | 19:33 |                                                                                                     |          |                                                        |          | JT                   |
| 9   | 8     | 1470                              | 15:30 |                                                                                                     |          |                                                        |          | wc                   |
| 10  | 5.4   | 298                               | 21:22 |                                                                                                     |          |                                                        |          | JT                   |
| 11  | 2     | 648                               | 4:31  |                                                                                                     |          |                                                        |          | JT                   |
| 12  | 5.3   | 721                               | 5:29  |                                                                                                     |          |                                                        |          | FB                   |
| 13  | 5     | 738                               | 5:31  |                                                                                                     |          |                                                        |          | FB                   |
| 14  | 5.5   | 1398                              | 5:54  |                                                                                                     |          |                                                        |          | FB                   |
| 15  | 4.1   | 1270                              | 5:44  |                                                                                                     |          |                                                        |          | FB                   |
| 16  | 5.9   | 1561                              | 5:20  |                                                                                                     |          |                                                        |          | FB                   |
| 17  | 3.6   | 71                                | 5:26  |                                                                                                     |          |                                                        |          | FB                   |
| 18  | 3.9   | 345                               | 15:26 |                                                                                                     |          |                                                        |          |                      |
| 19  | 4.4   | 1589                              | 6:00  |                                                                                                     |          |                                                        |          | JT/CB                |
| 20  | 3.8   | 1489                              | 6:00  |                                                                                                     |          |                                                        |          | CB                   |
| 21  | 6.6   | 1475                              | 16:19 |                                                                                                     |          |                                                        |          | CB                   |
| 22  | 6     | 633                               | 6:00  |                                                                                                     |          |                                                        |          | СВ                   |
| 23  | 3.1   | 1444                              | 6:12  |                                                                                                     |          |                                                        |          | CB                   |
| 24  | 8     | 1355                              | 6:09  |                                                                                                     | $\dashv$ |                                                        |          | CB                   |
| 25  | 7.7   | 1145                              | 0:00  |                                                                                                     | $\neg$   |                                                        |          | СВ                   |
| 26  | 7.7   | 1107                              | 5:49  |                                                                                                     | $\dashv$ |                                                        |          | FB_                  |
| 27  | 8.7   | 1377                              | 5:51  |                                                                                                     |          |                                                        |          | FB                   |
| 28  | 8.6   |                                   | 6:09  |                                                                                                     | $\dashv$ |                                                        |          | FB                   |
| 29  | 7.4   | 1545                              | 5:49  |                                                                                                     |          |                                                        |          | FB                   |
| 30  | 7.2   |                                   |       |                                                                                                     | $\dashv$ |                                                        |          | FB                   |
| 31  | 7.6   |                                   | 5:29  |                                                                                                     | $\dashv$ |                                                        |          | FB                   |
| 31  | 7.0   | 979                               | 5:27  |                                                                                                     |          |                                                        |          | FB                   |

# COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### **Applicable Requirement or Part 70 Permit Condition**

| ſ | Citation, Including Attachment Number | Description:           |
|---|---------------------------------------|------------------------|
|   | and/or Permit Condition Number:       | Crane fuel consumption |
|   | PO1493PC6                             |                        |
|   |                                       |                        |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Monthly records of crane fuel consumption are maintained in 12-month rolling records. Annual compliance certification that these records are maintained. See attached rolling 12-month data.

- 2. 

  Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
  - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- 5. During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. Days No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### Applicable Requirement or Part 70 Permit Condition

| Citation, Including Attachment Number     | Description:                                                                                   |
|-------------------------------------------|------------------------------------------------------------------------------------------------|
| and/or Permit Condition Number: PO1493PC7 | Both turbines designated as out of service on the permit are shut down and cannot be operated. |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual compliance certification that Turbines G-1B and G-1C have been shut down and had not been operated during this compliance period. The turbines were removed in September of 2000.

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the <u>most recent</u> monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
  - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### **Applicable Requirement or Part 70 Permit Condition**

| Citation, Including Attachment Number | Description:         |
|---------------------------------------|----------------------|
| and/or Permit Condition Number:       | Opacity requirements |
| 50                                    | 1 ,                  |
| 30                                    |                      |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Routine surveillance and visual inspections are performed to ensure that opacity requirements are being maintained. Records including date, time, and identity of emissions unit of any occurrences of visible emissions not meeting Rule 50 opacity requirements are maintained. District notification within subsequent 24 hours if visible emissions problem cannot be corrected within first 24 hours.

- 2. 

  Yes 
  No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
  - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- 5. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No
- During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

# OPACITY ANNUAL FORMAL SURVEY REPORT

# PLATFORM GRACE

Venoco, Inc.

2007

| Were there any visible emissions? If yes, did the emissions last for | Please check one: a period or periods aggregating more | tha | at Time Survey | No was Performed Yes (Include No. of Minutes) No |                        | REMOVED                      | REMOVED                      | X                        | X                             |             | X           | X                   | X                  | REMOVED                   | N/A                        | X         |             | X                         | X                            |  |  |
|----------------------------------------------------------------------|--------------------------------------------------------|-----|----------------|--------------------------------------------------|------------------------|------------------------------|------------------------------|--------------------------|-------------------------------|-------------|-------------|---------------------|--------------------|---------------------------|----------------------------|-----------|-------------|---------------------------|------------------------------|--|--|
| Were th                                                              |                                                        |     |                | Yes                                              |                        |                              |                              |                          |                               |             |             |                     |                    |                           |                            |           |             |                           |                              |  |  |
|                                                                      |                                                        |     |                | Emissions Unit                                   | Waukesha Engine (G-03) | Solar Centaur Turbine (G-1B) | Solar Centaur Turbine (G-1C) | Back-up Generator (G-02) | Turbine Starter Engine (C-5B) | South Crane | North Crane | High Pressure Flare | Low Pressure Flare | Boom Boat (Monarch)       | Boom Boat (Boomer) ON GAII | Crew Boat | Work Boat   | Emergency Fire Water Pump | Abrasive Blasting Operations |  |  |
|                                                                      |                                                        |     | į              | Time                                             | 13:00                  | All hands                    | Section 1                    | 1919                     | The second second second      |             | 12:30       | 13:30               | 13:30              | Application of the second | And the second second      | 6:00      | The Bearing | Total                     | The state of                 |  |  |
|                                                                      |                                                        |     | ļ              | Date                                             | 4/25/07                |                              |                              | 4/25/07                  | 4/25/07                       | 4/25/07     | 4/25/07     | 4/25/07             | 4/25/07            |                           |                            | 4/25/07   | 4/25/07     | 4/25/07                   | 4/25/07                      |  |  |
|                                                                      |                                                        |     | Operator's     | Initials                                         | PTC                    |                              |                              | PTC                      | PTC                           | PTC         | PTC         | PTC                 | PTC                |                           |                            | PTC       | PTC         | PTC                       | PTC                          |  |  |

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### **Applicable Requirement or Part 70 Permit Condition**

| Citation, Including Attachment Number | Description:                                                    |
|---------------------------------------|-----------------------------------------------------------------|
| and/or Permit Condition Number: 52    | Particulate Matter – Concentration requirements (grain loading) |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual compliance certification that particulate matter was not discharged into the atmosphere from any source at the facility in excess of the concentration listed in the table shown in Rule 52. This is based on a reference to the District analysis of Rule 52 compliance based on EPA emission factors as being sufficient. Periodic monitoring is not necessary to certify compliance.

- ZYes □No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
   Please indicate if this compliance determination method was continuous or intermittent:
   Continuous All monitoring measurements show compliance with the Part 70 permit condition □ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
   □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### **Applicable Requirement or Part 70 Permit Condition**

| Citation, Including Attachment Number        | Description:                                                                        |
|----------------------------------------------|-------------------------------------------------------------------------------------|
| and/or Permit Condition Number: 54.B.1 (OCS) | Sulfur Compounds – Sulfur emission concentration requirements at point of discharge |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Records of each flaring event are maintained. Unplanned flaring event reports are provided to the District within one week if they exceed 24 hours. No unplanned flaring events exceeding 24 hours occurred at Platform Grace during this reporting period. The District is notified 72 hours prior to planned flaring. Records of planned flaring is maintained and includes the date, time, duration, flare volume, and estimated sulfur emissions during the entire event. A representative fuel analysis is being maintained.

- Yes □No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
   Please indicate if this compliance determination method was continuous or intermittent:
  - ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition
     ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. Days No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach-a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### **Applicable Requirement or Part 70 Permit Condition**

monitoring."

| Citation, Including Attachment Number        | Description:                                                                  |
|----------------------------------------------|-------------------------------------------------------------------------------|
| and/or Permit Condition Number: 54.B.2 (OCS) | Sulfur Compounds – Sulfur emission concentration requirements at ground level |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Records of each flaring event are maintained. Unplanned flaring event reports are provided to the District within one week if they exceed 24 hours. No unplanned flaring events exceeding 24 hours occurred at Platform Grace during this reporting period. The District is notified 72 hours prior to planned flaring. Records of planned flaring is maintained and includes the date, time, duration, flare volume, and estimated sulfur emissions during the entire event. A representative fuel analysis is being maintained.

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
  3. Please indicate if this compliance determination method was continuous or intermittent:
  ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
  4. ☐Yes ☒No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the
- 5. During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

# COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### **Applicable Requirement or Part 70 Permit Condition**

| Citation, Including Attachment Number and/or Permit Condition Number: 57.B | Description: Combustion contaminants requirements – Specific – Fuel burning equipment |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual compliance certification that combustion contaminants were not discharged into the atmosphere from any fuel-burning equipment at the facility in excess of the concentration at the point of discharge, 0.1 grain per cubic foot of gas calculated to 12% CO<sub>2</sub> at standard conditions. This is based on a reference to the District analysis of Rule 57.B compliance based on EPA emission factors and a representative source test as being sufficient. Periodic monitoring is not necessary to certify compliance.

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
  3. Please indicate if this compliance determination method was continuous or intermittent:
  ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
  4. ☐Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. Days No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

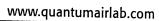
Form TVPF46/07-21-03 Page 1 of 2

#### **Applicable Requirement or Part 70 Permit Condition**

| Citation, Including Attachment Number | Description:                                                                                                                          |
|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
|                                       | Gaseous fuel sulfur compounds concentration requirements for all combustion emissions units at this facility combusting gaseous fuel. |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.


| Ar | nual fuel analysis              | s of the total sulfur content measured as hydrogen sulfide.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2. | ☑Yes □No                        | Are you currently in compliance as indicated by the <u>most recent</u> monitoring measurement or observation as described above?                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 3. | Please indicate if              | this compliance determination method was continuous or intermittent:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|    | ☐ Continuous - ☐ Intermittent - | All monitoring measurements show compliance with the Part 70 permit condition One or more measurements indicate a failure to meet the Part 70 permit condition                                                                                                                                                                                                                                                                                                                                                                                                               |
| 4. | □Yes ☑No                        | During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."                                                                                                                                                               |
| 5. | □Yes ☑No                        | During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring." |

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:





1210 E. 223rd Street, Suite #314 • Carson, California 90745 • 310/830-2226 • Fax 310/830-2227

**CLIENT** 

**OEC** 

PROJECT NAME:

**Annual Samples** 

**LABORATORY NO:** 

08-041

**SAMPLING DATE:** 

January 11, 2008

**RECEIVING DATE:** 

January 12, 2008

ANALYSIS DATE:

January 12, 2008

**REPORT DATE:** 

January 15, 2008

#### **Laboratory Analysis Report**

| Analysis Method           | SCAQMD 307-91                                       |                                                              |                                                                  |                                                               |                                                                   |
|---------------------------|-----------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------|-------------------------------------------------------------------|
| Detection Limits  Analyte | 0.1 PPMV                                            |                                                              |                                                                  |                                                               |                                                                   |
|                           | Client ID  Sampling Date Sampling Time Lab ID Units | Plt Gail Fuel<br>Gas<br>1/11/2008<br>0840<br>01208-1<br>PPMV | Plt Gail Fuel<br>Gas Dup<br>1/11/2008<br>0840<br>01208-2<br>PPMV | Plt Grace Fuel<br>Gas<br>1/11/2008<br>0920<br>01208-3<br>PPMV | Pit Grace Fuel<br>Gas Dup<br>1/11/2008<br>0920<br>01208-4<br>PPMV |
|                           |                                                     |                                                              |                                                                  |                                                               |                                                                   |
| Carbonyl Sulfide          |                                                     | 6.4                                                          | 5.7                                                              | <0.1                                                          | <0.1                                                              |
| Methyl Mercaptan          |                                                     | 1.3                                                          | 1.0                                                              | <0.1                                                          | <0.1                                                              |
| Ethyl Mercaptan           |                                                     | 0.7                                                          | 0.5                                                              | <0.1                                                          | <0.1                                                              |
| Un-Identified S Con       | pounds                                              | 2.7                                                          | 2.7                                                              | 0.1                                                           | <0.1                                                              |
| TRS as H2S                |                                                     | 11.4                                                         | 10.0                                                             | 0.7                                                           | 0.5                                                               |

TRS: Total Reduced Sulfur as Hydrogen Sulfide

r. Andrew Kitto

President

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### Applicable Requirement or Part 70 Permit Condition

| Citation, Including Attachment Number | Description:                                                                 |
|---------------------------------------|------------------------------------------------------------------------------|
| and/or Permit Condition Number:       | Solid or liquid fuel sulfur compounds concentration requirements for all     |
| 64.B.2                                | combustion emissions units at this facility combusting solid or liquid fuel. |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Fuel supplier's certifications containing fuel sulfur content by weight for each fuel delivery are maintained. Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above? 3. Please indicate if this compliance determination method was continuous or intermittent: ☑ Continuous - All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent - One or more measurements indicate a failure to meet the Part 70 permit condition 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring." 5. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the

applicable standard in the case of percent reduction requirement) consistent with

any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. The Monoration During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:



04/15/08

#### **Letter of Conformance**

This is to certify that the CARB Ultra Low sulfur dyed Diesel Fuel sold and Delivered to <u>VENOCO PLATFORM GAIL AND GRACE FROM 1/1/07-12/31/07</u>

was in compliance with South Coast Air Quality Management District Requirements for Santa Barbara, Ventura and Los Angeles Counties.

The test Results meet ASTM D-4294 and is typical of all CARB Ultra Low Sulfur Dyed Diesel Fuel sold by General Petroleum. The sulfur content is Guaranteed to be less than .0015%. (15PPM) The high heat content is typically in the 19,950 to 20,200 BTU per pound range.

#### Hope Bowles

General Manager General Petroleum Oxnard Division Office (805) 299-1219

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

#### Applicable Requirement or Part 70 Permit Condition

| Citation, Including Attachment Number | Description:                                                                 |
|---------------------------------------|------------------------------------------------------------------------------|
| and/or Permit Condition Number: 68    | Carbon Monoxide concentration requirements for external combustion equipment |

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual compliance certification that carbon monoxide (CO) was not discharged into the atmosphere from any natural gas-fired or fuel oil-fired external combustion equipment at the facility in excess of 2000 ppmv measured on a dry basis at standard conditions. This is based on a reference to the District analysis of Rule 68 compliance based on EPA emission factors as being sufficient. Periodic monitoring is not necessary to certify compliance.

- 2. 

  Yes 
  No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
  - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An *excursion* is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- 5. During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification: