

June 9, 2009

Mr. Keith Duval Ventura County Air Pollution Control District 669 County Square Drive Ventura, CA 93003

Re: Part 70 Annual Compliance Certification Report for Platform Grace - Reporting Period of April 1, 2008 through March 31, 2009

Dear Mr. Duval:

Pursuant to the requirements of the Title V Part 70 Federal Operating Permit No. 1493, Venoco, Inc. is submitting the Platform Grace Part 70 Annual Compliance Certification Report for the reporting period of April 1, 2008 through March 31, 2009.

It should be noted that the Platform Grace rolling 12-month equipment usage and fuel consumption data is only attached to the Compliance Certification Permit Form for Permit Condition Number 74.9N.3. This rolling 12-month data is referenced on several other Compliance Certification Permit Forms.

If you have questions or need additional information, please call me at (805) 745-2264.

Sincerely,

Patrick T. Corcoran

Environmental Coordinator

Encl.

Cc: Gerardo Rios, U.S. EPA Region 9

VENTURA COUNTY

09 JUN 11 PM 2:0

A.P.C.D.

Cover Sheet

Form TVPF45/07-21-03 Page 1 of 2

Instructions

This compliance certification cover sheet signed by the responsible official, Form TVPF45, must be submitted annually, on the anniversary date of the Part 70 permit; or on a more frequent schedule, if required by an applicable requirement or permit condition. To complete the compliance certification, you will need to attach the following to this sheet:

1. A completed compliance certification permit form (Form TVPF46) for each applicable requirement or Part 70 permit condition. Be sure to attach to the form any information specifically required to be submitted with the compliance certification by the applicable requirement or Part 70 permit condition. On this form, indicate the method(s) for determining compliance; if you are currently in compliance, as determined by the most recent monitoring measurement or observation; and whether the method(s) used for determining compliance indicate continuous or intermittent compliance during the period of certification. Continuous compliance should be checked if the source is in compliance as determined by all monitoring measurements required by the permit during the Intermittent compliance should be checked if any of these monitoring certification period. measurements, or any other information or data, indicates a failure to meet a term or condition of the permit, including a failure to monitor, report, or collect data as required by the permit. For example, if the permit requires an annual source test to demonstrate compliance and that annual source test indicates compliance, and no pre-test or other information indicated noncompliance during the period, compliance is considered to be continuous for the reporting period. If the answer to Question No. 4, 5 or 6 is "Yes" on compliance certification permit form TVPF46, compliance cannot be considered continuous without some further explanation or documentation.

In addition, for the time period covered by the certification, please identify any excursions or exceedances as indicated by the monitoring data. Also identify any information or data beyond the required monitoring that indicates that you are not in compliance. Note that you may cross reference any previous reports regarding compliance status that have previously been submitted to the District.

2. For each applicable requirement or Part 70 permit condition that requires compliance with a quantifiable emission rate, attach a completed quantifiable applicable requirement or Part 70 permit condition form (TVPF47) to Form TVPF46 for all emission units subject to the requirement or condition. On this form, please indicate the emission units subject to the requirement or condition; the pollutant regulated by the requirement or condition; the most recent measured emission rate, and the limited emission rate, both in units consistent with the requirement or condition; and a specific source test or monitoring record citation including the test date.

In lieu of filling out Forms TVPF46 and/or TVPF47, you may supply all of the necessary information required on the attached forms in your own format, and attach this information to Form TVPF45.

Cover Sheet

Form TVPF45/07-21-03 Page 2 of 2

A copy of each compliance certification shall be submitted to EPA Region IX at the following address:

Mr. Gerardo Rios, Chief Permits Office (AIR-3) Office of Air Division EPA Region IX 75 Hawthorne Street San Francisco, CA 94105

Confidentiality

All information in a Part 70 permit compliance certification is public information. The Part 70 permit is also public information.

Certification by Responsible Official

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in this compliance certification are true, accurate, and complete.

Signature and Title of Responsible Offic	ial:	Date:
Dung al prices	Title: Operations Mgs.	5/21/2009
	,	

Time Period Covered by Compliance Certification:

<u>04</u> / <u>01</u> / <u>08</u> (MM/DD/YY) to <u>03</u> / <u>31</u> / <u>09</u> (MM/DD/YY)

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Fugitive I&M Program under Rule 74.10 for the tank hatches and other inlet and outlet gas and liquid piping connections; storage tank vapor recovery system for each applicable tank is monitored on a quarterly basis which includes inspection of the gas compressor, hatches, relief valves, pressure regulators, and flare; dated records of the quarterly inspections and tank maintenance activities are maintained at the facility; verbal notice of maintenance activities; Annual compliance certification verifying tanks are equipped with vapor recovery

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
 3. Please indicate if this compliance determination method was continuous or intermittent:
 ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
 4. ☐Yes ☑No ☐ During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

04 / 01 / 08 (MM/DD/YY) to 03 / 31 / 09 (MM/DD/YY)

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

71.4N3 impermeable to ROC vapors, and covers at least 90% of the liquid surface area; Low ROC exemption		Description: Sumps, pits, or ponds exempt from being required to have a cover which is impermeable to ROC vapors, and covers at least 90% of the liquid surface area; Low ROC exemption
---	--	---

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual validation/compliance certification that the tanks are exempt via independent laboratory analysis by EPA Method 8015 showing tank ROC content is < 5mg/l. See attached ROC analytical results for T-2 and T-13.

- 2. Yes \(\sum \) No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
 - ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition
 ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No

 During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

 $\underline{04}$ / $\underline{01}$ / $\underline{08}$ (MM/DD/YY) to $\underline{03}$ / $\underline{31}$ / $\underline{09}$ (MM/DD/YY)

Oilfield Environmental and Compliance, INC.

Venoco, Inc. - Carpinteria

Project: Annual SCAQMD Samples

5675 Carpinteria Ave.

Project Number: [none]

Reported: 20-Jan-09 15:14

Carpinteria CA, 93013

Project Manager: Pat Corcoran

Plt. Grace Inlet to T-13 0900138-05 (Water)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ROC by 8260M									
ROC (C3-C10)	ND	50	ug/L	1	A901240	17-Jan-09	17-Jan-09	EPA 8260	
Surrogate: Dibromofluoromethane		103 %	70-1	30	"	"	"	"	
Surrogate: Toluene-d8		99.5 %	70-1	30	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		97.2 %	70-1	30	"	"	"	"	

Plt. Grace Inlet to T-2 0900138-06 (Water)

				-					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
ROC by 8260M									
ROC (C3-C10)	ND	50	ug/L	1	A901240	17-Jan-09	17-Jan-09	EPA 8260	
Surrogate: Dibromofluoromethane		107 %	70-1	30	"	"	"	"	
Surrogate: Toluene-d8		100 %	70-1	30	"	"	"	"	
Surrogate: 4-Bromofluorobenzene		98.2 %	70-1	30	"	"	"	"	

Page 3 of 5

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number and/or Permit Condition Number: 74.9N3	Description: Stationary Natural Gas-Fired Rich-Burn I C Engines – NO _x , ROC, and CO emission limits after January 1, 1997.
--	--

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Biennial source test of the generator engines using the following methods: ARB Method 100 for NO_x, ARB Method 100 for CO, EPA Method 25 or EPA Method 18 for ROC, ARB Method 100 for oxygen content, and ASTM Method 1826-77 for gaseous fuel heating value. Engine inspections per the Engine Operator Inspection Plan. Inspection log containing identification and location of the generator, date and results of each emission inspection, and a summary of any emissions corrective maintenance action taken. Report submitted every 6 months consisting of the following: annual amount of fuel consumed; engine data including engine manufacturer, model number, operator identification number, and engine location, summary of maintenance and testing reports; annual source test report. See attached Rolling 12-Month data for fuel consumption.

2. ☑Yes ☐No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
3. Please indicate if this compliance determination method was continuous or intermittent:
☑ Continuous - All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent - One or more measurements indicate a failure to meet the Part 70 permit condition
4. ☐Yes ☒No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

5.	□Yes	⊠No	During	the	time	period	covered	by	this	compliance	certification,	does	the
mo	nitoring	g data indi	icate any e	exceed	dance	s, if app	olicable?	An	excee	dance is def	ined as "a con-	dition	that
is	detected	l by mon	itoring tha	it pro	vides	data in	terms o	f an	emis	ssion limitati	on or standard	and	that
ind	icates t	hat emiss	ions (or o _l	pacity) are	greater	than the	appl	licable	e emission li	mitation or sta	andard	(or
les	s than	the applic	cable stand	dard	in the	e case o	of percen	t red	ductio	on requireme	ent) consistent	with	any
ave	raging	period spe	ecified for	avera	iging t	he resu	lts of the	mon	itorin	ıg."	·		•

- 6. The Monoration During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

04 / 01 / 08 (MM/DD/YY) to 03 / 31 / 09 (MM/DD/YY)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Apr-08

	1													12-Month	Permit	
Granes:	May-07	Zorung	Jul-07	Aug-07	Sep-07	Oct-07	Nov-07	Dec-07	Jan-08	Feb-08	Mar-08	Apr-08	Apr-08 Monthly Units	Total	Limit	12-Mo & Permit Units
North Crane	0.0	329.4	0.0	796.0	823.0	1 094 0	1 002 0	1 164 0	0.787	0 000		405.0		, 103 0		:
South Crane	172.0	81.0	0.96	155.0	109.5	146.0	160.0	114.0	161.0	0.0	78.0	0.00	Gal/mo	1 272 5	A A	Gallyr
Crane Total	172.0	410.4	96.0	951.0	932.5	1,240.0	1,162.0	1,278.0	928.0	202.0	253.0	185.0	Gal/mo	7.810	13.344	Gallyr
3															1	
Planted (HD+I D)	145.0	0.490	10,00	0,00	10,00											
(Innlanned (HP+I P)	0.00	0.40	0.0	0.40	0.42	0.91	146.0	154.0	176.0	171.0	214.0	191.0	MSCF/mo	2.08	A/A	MMSCFlyr
Pilot Purae (HP+I P)		2.5	Piolog	Pilot Purra is accounted for in 5	of for in co	10 to acitation	alculation of Diamod Election (Materials 84 Materials	0.000	0.0	0.0	2,398.0	2.0	MSCF/mo	3.22	A/N	MMSCF/yr
Flare Gas Total	145.0	264.0	404	2040	240	444	Jes Pilling	Weter GR-	Meter GR	1						
			2	0.45	710.0	2	0.162	0.040.0	1/6.0	0.1/1	2,612.0	193.0	MSCF/mo	2.30	7.19	MMSCFlyr
Generators:																
G2 (Emergency)	0.0	0.0	1,004.0	3,290.0	220.0	88.0	0.0	0.0	64.0	0.0	00	205.0	Gal/mo	4 871 00	55 000	Salles
83	1.7	2.1	2.1	0.5	0.0	0.0	1.5	2.6	1.8	2.6	3.2	13	MMSCF/mo	19.35	51 10	MANAGENT
48 BHP Starter Engine	3.0	0.0	20.0	122.0	645.0	61.0	104.0	211.8	0.89	0.0	28.0	370.0	Gal/mo	1 632 80	7.345	Galhe
P-19 Firewater Pump	0.0	14.0	0.0	0.0	55.0	0.0	53.0	87.0	242.0	0.0	19.0	00	Gal/mo	470.00	Exempt	n/jeS
Portable Equipment	92.0	0.0	20.0	49.0	0.0	0.0	174.0	146.0	819.0	0.0	0.0	0.4	Gal/mo	1.304.00	Exempt	Gallyr
Drining Engines		1														
4 S		+		+								0.0	MMSCF/mo	00:0	N/A	MMSCFlyr
O-10	0	100	1									0.0	MMSCF/mo	00:00	N/A	MMSCFlyr
Dilling ICE 10tal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00.0	60.00	MMSCFlyr
Production Engines				1		1			1		+					
G-6A												C		000		
G-6B												0.0	MMSCF/mo	900	K S	MMSCF/yr
29-9												000	MMSCF/mo	000	¥ 4/2	MMSCFAF
Production ICE Total	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00.0	126.72	MMSCFAr
Diesei Dackup Generator	1			1								0.0	Gal/mo	00.0	4,300	Gallyr
Tanks Throughouts		+				+	1	+	1							
T-3A	00	00	C	C	0	0	088	446.5	0	2440	1 200	0.345.4				
T-3B	0.0	0.0	0.0	0.0	0.0	00	0.99	446.5	000	217.0	1 300 5	1315.0	Bhle/mo	3.354	R	MBblyr
V-8	0.0	0.0	0.0	0.0	0.0	0.0	132.0	893.0	0.0	434.0	2,619.0	2,630.0	Bbls/mo	6 708	3060	MEMber
												2001		8	2000	Locam
Solvent Usage																
7-20	0.0	2.0	0.0	0.0	5.0	5.0	0.0	0.6	0.0	0.0	0.0	5.0	Gal/mo	0.02	ΑN	Tons/yr ROC at 1.64 lb/gal
Enviro-Det	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Gal/mo	00.0	ΑN	Tons/yr ROC at 6.43 lb/gal
Total Solvents	0.0	5.0	0.0	0.0	5.0	2.0	0.0	9.0	0.0	0.0	0.0	5.0	Gal/mo	0.02	4.45	Tons/vr ROC
l otal Coatings		+											Gal/mo	0.00	Exempt	Gallyr
Boate.					1		1									
Crew Boat Fuel:	5.893.6	4.246.0	1 920 0	4 298 0	5 387 2	5 848 B	6 434 0	7 404 8	A 500 E	0 000 9	1 616 4	0 2007				
Work Boat Fuel:	0.0	534.5	5.782.0	2.781.5	4.856.3	3.833.6	4 275 6	4 825 1	2 948 1	9,200.0	2 134 3	2,007	Gal/mo	35,065	W V	Gallyr
Total Boat Filel:	5 803 6	4 780 5	0 502 6	7 070 E	30,000	4 0000	2000	2000	1 1 1	2000	2,104.0	7.126.7	Galvino	20,300	Z	Gallyr
Boat Emissions: tons	0,000,0	4,700.0	7,702.0	0.870,	10,243.5	9,682.4	10,709.6	12,319.9	7,547.7	6,277.6	3,750.7	7,395.4	Gal/mo	93,382	96,792	Gallyr
	0	000	100		-	,	9									
200	0.10	134	0.13	0.12	0.17	0.16	0.18	0.20	0.13	0.10	90:0	0.12	Tons/mo	1.55		Tonsfyr at 33, 15 lbs/MGal
MA M	0.10	4 80	0.13	1.99	2.87	2.72	3.00	3.46	2.12	1.76	1.05	2.07	Tons/mo	26.19		Tons/yr at 561.00 lbs/MGal
Sox	0.02	0.02	0.03	0.03	0.00	0 0	20.00	0.05	0.13	11.0	0.00	0.12	Tons/mo	1.56	1.92	Tonsiyr at 33.50 lbs/MGal
co	0:30	0.24	0.39	0.36	0.52	0.49	0.55	0.63	0.38	0.32	10.0	38	Tons/mo	0.35	5.84	Tonefor at 1.50 (be/MGa)
								20:0	20.50	40.0	2	20.0	211/215	100.2		OPENING THE PROPERTY OF THE PARTY OF THE PAR

Without producing wells, crane limit is 13,344 gal/yr; with any producing wells, limit is 7,344 gal/yr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
May-08

186 197 198	Equipment	Jun-07	Jul-07	Aug-07	Sep-07	Oct-07	Nov-07	Dec-07	Jan-08	Feb-08	Mar-08	Apr-08	May-08	Monthly Units	12-Month Total	Permit Limit	12-Mo & Permit Units
1982 1982 1983 1983 1984 1985	Cranes:																
Mainthorn Main	North Crane	329.4	0:0	796.0	823.0	1,094.0	1,002.0	1,164.0	767.0	202.0	175.0	185.0	209.0		6,746.4	N/A	Gallyr
Table Column Co	South Crane	81.0	0.96	155.0	109.5	146.0	160.0	114.0	161.0	0.0	78.0	0.0	0.0	Gal/mo	1,100.5	A/A	Galíyr
The column The	Crane Total	410.4	96.0	951.0	932.5	1,240.0	1,162.0	1,278.0	928.0	202.0	253.0	185.0	209.0		7,847	13,344	Gallyr
The column The																	
Part	Flare Gas Consumption:	264.0	0.80	0 800	194	116.0	146.0	1540	176.0	1710	214.0	101	130.0		200	V/N	MANCOEAN
Part	Unplanned (HP+I P)	0.0	000	000	24.0	100	105.0	686.0	0.0	0	2 398 0	200	000		3.22	Y Z	MMSCFA
Part	Pilot Purge (HP+LP)		2	Pilot P	urge is accou	nted for in ca	culation of Pl	anned Flaring	(Meter GR-8			2					
Column C	Flare Gas Total	264.0	104.0	204.0	218.0	117.0	251.0	840.0	176.0	171.0	2,612.0	193.0	139.0		6.29	7.19	MMSCFlyr
Column C																	
Columb C	Generators:		1	2 200 0	0.000	Caa			64.0	c	0	0 300		ow/led	4 974 00	25 000	
1	GZ (Ellielgelicy)	0.0	1,004	3,230.0	0.022	0.00	0.0	0.0	0 0	2.6	3.0	13.0	0.0		47.87	51 10	MASCEAR
This Column Col	48 BHP Starter Engine	0.0	20.0	122.0	645.0	61.0	1040	211.8	68.0	0.0	28.0	370.0	3.6		1.633.40	7,315	Gallyr
CE Total CO 200 490 CO 174 CO	P-19 Firewater Pump	14.0	0.0	0.0	55.0	0.0	53.0	87.0	242.0	0.0	19.0	0.0	26.0		496.00	Exempt	Gallyr
CETOMS COLUMN C	Portable Equipment	0.0	20.0	49.0	0.0	0.0	174.0	146.0	819.0	0.0	0.0	4.0	41.0	Gal/mo	1,253.00	Exempt	Gallyr
The color The	P-illing Carloo		\dagger				1	1	1								
CETOLAI 0.0	G-1A											00	0 0		00 0	A/N	MMSCE/vr
	G-18											0.0	0.0		00.0	Ϋ́Z	MMSCF/yr
NA	1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1	00.0	60.00	MMSCF/yr
Columb C																	
CETOLATION COLUMN	Production Engines											C			5	VIIV	MANACOEAG
CET Total 0.0	40-50 89 0											0 0			000	4 2	MMSCFA
Columbia	သွမ်											000	000	1	800	Q Z	MMSCF/yr
ventator 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4,300 2770 1309 5 1315 0 1545 5 Bblsmo 4,300 20 uuts 0.0 0.0 0.0 0.0 0.0 0.0 132 0 893 0 0.0 2170 1309 5 1315 0 1545 5 Bblsmo 4,300 20 No 0.0 0.0 0.0 0.0 0.0 0.0 132 0 893 0 0.0 2170 1365 5 Bblsmo 4,300 20 No 0.0 </td <td>Production ICE Total</td> <td>0:0</td> <td>0.0</td> <td>MMSCF/mo</td> <td>00.00</td> <td>126.72</td> <td>MMSCF/yr</td>	Production ICE Total	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00.00	126.72	MMSCF/yr
Name Columb Col	Diesel Backin Generator											0	00		00 0	4 300	Gallor
Number Solution 0.0 <th< td=""><td>Constant of the constant of th</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>2001</td><td>-Camp</td></th<>	Constant of the constant of th															2001	-Camp
Columb	Tanks Throughputs																
10	T-3A	0.0	0.0	0.0	0.0	0.0	0.99	446.5	00	217.0	1,309 5	1,3150	1,545 5	Bbls/mo	4.900	20	MBbl/yr
10	T-3B	0.0	00	0.0	0.0	0.0	0.99	446.5	0.0	217.0	1.309 5	1,3150	1.545.5		4.900	20	MBbl/yr
Hyents 50 0.0 50 0.0 0.0 0.0 50 0.0 <td>V-8</td> <td>0.0</td> <td>0.0</td> <td>00</td> <td>0.0</td> <td>0.0</td> <td>132.0</td> <td>893.0</td> <td>0.0</td> <td>434.0</td> <td>2.619.0</td> <td>2,630.0</td> <td>3.091.0</td> <td></td> <td>9.799</td> <td>3960</td> <td>MBbl/yr</td>	V-8	0.0	0.0	00	0.0	0.0	132.0	893.0	0.0	434.0	2.619.0	2,630.0	3.091.0		9.799	3960	MBbl/yr
No. Solution	Solvent Usage																
No.	Z-Sol	5.0	0.0	0.0	5.0	5.0	0.0	0.6	00	0.0	00	5.0	0.0		0 02	ď Z	Tonsiyr ROC at 1.64 lb.gail
Accordance Columb	Enviro-Det	0.0	0.0	0.0	0:0	0.0	0.0	0 0	00	0.0	00	00	00	Gal/mo	00 0	Æ.	Tonsyr ROC at 6.43 lb.gai
verings cellings Galfmo Column Colu	Total Solvents	5.0	0.0	0.0	5.0	9.0	0 0	0.6	0.0	00	00	5.0	00	Gal/mo	0.02	4.45	Tons/yr ROC
4.246.0 1.920.0 4.288.0 5.848.8 6.434.0 7.494.8 4.599.6 5.280.8 1.616.4 4.397.8 4.790.4 Galimo 56.314 N.A. tons Soar 5 5.782.0 2.7815 5.848.8 6.434.0 7.494.8 4.599.6 5.280.8 1.616.4 4.397.8 4.790.4 Galimo 56.314 N.A. tons 5.345 5.782.0 2.7815 4.856.3 3.833.6 4.275.6 4.825.1 2.948.1 996.8 2.134.3 2.997.7 3.568.9 Galimo 395.34 N.A. tons 4.780.5 7.702.0 7.079.6 10.709.6 12.319.9 7.547.7 6.277.6 3.750.7 7.395.4 8.359.3 Galimo 395.34 N.A. tons 1.00	Total Coatings													Gal/mo	00 0	Exempt	Gallyr
4.246 0 1.920 0 4.288 0 5.848 8 6.434 0 7.494 8 4.599 6 5.280 8 1.616 4 4.397 8 4.790 4 Galimo 56.314 b NA tons 1.008 1.0245 5 5.848 8 6.4275 6 4.825 1 2.948 1 996 8 2.1343 2 2.997 7 3.568 9 Galimo 56.314 b NA tons 1.008 1.0243 5 9.682 4 10.709 6 12.319 9 7.547 7 6.277 6 3.750 7 7.395 4 8.359 3 Galimo 36,848 9 96,792 7 NOX 1.008 1.008 7	Boats:																
tons Column 36.53 G 4.780 S 3.633 G 4.275 G 4.825 I 2.948 I 996 B 2.134 J 2.997 I 3.568 J Galimo 39.534 J NA tons Los 0.08 D 7.770 D 7.079 G 10.709 G 12.319 J 7.547 J 6.277 G 3.750 J 7.395 J Galimo 39.534 D NA ROC 0.08 D 0.13 D 0.14 D 0.24 D 0.18 D 0.21 D 0.10 D 0.05 D 0.12 D 0.14 D 1.50 D	Crew Boat Fuel:	4,246.0	1.920.0	4.298.0	5,387.2	5,848.8	6.434.0	7.494.8	4,599.6	5.2808	616	397	4.7904	Gal/mo	56.314	¥.Z	Gal/yr
100 100	Work Boat Fuel:	534.5	5,782.0	2,781.5	4,856.3	3,833.6	4,275.6	4.825.1	2,948.1	8 966	2.134 3	997	3.568.9	Gal/mo	39,534	ď Z	Gallyr
HONS CORRES 0.13 0.12 0.17 0.16 0.18 0.20 0.13 0.10 0.06 0.12 0.14 1.59 1.50 <	Total Boat Fuel:	4,780.5	7,702.0	7.079.5	10,243.5	682	709	319		277	3,750 7	7,395.4	359	Gal/mo	95,848	96,792	Gallyr
ROC 0.08 0.13 0.12 0.17 0.16 0.18 0.20 0.13 0.10 0.06 0.12 0.14 Tons/mo 1.59 1.50 <	Boat Emissions: tons																
134 216 199 287 2.72 300 3.46 2.12 176 105 207 2.34 Tons/mo 26.89 32.11 1.00 1.00 1.00 1.00 1.00 1.00 1.00		80.0	0.13	0.12	0.17	0.16	0.18	0.20	0.13	01.0	90 0	0.12	0.14	Tons/mo	1.59	1.90	Tons/yr at 33.15 lbs/MGal
0.08 0.13 0.12 0.17 0.16 0.18 0.21 0.13 0.11 0.06 0.12 0.14 Inskmo 1.61 1.92 0.13 0.03 0.09 0.04 0.04 0.05 0.03 0.03 0.03 0.04 0.04 0.05 0.03 0.03 0.03 0.04 0.04 0.05 0.03 0.03 0.03 0.04 0.04 0.05 0.03 0.04 0.04 0.05 0.03 0.04 0.04 0.05 0.03 0.04 0.04 0.04 0.05 0.03 0.04 0.04 0.04 0.04 0.04 0.04 0.04	NOX	1.34	2.16	1.99	2.87	2.72	3.00	3.46	2.12	1.76	105	2.07	2.34	Tons/mo	26.89	32.11	Tons/yr at 561.00 lbs/MGal
0.02 0.03 0.04 0.04 0.05 0.03 0.03 0.03 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05	Md	0.08	0.13	0.12	0.17	0.16	0.18	0.21	0.13	0.11	900	0 12	0 14	Tons/mo	1.61	1.92	Tons/yr at 33.50 lbs/MGal
	SOX	0.02	0.03	0.03	0.04	40.0	0.04	0.05	0.03	0.02	0.01	0 03	0.03	Tons/mo	0.36	0.42	Tons/yr at 7.50 lbs/MGai

Without producing wells, crane limit is 13.344 gal/yr; with any producing wells, limit is 7.344 gal/yr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Jun-08

														12-Month	Permit	
Equipment	Jut-07	Aug-07	Sep-07	Oct-07	Nov-07	Dec-07	Jan-08	Feb-08	Mar-08	Apr-08	May-08	Jun-08	Jun-08 Monthly Units	Total	Limit	12-Mo & Permit Units
Granes:		0.001		0,00	0000											
South Crane	0.0	155.0	109 5	ļ	1,002.0		767.0	202.0	175.0	185.0	209.0	26.0	Gal/mo	6,443.0	Ϋ́ .	Gallyr
Crane Total	0.96	951.0		-	1 162 0	-	0 806	2020	263.0	200	2000	2000	Galvino	6.102,1	¥/N	Gairyr
							200		200	200	0.00	400.0	Califfic	2	10,01	Cany
Flare Gas Consumption:																
Planned (HP+LP)	104.0	204.0	194.0	-	146.0	154.0	176.0	171.0	214.0	191.0	139.0	175.0	MSCF/mo	1.98	N/A	MMSCF/yr
Unplanned (HP+LP)	0.0	0.0	24.0	1.0	105.0	0.989	0.0	0.0	2,398.0	2.0	0.0	0.0	MSCF/mo	3.22	A/A	MMSCF/yr
Pilot Purge (HP+LP)			Pilot	Pilot Purge is accounted for in c	unted for in ca	alculation of Planned Flaring (Meter GR-81 - Meter GR-83)	anned Flaring	(Meter GR-8	11 - Meter GR	-83)						
Flare Gas Total	104.0	204.0	218.0	117.0	251.0	840.0	176.0	171.0	2,612.0	193.0	139.0	175.0	MSCF/mo	5.20	7.19	MINISCFlyr
G2 (Ememency)	1 004 0	3 290 0	0.000	0 88	0		0.40	6		0 300		0				
G3	2.1	0.5	0.022	000	10.0	200	5 6	0.0	0.0	203.0	0.0	0.0	Gal/mo	4,8/1.00	006,66	Gallyr
48 BHP Starter Engine	20.0	122.0	645.0	61.0	0.40	211.8	089	000	280	370.0	3.6	200	Gal/mo	1644 90	7 246	Galhe
P-19 Firewater Pump	0.0	0.0	55.0	0.0	53.0	87	242.0	0.0	19.0	0.0	26.0	0.0	Gal/mo	482 00	Exempt	Gallyr
Portable Equipment	20.0	49.0	0.0	0.0	174.0		819.0	0.0	0.0	4.0	41.0	0.0	Gal/mo	1,253.00	Exempt	Gallyr
Conjunction of the Conjunction o																
C 15										1						
45	1									0.0	0.0	0.0	MMSCF/mo	00.0	Ψ/Z	MMSCF/yr
		100	100	1	,					0.0	0.0	0.0	MMSCF/mo	00:00	A/A	MMSCF/yr
Drilling ICE Total	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	0000	60.00	MINSCFlyr
Production Engines					1	1										
G-6A										0	00	C	MMSCE/mo	0	A/N	MMSCEAR
G-6B										000			MMSCE/mo	8 6	Z Z	MANACEAR
C-6C										0.0	0.0	0.0	MMSCF/mo	00.0	Y X	MMSCF/yr
Production ICE Total	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00'0	126.72	MMSCFyr
Diesel Backup Generator				1	1	1				0.0	0.0	0.0	Gal/mo	0000	4,300	Gallyr
Tanks Throughputs																
T-3A	0.0	0.0	0.0	0.0	0.99	446.5	0.0	217.0	1 309 5	13150	1 545 5	1 301 0	Bhls/mo	6 201	900	MRhifter
T-3B	0.0	0.0	0.0	0.0	0.99	446.5	0.0	217.0	1,309.5	1,315.0	1.545.5	1 301 0	Bbls/mo	6,201	202	MShive
V-8	0.0	0.0	0.0	0.0	132.0	893.0	0.0	434.0	2,619.0	2,630.0	3,091.0	2,602.0	Bbls/mo	12.401	3960	MBblyr
Solvent Usage					- 6											
7-20	0.0	0.0	9.0	2.0	0.0	0.6	0.0	0.0	0.0	2.0	0.0	5.0	Gal/mo	0.02	A/Z	Tons/yr ROC at 1.64 lb/gal
Enviro-Det	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Gal/mo	00:00	N/A	Tons/yr ROC at 6.43 lb/gal
Total Solvents	0.0	0.0	5.0	5.0	0.0	0.6	0.0	0.0	0.0	5.0	0.0	5.0	Gal/mo	0.02	4.45	Tons/yr ROC
Total Coatings													Gal/mo	00:00	Exempt	Galíyr
Boate:																
Crew Boat Filel:	1 920 0	4 298 0	5 387 2	5 848 8	6 434 0	7 404 8	4 500 6	0 000 3	1 616 4	4 207 0	7007	2 050 0		000		
Work Boat Fuel:	5.782.0	2.781.5	4 856 3	3,833.6	4 275 6	4 825 1	2 948 1	9,200.0	2 134 3	2 007 7	3.568.0	3,322.0	Gal/mo	30,020	X X	Gallyr
Total Boot Erel:	2 702 7	2020	20000	1,000	200207	00000		200	2.17.2	20017	20000	3	Caurino	000.85	¥/Z	Gailyr G
Post Emissions: tons	1,102.0	6.8/0,/	10,243.5	9,682.4	10,/09.6	12,319.9	7,547.7	6,277.6	3,750.7	7,395.4	8,359.3	3,952.0	Gal/mo	95,019	96,792	Gallyr
Boat Emissions: tons	0 13	0.12	1210	0.16	100	00.00	15		900	-	+;	100				
NOW N	0.13	1 00	78.6	0.16	0.18	0.20	0.13	0.10	0.06	0.12	0.14	0.07	Tons/mo	1.67	66.	Tons/yr at 33.15 lbs/MGal
Md	0.13	0.12	0.17	0.16	0.18	0.21	0.13	0.11	90.0	0.12	41.0	0.07	Tons/mo	26.65	1 92	Tonsivrat 561.00 Ibs/Mical
SOx	0.03	0.03	0.04	0.04	0.04	0.05	0.03	0.02	0.0	0.03	0.03	0.01	Tons/mo	0.36		Tons/vr at 7.50 lbs/MGal
တ	0.39	0.36	0.52	0.49	0.55	0.63	0.38	0.32	0.19	0.38	0.43	0.20	Tons/mo	4.85		Tonsivr at 102.00 lbs/MGal

Without producing wells, crane limit is 13.344 gal/yr; with any producing wells, limit is 7.344 gal/yr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Jul-08

Equipment	Aug-07	Sep-07	Oct-07	Nov-07	Dec-07	Jan-08	Feb-08	Mar-08	Apr-08	Mav-08	80-unf	Jul-08	Jul-08 Monthly Units	12-Month Total	Permit	12-Mo & Permit Units
Cranes:																
North Crane	0.962	823.0	1,094.0	1,002.0	1,164.0	767.0	202.0	175.0	185.0	209.0	26.0	209.0	Gal/mo	6,652.0		Galfyr
South Crane	155.0	109.5	146.0	160.0	114.0	161.0	0.0	78.0	0.0	0.0	182.0	30.0	Gal/mo	1,135.5	N/A	Gallyr
Crane Total	951.0	932.5	1,240.0	1,162.0	1,278.0	928.0	202.0	253.0	185.0	209.0	208.0	239.0	Gal/mo	7,788	13,344	Gallyra
Flare Gae Consumntion.						1										
Planned (HP+I P)	2040	194	116.0	146.0	1540	176.0	1710	0440	0,00	1300	175.0	0.000	, TOOK	0,0		- 11000
Unplanned (HP+LP)	0.0	24.0	101	105.0	686.0	000	0.0	2 398 0	200	0.65	0.00	17.0	MSCF/mo	3 23	4 2	MMSCENT
Pilot Purge (HP+LP)			Pilot F	Pilot Purge is accounted for in c	inted for in ca	alculation of Planned Flaring (Meter GR-81 - Meter GR-83)	anned Flaring	(Meter GR-8	1 - Meter GR		200			27.0		T DOMM
Flare Gas Total	204.0	218.0	117.0	251.0	840.0	176.0	171.0	2,612.0	193.0	139.0	175.0	254.0	MSCF/mo	5.35	7.19	MMSCFAr
G2 (Emergency)	3 290 0	2200	88.0	00	00	0.89	c	0	205.0	0	c	9	(m)leO	2 072 00	000 33	-100
63	0.5	0.0	0.0	1.5	2.6	187	2.6	3.2	13	000	0.0	000	MMSCF/mo	13.67	51.10	MINSCEN
48 BHP Starter Engine	122.0	645.0	61.0	104.0	211.8	0.89	0.0	28.0	370.0	3.6	8.5	25.0	Gal/mo	1,646,90	7.315	Galivr
P-19 Firewater Pump	0.0	55.0	0.0	53.0	87.0	242.0	0.0	19.0	0.0	26.0	0.0	17.0	Gal/mo	499.00	١	Gal/yr
Portable Equipment	49.0	0.0	0.0	174.0	146.0	819.0	0.0	0.0	4.0	41.0	0.0	1,290.0	Gal/mo	2,523.00		Gallyr
Drilling Engines																
G-1A									0	0	0	0	MANOCETANO	000	4714	- 11000111
G-18					T						000		MANASCE/IND	8 6	2 2	MMSCFlyf
Drilling ICE Total	0.0	0.0	0.0	0.0	0.0	0.0	00	00	0	0		0	MMSCF/mo	20.0	200	MMSCFA
									3	25	2	2			3	MINOSTR
Production Engines												T				
G-6A									0.0	0.0	0.0	0.0	MMSCF/mo	00.0	A/N	MMSCFlyr
G-6B									0.0	0.0	0.0	0.0	MMSCF/mo	00:00	N/A	MMSCF/yr
29-9									0:0	0.0	0.0	0.0	MMSCF/mo	00:0	N/A	MMSCFlyr
Production ICE Total	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	0.00	126.72	MMSCFlyr
Diesel Backup Generator									0.0	0.0	0.0	0.0	Gal/mo	00.0	4.300	Gallyr
																· Cana
Tanks Throughputs																
T-3A	0.0	0.0	0.0	0.99	446.5	0.0	217.0	1,309.5	1,315.0	1,545.5	1,301.0	1,715.0	Bbls/mo	7.916	20	MBblyr
1-38	0.0	0.0	0.0	0.99	446.5	0.0	217.0	1,309.5	1,315.0	1,545.5	1,301.0	1,715.0	Bbls/mo	7.916		MBblyr
0-2	0.0	0.0	0.0	132.0	883.0	0.0	434.0	2,619.0	2,630.0	3,091.0	2,602.0	3,430.0	Bbls/mo	15.831	3960	MBblyr
Solvent Usage																
Z-Sol	0.0	5.0	5.0	0.0	0.6	0.0	0.0	0:0	5.0	0.0	5.0	0.0	Gal/mo	0.02	A/N	Tons/yr ROC at 1.64 lb/gal
Enviro-Det	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Gal/mo	00:00	N/A	Tons/yr ROC at 6.43 lb/gal
Total Solvents	0.0	5.0	5.0	0.0	9.0	0.0	0.0	0.0	5.0	0.0	5.0	0.0	Gal/mo	0.02	4.45	Tons/yr ROC
l otal Coatings		+	1	+	+				1				Gal/mo	00.0	Exempt	Gallyr
Boats:							+									
Crew Boat Fuel:	4,298.0	5,387.2	5,848.8	6,434.0	7,494.8	4,599.6	5,280.8	1,616.4	4.397.8	4.790.4	3.952.0	3.833.0	Gal/mo	57 933	A/N	Gallvr
Work Boat Fuel:	2,781.5	4,856.3	3,833.6	4,275.6	4,825.1	2,948.1	8.966	2,134.3	2,997.7	3,568.9	0.0	3,029.9	Gal/mo	36,248	Y A	Gallyr
Total Boat Fuel:	7,079.5	10,243.5	9,682.4	10,709.6	12,319.9	7.547.7	6.277.6	3.750.7	7.395.4	8 359 3	3.952.0	6 862 8	Gal/mo	04.180	96 792	Gallyr
Boat Emissions: tons																
ROC	0.12	0.17	0.16	0.18	0.20	0.13	0.10	90:0	0.12	0.14	0.07	0.11	Tons/mo	1.56	1.90	Tons/yr at 33.15 lbs/MGal
NOX	1.99	2.87	2.72	3.00	3.46	2.12	1.76	1.05	2.07	2.34	1.11	1.93	Tons/mo	26.42	32.11	Tonsiyr at 561.00 lbs/MGal
	0.12	0.17	0.16	0.18	0.21	0.13	0.11	90.0	0.12	0.14	0.07	0.11	Tons/mo	1.58	2000	Tons/yr at 33.50 lbs/MGal
XOS	0.03	0.00	4 6	0.04	0.05	0.03	0.02	0.01	0.03	0.03	0.01	0.03	Tons/mo	0.35	0.42	Tons/yr at 7.50 lbs/MGai
	U.30.	U.35.J	0.45	0.50	U.05.J	U.30	0.32	USL'O	U.30	0.45	บ.20	0.35	Tons/mo	4.50	200	Tonsyr at 102.00 lbs/mGai

Without producing wells, crane limit is 13,344 gal/yr; with any producing wells, limit is 7,344 gal/yr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Aug-08

Equipment	Sep-07	Oct-07	Nov-07	Dec-07	Jan-08	Feb-08	Mar-08	Apr-08	May-08	90-unf	90-Inf	Aug-08	Monthly Units	12-Month Total	Pormit	12-Mo & Permit Units
Cranes:																
North Crane	823.0	1,094.0	1,002.0	1,164.0	767.0	202.0	175.0	185.0	209.0	26.0	209.0	262.0	Gal/mo	6,118.0		Gallyr
South Crane	109.5	146.0	160.0	114.0	161.0	0.0	78.0	0.0	0.0	182.0	30.0	0.0	Gal/mo	980.5	₹ Z	Gallyr
Crane Total	932.5	1,240.0	1,162.0	1,278.0	928.0	202.0	253.0	185.0	209.0	208.0	239.0	262.0	Gal/mo	7,099	13,344	Gallyr
Flare Gae Consumption:																выдат выполнять надачина политивного выполнять на выполнять на выполнять на выполнять на выполнять на выполнять
Planned (HP+I P)	1940	116.0	146.0	154 0	176.0	1710	2140	191.0	139.0	175.0	237.0	102.0	MSCF/mo	2.02	A/N	MMSCF/yr
Unplanned (HP+LP)	24.0	1.0	105.0	0.989	0.0	0.0	2,398.0	2.0	0.0	0.0	17.0	0.0		3.23		MMSCFlyr
Pilot Purge (HP+LP)			Pilot F	Pilot Purge is accounted for in calculation of Planned Flaring (Meter GR-81 - Meter GR-83)	inted for in ca	culation of P	anned Flaring	(Meter GR-8	1 - Meter GR	-83)						
Flare Gas Total	218.0	117.0	251.0	840.0	176.0	171.0	2,612.0	193.0	139.0	175.0	254.0	102.0	MSCF/mo	5.25	7.19	MMSCFlyr
Generators:	220.0	88.0	0	0	0.49	c	C	205.0	0	0	0.9	00	Gal/mo	583.00	55.900	Gallyr
63	0.0	0.0	1.5	2.6	1.8	2.6	3.2	1.3	0.2	0.0	0.0	0.0	MMSCF/mo	13.21		MMSCFlyr
48 BHP Starter Engine	645.0	61.0	104.0	211.8	0.89	0.0	28.0	370.0	3.6	8.5	25.0	10.0	Gal/mo	1,534.90		Gallyr
P-19 Firewater Pump	55.0	0.0	53.0	87.0	242.0	0.0	19.0	0.0	26.0	0.0	17.0	0.0	Gal/mo	499.00		Galíyr
Portable Equipment	0.0	0.0	174.0	146.0	819.0	0.0	0.0	4.0	41.0	0.0	1,290.0	0.0	Gal/mo	2,474.00	Exempt	Galíyr
Orilling Enginee																
C-1A								0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00.00		MMSCF/yr
118								00	00	0.0	00	0.0	MMSCF/mo	000	ΑN	MMSCF/vr
Drilling ICF Total	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	0000	9	MINISCEIVE
0																
Production Engines																
G-6A								0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00.0		MMSCFlyr
G-6B								0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00.00	Y S	MMSCFlyr
29-5								0.0	0.0	0.0	0.0	0.0	MMSCF/mo	0.00	•	MMSCFA
Production ICE Total	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	0.0	77.071	MINISCENIA
Diesel Backup Generator								0.0	0.0	0.0	0.0	0.0	Gal/mo	00:00	4,300	Gallyr
Tanks Throughputs										0,00,			i		8	
T-3A	0.0	0.0	0.99	446.5	0.0	217.0	1,309.5	1,315.0	1,545.5	1,301.0	1,715.0	1,5/5.0	BDIS/mo	9.43	3 8	BIDDLING
1-38	0 0	0.0	132.0	0.00	0.0	217.0	1,309.5	0.015.0	2,040.0	0.106,1	2 420 0	3 150 0	Dill'sida Bhle/mo	180 91	3960	
9-1	0.0	0.0	132.0	0.550	5	0.464	2,019.0	2,030.0	0.160,0	2,002.0	0.00	2.5	O DE COMP			
Solvent Usage																
Z-Sol	5.0	2.0	0.0	0.6	0.0	0.0	0.0	5.0	0.0	5.0	0.0	5.0	Gal/mo	0.03		Tons/yr ROC at 1.64 lb/gal
Enviro-Det	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Gal/mo	0.00		Tons/yr ROC at 6.43 lb/gal
Total Solvents	5.0	5.0	0.0	0.6	0.0	0.0	0.0	5.0	0:0	5.0	0.0	5.0	Gal/mo	0.03		Tonslyr ROC
Total Coatings													Gal/mo	00.0	Exempt	Gallyr
. 9																
Crew Boat Fuel:	5.387.2	5.848.8	6,434.0	7,494.8	4,599.6	5.280.8	1,616.4	4,397.8	4,790.4	3,952.0	3,833.0	4,167.0	Gal/mo	57,802		Gallyr
Work Boat Fuel:	4,856.3	3,833.6	4,275.6	4,825.1	2,948.1	8.966	2,134.3	2,997.7	3,568.9	0.0	3,029.9	4,404.0	Gal/mo	37,870	N/A	Galfyr
Total Boat Fuel:	10.243.5	9.682.4	10,709.6	12,319.9	7.547.7	6.277.6	3,750.7	7,395.4	8,359.3	3,952.0	6,862.8	8,571.1	Gal/mo	95,672	96,792	Gallyr
Boat Emissions: tons																
	0.17	0.16	0.18	0.20	0.13	0.10	90.0	0.12	0.14	0.07	0.11	0.14	Tons/mo	1.59		Tons/yr at 33.15 lbs/MGal
NOX	2.87	2.72	3.00	3.46	2.12	1.76	1.05	2.07	2.34	1.11	1.93	2.40	Tons/mo	26.84		Tons/yr at 561.00 lbs/MGal
Md	0.17	0.16	0.18	0.21	0.13	0.11	90:0	0.12	0.14	20.0	0.11	0.14	Tons/mo	1.60		Tons/yr at 33.50 lbs/MGal
XOS	0.04	0.04	0.0	0.05	0.03	0.02	0.01	0.03	0.03	0.01	0.03	0.03	Tons/mo	0.36		Tons/yr at 7.50 lbs/MGal
ဝေ	0.52	0.49	0.55	0.63	0.38	0.32	0.19	0.38	0.43	0.20	0.35	0.44	Tons/mo	4.86		Tonsyr at 102.00 lbs/MGal

Without producing wells, crane limit is 13,344 gal/yr; with any producing wells, limit is 7,344 gal/yr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gali (PTO No. 1494)

Platform Grace PTO No. 1493 Equipment Usage Rolling 12-Months Ending: Sep-08

Equipment	Oct-07	70-von	Dec-07	Jan-08	Feb-08	Mar-08	Apr-08	May-08	e uni		8		Monthly Sign	12-Month	W.	
Cranes:												ondao	monum) ours	┸		A-MO & Permit Office
North Crane	1,094.0	-	1,164.0	767.0	202.0	175.0	185.0	209.0	26.0	209.0	262.0	2000	Gal/mo	5 495 0	A/M	ryle O
South Crane	146.0	160.0	114.0	161.0	0.0	78.0	0.0	0.0	182.0	30.0		75.0		946.0	Z Z	Gabyi
Crane Total	1,240.0	1,162.0	1,278.0	928.0	202.0	253.0	185.0	209.0	208.0	239.0	26	275.0		6.441	13.344	Gallyr
Flare Gas Consumption:																
Figures (FIFTLP)	0.911		Z 8	176.0	1	214.0	191.0	139.0	175.0	237.0	1	70.0		1.89	A/N	MMSCF/yr
Distance (nr +LP)	0.	0.601		0.0	0.0		2.0	0.0	0.0	17.0	0.0	1.0	MSCF/mo	3.21	ΑN	MMSCF/yr
Filot Pulge (RF4LP)				Purge is acco	Pilot Purge is accounted for in ca		Iculation of Planned Flaring (Meter GR-81 - Meter GR-83)	(Meter GR-8	11 - Meter GR	-83)						
Flare Gas Total	117.0	251.0	840.0	176.0	171.0	2,612.0	193.0	139.0	175.0	254.0	102.0	71.0	MSCF/mo	5.10	7.19	MMSCFWrb
G2 (Emergency)	0 88	0		640			0.00	0								
G. C.	0.00	20.4	0.0	0.40	0.0	0.0	205.0	0.0	0.0	0.9		0.0		363.00	55,900	Gallyr
48 BHP Starter Fnoine	610	25	6	0.0	2.0	3.2	5.070	0.2	0 0	0.0		0.0	MMSCF/mo	13.21	51.10	MMSCFlyr
P-19 Firewater Prima	2	200	070	0.00	0.0	70.07	3/0.0	3.0	8.5	25.0		26.0	Gal/mo	915.90	7,315	Gallyr
Portable Equipment	0.00	174.0	ľ	242.0	0.0	0.61	0.0	26.0	0.0	17.0		0.0	Gal/mo	444.00	Exempt	Gallyr
The state of the s	0	0.4		0.8.0	0.0	0.0	0.4	41.0	0.0	1,290.0	0.0	0.0	Gal/mo	2,474.00	Exempt	Gallyr
Drilling Engines							1				+					
G-1A							00	00	0	c	c	0	MANACCETORO	9	4114	-1100111
G-1B							0.0	00	000	000		000	MMSCE/mo	8 6	2 2	MMSCFA
Drilling ICE Total	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0		MMSCE/mo	00.00	V/N	MMSCFlyr
												2	200	20.0	20.00	Massery
Production Engines																
G-6A							0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00.00	A/N	MMSCF/yr
290							0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00:00	N/A	MMSCF/yr
70-5		,					0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00.00	ΑN	MMSCF/yr
rioduction ICE Lotal	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00'0	126.72	MMSCFlyr
Diesel Backup Generator		T					C	0	0	c		0				
							20	2	0	0.0	0.0	0.0	Gal/mo	0.00	4,300	Gallyr
Tanks Throughputs																
T-3A	0.0	0.99		0.0	217.0	1,309.5	1,315.0	1,545.5	13010	1 715 0	1 575 0	1 434 5	Rhie/mo	40.025	00	Meethe
T-38	0.0	0.99		0.0	217.0	1,309.5	1,315.0	1.545.5	1,301.0	17150	1575.0	1 434 5	Bhis/mo	10.925	8 8	MEDINA
V-8	0.0	132.0	893.0	0.0	434.0	2,619.0	2,630.0	3,091.0	2,602.0	3.430.0	3.150.0	2 869 0	Bbls/mo	21.850	3960	MBMM
Solvent Usage																
7-20	5.0	0.0	0.6	0.0	0.0	0.0	5.0	0.0	2.0	0.0	5.0	0.0	Gal/mo	0.02	N/A	Tons/yr ROC at 1.64 lb/gal
Enviro-Uet	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Gal/mo	00.00	A/N	Tons/vr ROC at 6.43 lb/gal
Total Solvents	5.0	0.0	0.6	0.0	0.0	0.0	5.0	0.0	5.0	0.0	5.0	0.0	Gal/mo	0.02	4.45	TonsArr ROC
Total Coatings													Gal/mo	000	Exempt	Gallyr
- decid		+	+													
Crew Roat Firel:	5 848 8	6 4340	7 404 0	4 500 6	0 000 3	1,000	0.000	. 305.	0000							
Work Boat Fuel:	3,033	4 275 6	4 825 1	7 048 4	2,260.6	4.010.1	8,787.0	4.790.4	3,952.0	3,833.0	4,167.0	1.528.6	Gal/mo	53,943	A/N	Gallyr
	2,000,0	0.014.1	1000	2,370.	990.0	2,134.3	7.766.7	2,300.9	000	3,029.9	4.404.0	3,076.6	Gal/mo	36,091	Α/N	Gallyr
Total Boat Fuel:	9,682.4	10,709.6	12,319.9	7,547.7	6,277.6	3,750.7	7,395.4	8,359.3	3,952.0	6,862.8	8,571.1	4,605.3	Gal/mo	90,034	96,792	Gallyr
Boat Emissions: tons																•
Roc	0.16	0.18	0.20	0.13	0.10	90:0	0.12	0.14	0.07	0.11	0.14	0.08	Tons/mo	1.49	1.90	Tons/yr at 33,15 lbs/MGal
NOX NOX	2.72	3.00	3.46	2.12	1.76	1.05	2.07	2.34	1,11	1.93	2.40	1.29	Tons/mo	25.25		Tons/yr at 561.00 lbs/MGai
W CS	0.10	0.18	0.07	0.13	0.11	90.0	0.12	0.14	0.07	0.11	0.14	0.08	Tons/mo	1.51		Tonslyr at 33.50 lbs/MGal
183	040	1 25	0.00	0.03	0.02	- 0.0	0.03	20.02	0.01	0.03	0.03	0.02	Tons/mo	0.34	0.42	Tonsyr at 7.50 lbs/MGal
	6.43	0.00	0.00	0.30	0.32	61.0	28.0	54.0	0.20	0.35	44.0	0 23	Tons/mo	4.59	0	Tone for at 402 00 the Mical

Without producing wells, crane limit is 13.344 gal/yr; with any producing wells, limit is 7,344 gal/yr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Oct-08

Equipment	Nov-07	Dec-07	Jan-08	Feb-08	Mar-08	Apr-08	May-08	90-unC	Juf-08	Aug-08	Sep-08	Oct-08	Oct-08 Monthly Units	12-Month Total	Permit	12-No & Permit Units
Cranes:																
North Crane	1,002.0	1,164.0	767.0	202.0	175.0	185.0	209.0	26.0	209.0	262.0	200.0	113.0	Gal/mo	4,514.0		Gallyr
South Crane	160.0	114.0	161.0	0.0	78.0	0.0	0.0	182.0	30.0	0.0	75.0	0.0	Gal/mo	800.0		Gallyr
Crane Total	1,162.0	1,278.0	928.0	202.0	253.0	185.0	209.0	208.0	239.0	262.0	275.0	113.0	Gal/mo	5,314	13,344	Gallyr
Planned (HP+I P)	146.0	1540	178.0	1710	214.0	101	130.0	475.0	0.750	200	0.05	0,00	110011	00,	1	1000
Unplanned (HP+LP)	105.0	686.0	000	00	2 398 0	200	0.65	000	17.0	0.00	0.0	0.121	MSCF/mo	3.24	Y Z	MMSCEAR
Pilot Purge (HP+LP)			Pilot P	Pilot Purge is accounted for in c	unted for in ca	alculation of Planned Flaring (Meter GR-81 - Meter GR-83)	anned Flaring	(Meter GR-8	1 - Meter GR		2	20	NSC NIC	3.6	2	MMSCFY
Flare Gas Total	251.0	840.0	176.0	171.0	2,612.0	193.0	139.0	175.0	254.0	102.0	71.0	121.0	MSCF/mo	5.11	7.19	MMSCFArb
Generators:																
G2 (Emergency)	0.0	0.0	0.40	0.0	0.0	205.0	0.0	0.0	0.9	0.0	0.0	0.0	Gal/mo	275.00		Gallyr
63	1.5	2.6	1.8	2.6	3.2	13	0.2	0.0	0.0	0.0	0.0	3.6	MMSCF/mo	16.77	51.10	MMSGFlyr
48 BHP Starter Engine	104.0	211.8	089	0.0	28.0	370.0	3.6	8.5	25.0	10.0	26.0	28.0	Gal/mo	882,90	7,315	Gallyr
P-19 Firewater Pump	53.0	87.0	242.0	0.0	19.0	0.0	26.0	0.0	17.0	0.0	0.0	0.0	Gal/mo	444.00	Exempt	Gallyr
Portable Equipment	1/4.0	146.0	819.0	0.0	0.0	4.0	41.0	0.0	1,290.0	0.0	0.0	0.0	Gal/mo	2,474.00	Exempt	Gal/yr
Drilling Engines			+													
G-1A						c	c	c	0	0	c	0	MANCOCIMO	000	4114	- 1000
G-18						00	000	0.0	000		000		MMSCE/mo	000	2 2	MMSCEAR
Drilling ICE Total	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	00	MMSCF/mo	50.0	00 09	MUSCEN
Production Engines																AND THE PROPERTY OF THE PROPER
G-6A						0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00:00	N/A	MMSCF/yr
6-68						0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00:00	A/A	MMSCF/yr
70-5	1	-			1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00:00	N/A	MMSCF/yr
Production ICE Lotal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00.00	126.72	MMSCFlyr
Diesel Backup Generator						0.0	0.0	0.0	0.0	0.0	0.0	00	Gal/mo	00.0	4.300	Gallyr
Tanks Throughputs																
T-3A	0.99	446.5	0.0	217.0	1,309.5	1,315.0	1,545.5	1,301.0	1,715.0	1,575.0	1,434.5	1,547.0	Bbls/mo	12.472	20	MBbllyr
T-38	0.99	446.5	0.0	217.0	1,309.5	1,315.0	1,545.5	1,301.0	1,715.0	1,575.0	1,434.5	1,547.0	Bbls/mo	12.472	20	MBblyr
8-/	132.0	893.0	0.0	434.0	2,619.0	2,630.0	3,091.0	2,602.0	3,430.0	3,150.0	2,869.0	3,094.0	Bbls/mo	24.944	3960	MBblyr
Solvent Usage																
Z-Sol	0.0	0.6	0.0	0.0	0.0	5.0	0.0	5.0	0.0	5.0	0.0	5.0	Gal/mo	0.02	A/N	Tons/yr ROC at 1,64 lb/gal
Enviro-Det	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Gal/mo	00.0	¥ Z	Tons/vr ROC at 6.43 lb/gal
Total Solvents	0.0	0.6	0.0	0.0	0.0	5.0	0.0	5.0	0.0	5.0	0.0	5.0	Gal/mo	0.02	4.45	Tons/yr ROC
Total Coatings													Gal/mo	0.00	Exempt	Gallyr
1																
Crew Boat Fuel:	6 434 0	7 494 8	4 599 6	5 280 B	16164	4 397 B	A 790 A	3 052 0	3 833 0	0 187 0	1 579 6	1 0 1	c m/leo	100.03	4/14	11110
Work Boat Fuel:	4 275 6	4 825 1	2,933.0	996 B	124.2	2 997 7	3,568.9	0.356.0	3,033.0	4, 10/ 0	3 076 6	1014	Gal/mo	52.204	X S	Gallyr
Total Done Engl.	10 700 6	12 340 0	7 647 7	0 241	10010	1 200.1	0.000	0.00	0.020.0	1	0.000		Cavillo	12,004	2	Salvy
Post Emissions tons	0,709.0	12,319.9	/.74(./	0,7/7,0	3,750.7	4.395.4	8,359.3	3,952.0	6,862.8	8,571.1	4,605.3	4.187.4	Gal/mo	84,539	96,792	Gallyr"
	0 18	0.20	0.13	0 40	900	0 13	7,0	70.0	•	1	000	100	1	9.		
XON	000	3.46	2 12	1 20	0.00	20.0	20.00	7.07	1 03	4 6	0.08	0.07	Toro/mo	1,40	8 2	Ions/yr at 33.15 lbs/MGal
Md	0.18	0.21	0.13	0.11	900	0.12	0.14	0.07	5 11	0 140	87.0	70.0	Tons/mo	23.7	32.11	Tonstyr at 561.00 lbs/MGal
SOx	0.04	0.05	0.03	0.02	0.01	0.03	0.03	0.01	0.03	0.03	0.02	0.02	Tons/mo	0.32	88 KW	Tons/yr at 7.50 the/Mgal
OO	0.55	0.63	0.38	0.32	0.19	0.38	0.43	0.20	0.35	4.0	0.23	0.21	Tons/mo	4.31	5.84	Tonsivr at 102.00 lbs/MGal
															88	

Without producing wells, crane limit is 13,344 gallyr; with any producing wells, limit is 7,344 gallyr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Nov-08

Equipment	Dec-07	Jan-08	Feb-08	Mar-08	Aor-08	May-08	80-mil	80-Inf.	A Supply	Sen OR	86450	NO.	Monthly Inite	12-Month	Permit	49 Mr. 2 Doesnit Haite
Cranes:									a a a a a a a a a a a a a a a a a a a							
North Crane	1,164.0	767.0	202.0	175.0	185.0	209.0	26.0	209.0	262.0	200.0	113.0	104.0	Gal/mo	3,616.0	N/A	Gallyr
South Crane	114.0	161.0	0.0	78.0	0.0	0.0	182.0	30.0	0.0	75.0	0.0	0.0		640.0	A/A	Gallyr
Crane Total	1,278.0	928.0	202.0	253.0	185.0	209.0	208.0	239.0	262.0	275.0	113.0	104.0	Gal/mo	4,256	13,344	Gallyr
Flare Gas Consumption:																
Planned (HP+LP)	154.0	176.0	171.0	214.0	191.0	139.0	175.0	237.0	102.0	70.07	121.0	113.0	MSCF/mo	1 86	N/A	MMSCEAR
Unplanned (HP+LP)	0.989	0.0	0.0	2,398.0	2.0	0.0	0.0	17.0		1.0	0.0	0.0		3.10	¥.	MMSCF/vr
Pilot Purge (HP+LP)			Pilot F	urge is acco	unted for in ca	Pilot Purge is accounted for in calculation of Planned Flaring (Meter GR-81	anned Flaring	(Meter GR-8	11 - Meter GR-83							
Flare Gas Total	840.0	176.0	171.0	2,612.0	193.0	139.0	175.0	254.0	102.0	71.0	121.0	113.0	MSCF/mo	4.97	7.19	MMSCFlyr
G2 (Emergency)	0.0	0.49	00	00	205.0	00	0	9	0	c	0		owjied	275.00	900	
63	2.6	1.8	2.6	3.2	1.3	0.2	0.0	000	0.0	000	9.6	000	MMSCE/mo	45.25	25,300	MUSCEN
48 BHP Starter Engine	211.8	0.89	0.0	28.0	370.0	3.6	8.5	25.0	10.01	26.0	28.0	0.0		778.90	7.315	Gallyr
P-19 Firewater Pump	87.0	242.0	0.0	19.0	0.0	26.0	0.0	17.0	0.0	0.0	0.0	0.0		391.00	Exempt	Galfyr
Portable Equipment	146.0	819.0	0.0	0.0	4.0	41.0	0.0	1,290.0	0.0	0.0	0.0	0.0		2,300.00	Exempt	Gallyr
Drilling Engines																
G-1A					C	c	C	C		0	c	0	AAAAC CE/mo	000	1	- 11000
G-18						0	0 0	000	000	0.0	0.0	0.0	MIMSCF/IIIO	000	V.	MMSCFyr
Drilling ICE Total	0.0	0.0	0.0	0.0	0.0	00	0	0	0			0.00	MMSCE/mo	00.0	A/N	MIMSCFIYE
											2	2	200	000	2000	(A) DOMINI
Production Engines															T	
G-6A					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00:0	A/A	MMSCF/yr
G-6B	1				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00:00	A/A	MMSCF/yr
9-90					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00:00	N/A	MMSCF/yr
Production ICE Lotal	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00'0	126.72	MMSCFyr
Diesel Backup Generator					0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Gal/mo	00.0	4.300	Gallvr
Tanks Throughputs													Ш			
1-3A	446.5	0.0	217.0	1,309.5	1,315.0	1,545.5	1,301.0	1,715.0	1,575.0	1,434.5	1.547.0	1,314.5		13.721	2	MBblyr
N-8	893.0	0.0	434.0	2,619.0	2 630 0	3 091 0	0.502.0	3 430 0	3 150 0	2 869.0	3040	0 828 0	Bhle/mo	77,644	2000	MBOLL
						200	0.400'4	0.001	6	0.00.4	2	2,023.0		1847/7	2000	MODBLYI
Solvent Usage																
7-201	9.0	0.0	0.0	0.0	5.0	0.0	2.0	0.0	5.0	0.0	5.0	0.0	Gal/mo	0.02	ΑΝ	Tons/yr ROC at 1.64 lb/gal
Enviro-Det	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Gal/mo	00:0	A/A	Tons/yr ROC at 6.43 lb/gal
I otal solvents	9.0	0.0	0.0	0.0	5.0	0.0	5.0	0.0	5.0	0.0	5.0	0.0	Gal/mo	0.02	4.45	Tonslyr ROC
i otal Coatings					1								Gal/mo	0.00	Exempt	Galfyr
Boats:															1	
Crew Boat Fuel:	7,494.8	4,599.6	5,280.8	1,616.4	4,397.8	4.790.4	3.952.0	3.833.0	4.167.0	1 528 6	4 110 1	1 942 0	Gal/mo	47 712	A/N	Callur
Work Boat Fuel:	4,825.1	2,948.1	8.966	2,134.3	2,997.7	3,568.9	0.0	3,029.9	4,404.0	3,076.6	77.4	1,382.5	Gal/mo	29,441	ΑN	Gal/yr
Total Boat Fuel:	12,319.9	7,547.7	6,277.6	3,750.7	7,395.4	8,359.3	3,952.0	6.862.8	8,571.1	4.605.3	4.187.4	3.324.5	Gal/mo	77.154	96.792	Gallyr
Boat Emissions: tons																
ROC	0.20	0.13	0.10	90.0	0.12	0.14	0.07	0.11	0.14	0.08	0.07	90:0	Tons/mo	1.28	1.90	Tons/yr at 33.15 lbs/MGal
NOX	3.46	2.12	1.76	1.05	2.07	2.34	1.11	1.93	2.40	1.29	1.17	0.93	Tons/mo	21.64	32.11	Tonslyr at 561.00 lbs/MGal
MA CO	0.21	0.13	0.11	90.0	0.12	0.14	0.07	0.11	0.14	0.08	0.07	90.0	Tons/mo	1.29	1.92	Tonsiyr at 33.50 lbs/MGal
XOS	0.05	0.03	0.02	0.01	0.03	0.03	0.01	0.03	0.03	0.02	0.02	0.01	Tons/mo	0.29	0.42	Tons/yr at 7.50 lbs/MGal
5	0.00.0	0.30	U.321	U. 18]	U.301	0.43	0.20	0.35	0.44 j	0.23	0.21	0.17	Tons/mo	3.93	5.84	Tons/yr at 102.00 lbs/MGal

Without producing wells, crane limit is 13.344 gal/yr; with any producing wells, limit is 7,344 gal/yr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCFyr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Dec-08

Equipment	Jan-08	Feb-08	Mar-08	Apr-08	Mav-08	Jan-08	Po-list.	800	Sen	80,100	N N	2	Monthly link	12-Month	Permit	
Cranes:									2	2000		200	entro financia			SHID HILLIAN OF THE
North Crane	0.797	202.0	175.0	185.0	209.0	26.0	209.0	262.0	200.0	113.0	¥	215.0	Gal/mo	2.667.0	¥.	Galfyr
South Crane	161.0	0.0	78.0	0.0	0.0	182.0	30.0	0.0	75.0	0.0	0:0	0.0	П	526.0	ΑN	Galfyr
Crane Total	928.0	202.0	253.0	185.0	209.0	208.0	239.0	262.0	275.0	113.0	104.0	215.0	Gal/mo	3,193	13,344	Gallyr
Flare Gas Consumption:		1														
Planned (HP+LP)	176.0	171.0	214.0	191.0	139.0	175.0	237.0	102.0	2007	1210	113.0	0.70	Mereimo		Alla	MISOFFE
Unplanned (HP+LP)	0.0	0.0	2,398.0	2.0	0.0	0.0	17.0	0.0	10	00		00		2.42	Q A	MMSCEAR
Pilot Purge (HP+LP)			Pilot F	Pilot Purge is accounted for in c	inted for in ca	culation of P	alculation of Planned Flaring	(Meter	- Mete	_			L	72.7		WINDOL J
Flare Gas Total	176.0	171.0	2,612.0	193.0	139.0	175.0	254.0	102.0	71.0	121.0	113.0	97.0	MSCF/mo	4.22	7.19	MMSCF/vr ^b
Goneratore.													П			
G2 (Emergency)	049	00	00	205.0	0	c	9		0			0	2			
ශ	1.8	2.6	3.2	1.3	0.2	0.0	0.0	000		0 6	0.0	0.0	MARCEIMO	00.672	006'99	Gallyr
48 BHP Starter Engine	0.89	0.0	28.0	370.0	3.6	8.5	25.0	10.01	26.0	280	000	0.0		570 40	01.10	MINISCHAL
P-19 Firewater Pump	242.0	0.0	19.0	0.0	26.0	0.0	17.0	00	00	0.0	00	22.0	Gal/mo	326.00	Evennt	Callyr
Portable Equipment	819.0	0.0	0.0	4.0	41.0	0.0	1,290.0	0.0	0.0	0.0	0.0	0.0	Gal/mo	2 154 00	Exempt	Gallyr
Orilling Engines																
G-1A				0	c	0	0	0	0	0	0	0	10001	000		
G-18					000	000		0.00	0.0	0.0	0.0	0.0	MMSCF/mo	00:0	Y Z	MMSCFlyr
Drilling ICE Total	0.0	0.0	0.0	0.0	00	000	000	0		0.00	0.0	0.0	MMSCT/mo	00.0	Y Z	MMSCFlyr
						3	2	2	3	3	9	0.0	MMSCF/mo	0.00	90.00	MMSCFyr
Production Engines								+								
G-6A				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	000	¥	MMSCF/vr
6-68				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	000	N/A	MMSCF/vr
2-90				0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00.00	A/N	MMSCF/yr
Production ICE Total	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00'0	126.72	MMSCFlyr
Diesel Backup Generator				C	C	0	c	0	0			0				
				2	20	9	0	0.0	0.0	0.0	0.0	0.0	cal/mo	00.0	4,300	Gallyr
Tanks Throughputs																
T-3A	0.0	217.0	1,309.5	1,315.0	1,545.5	1,301.0	1,715.0	1,575.0	1,434.5	1,547.0	1,314.5	1,478.0	Bbls/mo	14.752	8	MBblyr
1-38	0.0	217.0	1,309.5	1,315.0	1,545.5	1,301.0	1,715.0	1,575.0	1,434.5	1,547.0	1,314.5	1,478.0	Bbls/mo	14.752	20	MBblyr
8-7	0.0	434.0	2,619.0	2,630.0	3,091.0	2,602.0	3,430.0	3,150.0	2,869.0	3,094.0	2,629.0	2,956.0	Bbls/mo	29.504	3960	MBbllyr
Solvent Usage						1					1					
JoS-Z	0.0	0.0	0.0	5.0	0.0	5.0	0.0	5.0	00	5.0	c	0.5	ow/les	60.0	VIV	Toocher BOC at 1 64 lb/col
Enviro-Det	0.0	0.0	0.0	0.0	0.0	00	00	0					Callmo	20.0		Took of the longer
Total Solvents	0.0	0.0	0.0	5.0	0.0	5.0	0.0	200	000	5.0	000	0 0	Gal/mo	0.00	400	ionsyl ROC at 6.43 lb/gal
Total Coatings												3	Gal/mo	000	Fyamot	Gallyr
														8	TYPING	Cash
Boats:															T	
Crew Boat Fuel:	4,599.6	5,280.8	1,616.4	4,397.8	4,790.4	3,952.0	3,833.0	4,167.0	1,528.6	4,110.1	1,942.0	2,143.0	Gal/mo	42.361	ΑN	Gal/vr
Work Boat Fuel:	2,948.1	8.966	2,134.3	2,997.7	3,568.9	0.0	3,029.9	4,404.0	3,076.6	77.4	1,382.5	2,292.0	Gal/mo	26,908	A/A	Galfyr
Total Boat Fuel:	7,547.7	6,277.6	3,750.7	7,395.4	8,359.3	3,952.0	6,862.8	8,571.1	4,605.3	4.187.4	3,324.5	4.435.0	Gal/mo	69.269	96.792	Gallyr
Boat Emissions: tons																
Roc	0.13	0.10	90.0	0.12	0.14	0.07	0.11	0.14	80.0	0.07	90:0	0.07	Tons/mo	1.15	1.90	Tonsive at 33-15 lbs/MGal
NON	2.12	1.76	1.05	2.07	2.34	1.11	1.93	2.40	1.29	1.17	0.93	1.24	Tons/mo	19,43	32.11	Tons/vr at 561.00 [bs/MGal
Ma	0.13	0.11	90.0	0.12	0.14	0.07	0.11	0.14	80:0	0.07	90:0	0.07	Tons/mo	1.16	1.92	Tonslyr at 33.50 lbs/MGal
XOS.	0.03	0.02	0.01	0.03	0.03	0.01	0.03	0.03	0.02	0.02	0.01	0.02	Tons/mo	0.26	0.42	Tonslyr at 7.50 lbs/MGai
22	U.38J	0.32	0.19	0.38	0.43	0.20	0.35	0.44	0.23	0.21	0.17	0.23	Tons/mo	3.53	2000	Tons/vr at 102,00 lbs/MGal

Without producing wells, crane limit is 13.344 gal/yr; with any producing wells, limit is 7,344 gal/yr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Jan-09

	8	3	3		3	3								12.4	Į	
Cranes:			9 Ide	may-uo	on-unc	on-Inc	Aug-us	Sep-us	200	Nov-08	Dec-08	Jan-09	Jan-09 Monthly Units	lotal		12-Mo & Permit Units
North Crane	202.0	175.0	185.0	209.0	26.0	209.0	262.0	200.0	113.0	104.0	215.0	6110	Gal/mo	25110	A/N	Calke
South Crane	0.0	78.0	0.0	0.0	182.0	30.0	0.0	75.0	0.0	0.0	0.0	0.0		365.0	¥ ×	Gallyr
Crane Total	202.0	253.0	185.0	209.0	208.0	239.0	262.0	275.0	113.0	104.0	215.0	611.0		2,876	13,344	Gallyr
Flare Gae Concumntion.																
Planned (HP+LP)	1710	214.0	191 0	139.0	175.0	237.0	102.0	0.07	424.0	1430	040	405.0				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
Unplanned (HP+LP)	0.0	2,398.0	2.0	0.0	0.0	17.0	0.20	100	000		0.00	0.00	MSCE/mo	2 42	Y Y	MMSCFAT
Pilot Purge (HP+LP)			Pilot F	Pilot Purge is accounted for in	7 0	Iculation of PI	alculation of Planned Flaring (Meter GR-81 - Meter GR-83)	(Meter GR-8	1 - Meter GR		200	20		71.7	2	MMSCLOR
Flare Gas Total	171.0	2,612.0	193.0	139.0	175.0	254.0	102.0	71.0	121.0	113.0	97.0	105.0	MSCF/mo	4.15	7.19	MMSCF/vr ^b
													П			
G2 (Emergency)	00	00	205.0	00	0	9	0	0				0.00		2	-	
63	2.6	3.2	1.3	0.2	0.0	000	000	0.0	0.6	0.0	000	0.150	MMS/CE/mo	02.11	00,000	Gauyr
48 BHP Starter Engine	0.0	28.0	370.0	3.6	8.5	25.0	10.0	26.0	28.0	0.0	3.0	77.0		579 40	7.345	Galfor
P-19 Firewater Pump	0.0	19.0	0.0	26.0	0.0	17.0	0.0	0.0	0.0	0.0	22.0	0.0		84.00	Exempt	Gallyr
Portable Equipment	0.0	0.0	4.0	41.0	0.0	1,290.0	0.0	0.0	0.0	0.0	0.0	0.0	Gal/mo	1,335.00	Exempt	Galfyr
Drilling Engines																
G-1A			0.0	0.0	00	00	C	0	c	c	c	0	MANGCE/mo	000	V/14	THEODER'S
G-1B			0.0	0.0	0.0	0.0	00	000	0.0	000			MMSCE/mo	000	V.N	MMSCERE
Drilling ICE Total	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	MMSCF/mo	00.0	60.00	MMSCFlyr
Production Engines			6	0									ш			
K0-0			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	- 1	00.0	A/A	MMSCF/yr
90-50		1	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	- 1	0.0	K/N	MMSCF/yr
Production ICE Total	6	3	0 6	0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00:0	Ϋ́	MMSCF/yr
LIOGRAPHICE LOIGI	20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00.00	126.72	MMSCFlyr
Diesel Backup Generator			0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Gal/mo	00'0	4.300	Gallyr
Coults Thursday																
Lanks Inroughputs	0110	1 200 E	1 245 0	1 646 6	0 1001	0 375.7							Ī			
1.38	217.0	1,309.5	1,315.0	1545.5	1301.0	1715.0	1,575.0	1 434 5	1547.0	1,314.5	1,478.0	1,261.0	Bbls/mo	16.013	8 8	MBbilyr
V-8	434.0	2,619.0	2,630.0	3,091.0	2,602.0	3,430.0	3,150.0	2,869.0	3.094.0	2.629.0	2,956.0	2 522 0	Bbls/mo	32.026	3960	MShilve
Solvent Usage		0	-													
100-7	0.0	0.0	0.0	0.0	9.0	0.0	2.0	0.0	2.0	0.0	5.0	1.0	Gal/mo	0.02	N/A	Tons/yr ROC at 1.64 lb/gal
Total School	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Gal/mo	00:0	A/N	Tons/yr ROC at 6.43 lb/gai
i otal solvents	0.0	0.0	0.0	0.0	2.0	0.0	2.0	0.0	2.0	0.0	5.0	1.0	Gal/mo	0.02	4.45	Tons/yr ROC
lotal Coatings			1		+	+							Gal/mo	00:0	Exempt	Gallyr
Boats:																
Crew Boat Fuel:	5,280.8	1,616.4	4,397.8	4,790.4	3.952.0	3.833.0	4.167.0	1 528 6	4 110 1	1 942 0	2 143 0	3 679 7	Oal/mo	41 441	A/M	Caller
Work Boat Fuel:	8.966	2,134.3	2,997.7	3,568.9	0.0	3,029.9	4,404.0	3,076.6	77.4	1.382.5	2 292 0	2 653 2	Gal/mo	26.613	Q Z	Gallyr
Total Boat Fuel:	6,277.6	3,750.7	7,395.4	8,359.3	3.952.0	6.862.8	8.571.1	4.605.3	4 187 4	3 324 5	4 435 0	6 332 9	Gal/mo	58.054	06 703	Gallur
Boat Emissions: tons													2			
ROC	0.10	90.0	0.12	0.14	0.07	0.11	0.14	80.0	0.07	90.0	0.07	0.10	Tons/mo	1.13	06.1	Tonsivrat 33,15 lbs/MGal
NOX	1.76	1.05	2.07	2.34	1.11	1.93	2.40	1.29	1.17	0.93	1.24	1.78	Tons/mo	19.09	32.11	Tons/yr at 561.00 lbs/MGal
Md	0.11	90.0	0.12	0.14	0.07	0.11	0.14	0.08	0.07	90:0	20:0	0.11	Tons/mo	1.14	1.92	Tons/yr at 33.50 lbs/MGai
SOX	0.02	0.01	0.03	0.03	0.01	0.03	0.03	0.02	0.02	0.01	0.02	0.02	Tons/mo	0.26	0.42	Tons/yr at 7.50 lbs/MGal
53	0.32	0.19	0.38	0.43	0.20	0.35	0.44	0.23	0.21	0.17]	0.23	0.32	Tons/mo	3.47	3300	Tons/yr at 102.00 lbs/MGal

Without producing wells, crane limit is 13.344 gallyr; with any producing wells, limit is 7,344 gallyr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCFyr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Feb-09

Equipment	Mar-08	Apr-08	May-08	80-unt	Action	Ang-08	Sep-08	80-100	NO.	80	9	96	Monthly Haite	12-Month	Permit	
Cranes:												200				
North Crane	175.0	185.0	209.0	26.0	209.0	262.0	200.0	113.0	104.0	215.0	611.0	79.0	Gal/mo	2.388.0	A/N	Gallyr
South Crane	78.0	0.0	0.0	182.0	30.0	0.0	75.0	0.0	0.0	0.0	0.0	0.0		365.0	Ϋ́Z	Galvr
Crane Total	253.0	185.0	209.0	208.0	239.0	262.0	275.0	113.0	104.0	215.0	611.0	79.0		2,763	13,344	Gallyr
Flare Gas Consumption:	0110	200	7007	0.157	0.00	000,	-	1					П			
I Innlanned (HP+I P)	2 308 0	0.191.0	39.0	1/5.0	237.0	102.0	70.0	121.0	113.0	97.0	105.0	107.0		1.67	N/A	MMSCF/yr
Pilot Puros (HP+I P)	4,330.0	4.0	O.O.	Pilot Plume is accounted for in		O.O.	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.01	0.0	0.0	0.0	00	MSCF/mo	2.42	V/A	MMSCF/yr
Floor Control	26420	402.0	750	o se		iculation of r	allied rialling	o-vo latem	No lalaw - I							
rate cas rotal	2,012.0	193.0	139.0	1/9.0	794.0	102.0	0.17	0.121	113.0	97.0	105.0	107.0	MSCF/mo	4.09	7.19	MMSCFlyr
Generators:																
G2 (Emergency)	0.0	205.0	0.0	0.0	6.0	0.0	0.0	0.0	0.0	0.0	331.0	00	Gal/mo	542 00	55 900	Gallion
63	3.2	1.3	0.2	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.8	0.0	Σ	9.14	51.10	MMSCEN
48 BHP Starter Engine	28.0	370.0	3.6	8.5	25.0	10.0	26.0	28.0	0.0	3.0	77.0	12.0		591,10	7.315	Gallyr
P-19 Firewater Pump	19.0	0.0	26.0	0.0	17.0	0.0	0.0	0.0	0.0	22.0	0.0	10.01		94.00	Exempt	Gal/yr
Portable Equipment	0.0	4.0	41.0	0.0	1,290.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		1,335.00	Exempt	Galfyr
Orilling Engines																
G-1A		0	C	00	0	0	0	0	0	0	0	00	-	000		
1-18 1-18		000	000		000	0.00	000	0.0	0.0	0.0	0.0	0.0	- 1	00:0	Ψ/Z	MMSCF/yr
Orilling ICE Total	6	000	0.0	0.0	0.0	0.0	0.0	000	0.0	0.0	0.0	0.0	MMSCF/mo	00:0	A'N	MMSCF/yr
and Tol Riming	2	2	200	9.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	- 1	00.00	90.00	MMSCFlyr
Production Engines															1	
G-6A		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	2.1	MMSCF/mo	2 08	A/N	MMSCEAR
G-6B		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	00	MMSCF/mo	000	A/N	MMSCEAR
G-6C		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00.0	Ϋ́Z	MMSCF/vr
Production ICE Total	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	MMSCF/mo	00.00	126.72	MMSCFlyr
City David						0	-									
Diesei Backup Generator		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Gal/mo	00'0	4,300	Gallyr
Tanks Throughouts					+	\dagger		1								
T-3A	1,309.5	1,315,0	1.545.5	1 301 0	17150	1 575 0	1 434 5	1 547 0	1 314 5	1 478 0	1 261 0	0	Bhle/mo	16 706	*	- NAON
T-3B	1,309.5	1,315.0	1,545.5	1,301.0	1,715.0	1,575.0	1,434.5	1.547.0	1,314.5	1,478.0	1.261.0	000	Bbls/mo	15.796	2 2	MBhilve
V-8	2,619.0	2,630.0	3,091.0	2,602.0	3,430.0	3,150.0	2,869.0	3,094.0	2,629.0	2,956.0	2,522.0	0.0	Bbls/mo	31.592	3960	MBblyr
1		+														
2 colvent Usage	0				- 6											
100	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	0.0	5.0	1.0	2.0	Gal/mo	0.02	A/N	Tons/yr ROC at 1.64 lb/gal
Enviro-Det	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Gal/mo	0.00	A/A	Tons/yr ROC at 6.43 lb/gal
Total Solvents	0.0	0.0	0.0	5.0	0.0	5.0	0.0	2.0	0.0	5.0	1.0	2.0	Gal/mo	0.02	4.45	Tonsiyr ROC
lotal Coatings				\dagger	1								Gal/mo	00.00	Exempt	Galfyr
Boats:																
Crew Boat Fuel:	1,616.4	4,397.8	4,790.4	3,952.0	3,833.0	4.167.0	1.528.6	4.110.1	1 942 0	2 143 0	3 679 7	4 224 B	Gal/mo	40 385	4/N	ryles
Work Boat Fuel:	2,134.3	2,997.7	3,568.9	0.0	3,029.9	4,404.0	3,076.6	77.4	1,382.5	2,292.0	2,653.2	897.1	Gal/mo	26,514	Ϋ́Z	Gallyr
Total Boat Fuel:	3,750.7	7,395.4	8,359.3	3,952.0	6,862.8	8,571.1	4,605.3	4,187.4	3,324.5	4.435.0	6.332.9	5.121.8	Gal/mo	86.898	96.792	Gallyr
tons:					l						+	,	2			
П	90.0	0.12	0.14	0.07	0.11	0.14	0.08	0.07	90.0	0.07	0.10	0.08	Tons/mo	1.11	1.90	Tons/vr at 33.15 lbs/MGal
NOX	1.05	2.07	2.34	1.11	1.93	2.40	1.29	1.17	0.93	1.24	1.78	4	Tons/mo	18.76		Tons/yr at 561,00 lbs/MGal
PIM	0.06	0.12	0.14	0.07	0.11	0.14	80:0	0.07	90.0	0.07	0.11	60.0	Tons/mo	1.12		Tonslyr at 33.50 lbs/MGal
SOS	0.01	0.03	0.03	0.01	0.03	0.03	0.02	0.02	0.01	0.02	0.02	0.02	Tons/mo	0.25	200000	Tonsiyr at 7.50 lbs/MGal
2	U.TBI	U.38J	0.43	0.20	0.35	0.44	0.23	0.21	0.17	0.23	0.32	0.26	Tons/mo	3.41	*****	Tons/yr at 102.00 lbs/MGal

Without producing wells, crane limit is 13.344 gal/yr; with any producing wells, limit is 7,344 gal/yr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Mar-09

Equipment	Apr-08	May-08	90-unr	Jul-08	Aug-08	Sep-08	Oct-08	Nov-08	Dec-08	Jan-09	Feb-09	Mar-09	Monthly Units	12-Month Total		12-Mo & Permit Units
Cranes:																
North Crane	185.0	209.0	26.0	209.0	262.0	200.0	113.0	104.0	215.0	611.0	79.0	298.0		2,511.0	N/A	Gallyr
South Crane	0.0	0.0	182.0	30.0	0.0	75.0	0.0	0.0	0.0	0.0	0.0	0.0		287.0	Α/N	Gallyr
Crane Total	185.0	209.0	208.0	239.0	262.0	275.0	113.0	104.0	215.0	611.0	79.0	298.0	Gal/mo	2,798	13,344	Gallyr
Flam Gas Constitutions				1												
Planned (HP+I P)	191.0	139.0	175.0	237.0	102.01	0 02	1210	113.0	0.70	105.0	107.0	0.044	MCCElmo	1 60	4714	TATOOLE
Unplanned (HP+LP)	2.0	0.0	0.0	17.0	0.0	1.0	0.0	000	0.0	000	0.00	0.0		800	Y A	MMSCFAr
Pilot Purge (HP+LP)			Pilot I	Pilot Purge is accounted for in calculation of Planned Flaring (Meter GR-81	nted for in cal	culation of Pla	anned Flaring	(Meter GR-8	- Mete							T COMM
Flare Gas Total	193.0	139.0	175.0	254.0	102.0	71.0	121.0	113.0	97.0	105.0	107.0	140.0	MSCF/mo	1.62	7.19	MMSCFlyr
Generators:	0.00		0	0	0								- 1			
GZ (Emergency)	202.0	0.0	000	0.9	0.0	0.0	0.0	0.0	0.0	331.0	0.0	5.0	Gal/mo	296.00	25,900	Gallyr
48 BHP Starter Engine	370.0	3.0	0.0	0.0	0.0	0.0	3.0	0 0	0 6	11.0	0.0	0.0		5.94	51.10	MMSCF/yr
P.10 Firewater Dumn	0.076	0.00	0.0	47.0	0.0	0.07	78.0	0 0	0.00	0.77	12.0	12.0		575.10	7,316	Gallyr
Portable Equipment	0.0	710	000	1 200 0	0.0	0.0	0.0	0 0	77.0	0.0	0.01	0.8		83.00	Exempt	Gallyr
nianie Lydnbriedin	ř	7	20	1,290.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Gal/mo	1,335.00	Exempt	Gallyr
Drilling Engines								T							l	
G-1A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	00	MMSCF/mo	00.0	A/N	MMSCF/vr
	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		000	V.V	MMSCFA
Drilling ICE Total	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		00'0	60.00	MINSCFAT
Production Engines													Ш			
G-6A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	3.0	- 1	90.9	A/N	MMSCF/yr
G-98	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	- 1	00.0	Ϋ́Z	MMSCF/yr
20-5	0.0	0.0	0.0	0.0	0.0	0.0	00	0.0	0.0	0.0	0.0	0.0	- 1	00.0	ΑN	MMSCF/yr
Froduction ICE Total	9.0	20	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	3.0	MMSCF/mo	0.01	126.72	MMSCFlyr
Diesel Backup Generator	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Gal/mo	0.00	4.300	Gallyr
Tanks Throughputs																
1-3A T 2B	1,315.0	1,545.5	1,301.0	1,715.0	1,575.0	1,434.5	1,547.0	1,314.5	1,478.0	1,261.0	0.0	0.0	Bbls/mo	14,487	8	MBblyr
96-1	0.616,1	1,045.5	0.100.0	0.617.1	1,5/5.0	0.434.0	0.74	1,314.5	1,478.0	1,261.0	0.0	0.0	Bbls/mo	14.487	20	
	2,030.0	0.160,0	2,002.0	0,450.0	3,130.0	7,009.0	3,034.0	7,629.0	7,956.0	0.226.2	0.0	0.0	BDIS/mo	28.973	3960	MBblyr
Solvent Usage																
Z-Sol	5.0	0.0	5.0	0.0	5.0	0.0	5.0	0.0	2.0	1.0	2.0	0.0	Gal/mo	0.02	A/A	Tons/yr ROC at 1.64 lb/gal
Enviro-Det	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Gal/mo	00.00	A/A	Tons/yr ROC at 6.43 lb/gal
Total Solvents	2.0	0.0	5.0	0.0	5.0	0.0	5.0	0.0	5.0	1.0	2.0	0.0	Gal/mo	0.02	4.45	Tons/yr ROC
Total Coatings													Gal/mo	00:00	Exempt	Galíyr
		+						1								
Doals:	A 307 B	A 700 A	3 062 0	0 0000	4 167 0	1 500 6	11101	1040	0000	1 010	0.00	, 000,	3			
Mark Boat ruer.	4,597.0	4,730.4	3,952.0	3,833.0	4,167.0	1,528.6	1011	1,942.0	2,143.0	3,679.7	4,224.6	1,293.1	Gal/mo	40,061	ĕ.N	Gallyr
Work Boat Fuel:	7.997.7	3,568.9	0.0	3,029.9	4,404.0	3,076.6	77.4	1,382.5	2,292.0	2,653.2	897.1	1,920.9	Gal/mo	26.300	A/N	Gallyr
Total Boat Fuel:	7,395.4	8,359.3	3,952.0	6,862.8	8,571.1	4,605.3	4,187.4	3,324.5	4,435.0	6,332.9	5,121.8	3,214.0	Gal/mo	66,362	96,792	Gallyr
Boat Emissions: tons															_	
ROC	0.12	0.14	0.07	0.11	0.14	0.08	0.07	90:0	20:0	0.10	0.08	0.05	Tons/mo	1.10	1.90	Tonsiyr at 33.15 lbs/MGal
NOX	2.07	2.34	1.1	1.93	2.40	1.29	1.17	0.93	1.24	1.78	1.44	06:0	Tons/mo	18.61		Tonslyr at 561.00 lbs/MGal
EL CO	0.12	0.14	0.07	0.11	0.14	80.0	0.07	90.0	0.07	0.11	60.0	0.05	Tons/mo	F.1		Tons/yr at 33.50 lbs/MGal
1 25	0.03	0.03	0.01	0.03	0.03	0.02	0.02	0.01	0.02	0.02	0.02	0.01	Tons/mo	0.25	0.42	Tons/yr at 7.50 lbs/MGai
	90.00	24.0	0.20	0.33	1	0.23	17.0	2	0.43	0.32	0.20	0.0	OW/SUO	97.70		lonsvyr at 102.00 lbs/Misal

Without producing wells, crane limit is 13,344 gal/yr; with any producing wells, limit is 7,344 gal/yr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Control District

COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/12-24-98 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number and/or Permit Condition Number: 74.9N7	Description: Emergency Standby Stationary Internal Combustion Engines Operated During Either an Emergency or Maintenance Operation

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Records of operating hours. Date, time, duration, and reason for emergency operation. Records of engine data. Compliance is determined by logged hours of annual operation to ensure less than 50 hours per year.

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the <u>most recent</u> monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method is continuous or intermittent:
 - ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition
 ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/12-24-98 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

 $\underline{04}$ / $\underline{01}$ / $\underline{08}$ (MM/DD/YY) to $\underline{03}$ / $\underline{31}$ / $\underline{09}$ (MM/DD/YY)

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

11 -		Description: Stationary diesel-fired internal combustion engines with permitted capacity factor of 15% or less.
------	--	---

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Records containing data for each engine verifying the manufacturer's specified maximum hourly fuel consumption, data specifying the actual annul usage (e.g., fuel consumption or operating hours), and data for each engine including the engine manufacturer, model no., operator identification no., and location of each engine. A report of the engine's fuel consumption is submitted to the District every 6 months. See attached rolling 12-month fuel consumption.

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
 3. Please indicate if this compliance determination method was continuous or intermittent:
 ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
 4. ☐Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

\ \tura County Air Pollution Control Dis \ \text{)t} \ COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. The Mo During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

04 / 01 / 08 (MM/DD/YY) to 03 / 31 / 09 (MM/DD/YY)

Platform Grace
PTO No. 1493 Equipment Usage
Rolling 12-Months Ending:
Mar-09

Equipment	Apr-08	May-08	30-unc	Jul-08	Aug-08	Sep-08	Oct-08	Nov-08	Dec-08	Jan-09	Feb 09	Mar-09	Mar-09 Monthly Units	12-Month Total	T T	12-Mo & Permit Units
Cranes:																
North Crane	185.0	209.0	26.0	209.0	262.0	200.0	113.0	104.0	215.0	611.0	0.62	298.0		2,511.0		Gallyr
South Clane	0.0	0.0	182.0	30.0	0.0	0.67	0.0	0.0	0.0	0.0	0.0	0.0		287.0		Gallyr
Crane lotal	185.0	209.0	208.0	239.0	262.0	275.0	113.0	104.0	215.0	611.0	79.0	298.0	Gal/mo	2,798	13,344	Gallyr
Flare Gas Consumption:						T										
Planned (HP+LP)	191.0	139.0	175.0	237.0	102.0	70.0	121.0	113.0	97.0	105.0	107.0	140.0		1.60		MMSCF/yr
Unplanned (HP+LP)	2.0	0.0	0.0	17.0	0.0	1.0	0.0	0.0	0.0	0.0	0.0	0.0	MSCF/mo	0.02	N/A	MMSCF/yr
Pilot Purge (HP+LP)			Pilot F	urge is accou	unted for in ca	Pilot Purge is accounted for in calculation of Planned Flaring (Meter GR-81	anned Flaring	(Meter GR-8	11 - Meter GR-83	-83)						
Flare Gas Total	193.0	139.0	175.0	254.0	102.0	71.0	121.0	113.0	97.0	105.0	107.0	140.0	MSCF/mo	1.62	7.19	MMSCFlyr
Canaratore.																
G2 (Emergency)	205.0	0.0	0.0	0.9	0.0	0.0	00	00	0	3310	00	540	om/le5	695.00	25 900	Salles
G3	1.3	0.2	0.0	0.0	0.0	0.0	3.6	0.0	0.0	0.8	0.0	000	Σ	5.94		MMSCFAr
48 BHP Starter Engine	370.0	3.6	8.5	25.0	10.0	26.0	28.0	0.0	3.0	77.0	12.0	12.0	1	575.10		Gallyr
P-19 Firewater Pump	0.0	26.0	0.0	17.0	0.0	0.0	0.0	0.0	22.0	0.0	10.0	8.0		83.00	۳	Gallyr
Portable Equipment	4.0	41.0	0.0	1,290.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		1,335.00		Gallyr
Drilling Engines																
G-1A	00	00	00	00	0	0	c	c	0	0	0	0	MANCOEImo		V/14	MASOSHA
G-18	0.0	0.0	0.0	00	00	00	000	000		000	000	000		800		MMSCEAR
Drilling ICE Total	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		800	00 09	MMSCFyr
													1	2000		
Production Engines																
G-6A	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.1	3.0		5.06		MMSCF/yr
6-68	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	MMSCF/mo	00:0		MMSCFlyr
29-9	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	- 1	00:0	A/A	MMSCF/yr
Production ICE Total	0.0	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	2.1	3.0	MMSCF/mo	0.01	126.72	MMSCFlyr
Diesel Backup Generator	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Gal/mo	000	4.300	Gallyr
Tanks Throughputs																
T-3A	1,315.0	1,545.5	1,301.0	1,715.0	1,575.0	1,434.5	1.547.0	1,314.5	1,478.0	1,261.0	0.0	0.0	Bbls/mo	14.487	20	
1-30 V.8	0.015.0	2 004 0	0.106,1	0.770	0.5/5.0	0.454.0	0.780	1,314.5	1,4/80	0.192.1	0.0	0.0	Bbls/mo	14.487	20	MBblyr
	2,000.2	0.150,0	2,002.0	0.004	3,130.0	7,009.0	0.5	2,029.0	7,930.0	0.226,2	0.0	0.0	DDIS/MO	20.37.3	nase	
Solvent Usage																
JoS-Z	5.0	0.0	5.0	0.0	5.0	0.0	5.0	0.0	5.0	1.0	2.0	0.0	Gal/mo	0.02	N/A	Tons/yr ROC at 1.64 lb/gal
Enviro-Det	0.0	0.0	0.0	0.0	0:0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	Gal/mo	00:00	N/A	Tons/yr ROC at 6.43 lb/gal
Total Solvents	5.0	0.0	5.0	0.0	5.0	0.0	5.0	0.0	5.0	1.0	2.0	0.0	Gal/mo	0.02	4.45	Tons/yr ROC
l otal Coatings	\parallel	+	+	+	+	1							Gal/mo	0.00	Exempt	Gallyr
Boats:																
Crew Boat Fuel:	4,397.8	4,790.4	3,952.0	3,833.0	4,167.0	1,528.6	4,110.1	1,942.0	2.143.0	3,679.7	4.224.6	1.293.1	Gal/mo	40.061	A/N	Gallyr
Work Boat Fuel:	2,997.7	3,568.9	0.0	3,029.9	4,404.0	3,076.6	77.4	1,382.5	2,292.0	2,653.2	1.28	1,920.9	Gal/mo	26,300	Α/N	Gallyr
Total Boat Fuel:	7,395.4	8,359.3	3,952.0	6.862.8	8,571.1	4.605.3	4.187.4	3.324.5	4.435.0	6 332 9	5 121 8	3 2 1 4 0	Gal/mo	66.362	96.792	Gallyr
Boat Emissions: tons																
ROC	0.12	0.14	0.07	0.11	0.14	0.08	0.07	90.0	0.07	0.10	80:0	0.05	Tons/mo	1.10	1.90	Tons/yr at 33.15 lbs/MGal
XON	2.07	2.34	1.11	1.93	2.40	1.29	1.17	0.93	1.24	1.78	1.44	06:0	Tons/mo	18.61	32.11	Tons/yr at 561.00 lbs/MGal
Md 6	0.12	0.14	0.07	0.11	41.0	0.08	0.07	90.0	0.07	0.11	60:0	0.05	Tons/mo	1,11	1.92	Tonslyr at 33.50 lbs/MGal
SOS	0.03	0.03	0.01	0.03	0.03	0.02	0.02	0.01	0.02	0.02	0.02	0.01	Tons/mo	0.25	0.42	Tonsiyr at 7.50 lbs/MGal
53	U.301	0.451	0.20	U.35J	0.441	0.25	0.21	0.171	0.23	0.32	0.26	0.16	Tons/mo	3.35	5.84	Tonsfyr at 102.00 lbs/MGal

Without producing wells, crane limit is 13,344 gal/yr; with any producing wells, limit is 7,344 gal/yr (Well A-8 brought back to production in February 2008)
 Permit Limit for is 7.05 MMSCF/yr for HP and 0.14 MMSCF/yr for LP
 Boat fuel usage is tracked at Platform Gail (PTO No. 1494)

Control District

COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

and/or Permit Condition Number: Sta	scription: tionary diesel-fired internal combustion engines used to power cranes welding equipment
-------------------------------------	--

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Records containing data for each engine including the function (usage) of the engine, manufacturer, model number, operator identification number, and location of each engine. Routine surveillance of the diesel-fired engine to ensure that compliance is being maintained.

- 2. Yes No Are you currently in compliance as indicated by the <u>most recent</u> monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
 - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No

 During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

04 / 01 / 08 (MM/DD/YY) to 03 / 31 / 09 (MM/DD/YY)

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number	Description:
and/or Permit Condition Number:	Platform Grace Additional Requirements - 12-month rolling records of
PO1493PC1	throughput and consumption as provided in the Permitted Throughput and
Condition No. 1	Consumption Limits Table in Section No. 3 of the Permit.

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Monthly records of tank throughputs for tanks with permitted throughputs, monthly records of fuel consumption for the generators, flares, turbines (removed in September 2000), generators, cranes, boom boats, and crew and supply boats are maintained in 12-month rolling records. In addition, monthly emissions for the crew and supply boats, and wipe cleaning solvents are calculated and are maintained in 12-month rolling records. Annual compliance certification that these records are maintained. See attached 12-Month Rolling data.

- Zyes □No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
 Please indicate if this compliance determination method was continuous or intermittent:
 Continuous All monitoring measurements show compliance with the Part 70 permit condition □ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
 □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
 □Yes ☑No During the time period covered by this compliance certification, does the
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

<u>04</u> / <u>01</u> / <u>08</u> (MM/DD/YY) to <u>03</u> / <u>31</u> / <u>09</u> (MM/DD/YY)

\ \text{tura County Air Pollution Control Dis} t \ \text{COMPLIANCE CERTIFICATION PERMIT FORM}

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

	Citation, Including Att	achmont Number	
	and/or Permit Condition		Description:
	PO1493PC1	in Number:	Platform Grace Additional Requirements - Generators shall only burn
			natural gas and no other fuel.
L	Condition No. 2		
At	ttach to this forn	n any information	on specifically required to be submitted with the compliance nent or Part 70 permit condition.
	monitoring and in	ndicate the source	at you use for determining compliance. Indicate the frequency of test reference method, if applicable.
Ro bu	outine surveillance rned in generators.	to ensure only r	natural gas is used. Annual compliance that only natural gas was
2.	☑Yes □No	Are you current measurement on	ntly in compliance as indicated by the most recent monitoring robservation as described above?
3.	Please indicate if	this compliance	determination method was continuous or intermittent:
	☐ Continuous - ☐ Intermittent -	All monitoring r One or more me	measurements show compliance with the Part 70 permit condition assurements indicate a failure to meet the Part 70 permit condition
4.	□Yes ☑No	monitoring data "a departure fi monitoring und	ne period covered by this compliance certification, does the indicate any excursions, if applicable? An <i>excursion</i> is defined as rom an indicator or surrogate parameter range established for der the applicable requirement or Part 70 permit condition, any averaging period specified for averaging the results of the
5.	□Yes ☑No	monitoring data defined as "a co	ne period covered by this compliance certification, does the a indicate any exceedances, if applicable? An exceedance is ondition that is detected by monitoring that provides data in terms limitation or standard and that indicates that emissions (or opacity)

are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with

any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

<u>04</u> / <u>01</u> / <u>08</u> (MM/DD/YY) to <u>03</u> / <u>31</u> / <u>09</u> (MM/DD/YY)

\ \ \)tura County Air Pollution Control Dis(\)\)t COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number	Description:
and/or Permit Condition Number: PO1493PC1 Condition No. 3	Platform Grace Additional Requirements - Maximum number of oil wells (16). Platform Grace currently has 11 oil well completions.

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Authority to Construct will be obtained prior to drilling any wells, unless the activity is a redrill. Annual compliance certification that there was no increase in number of wells for this reporting period.

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the <u>most recent</u> monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
 - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- 5. □Yes ☑No

 During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

<u>04</u> / <u>01</u> / <u>08</u> (MM/DD/YY) to <u>03</u> / <u>31</u> / <u>09</u> (MM/DD/YY)

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number and/or Permit Condition Number: PO1493PC1 Condition No. 4	Description: Platform Grace Additional Requirements - Maximum sulfur content of diesel fuel consumed in the crane engines, C-5B turbine starter engines, Generators, backup generator engine, and the boats.
---	--

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Records of certifications from the fuel supplier documenting the sulfur content of each diesel fuel delivery are maintained.

- 2. Yes No Are you currently in compliance as indicated by the <u>most recent</u> monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
 - ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition
 ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No

 During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. The Mo During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

\tag{\text{tura County Air Pollution Control Dis}}\tag{\text{t}}\tag{\text{COMPLIANCE CERTIFICATION PERMIT FORM}}

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number and/or Permit Condition Number: PO1493PC1 Condition No. 5	Description: Platform Grace Additional Requirements - Crew boat and work boat emission limits

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Monthly records of fuel consumption from the crew and work boats are maintained. Monthly emissions are calculated for the crew and work boats and are maintained in 12-month rolling records. Annual compliance certification that these records are maintained. See attached 12-month rolling data.

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the <u>most recent</u> monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
 - ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition
 ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. The Mo During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

tura County Air Pollution Control District

COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number and/or Permit Condition Number: PO1493PC1 Condition No. 6 and 7	Description: Platform Grace Additional Requirements - Crew boat and work boat permitted engines
---	---

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Only one crew boat and one work boat was used at any given time. Records are maintained showing the days and hours that each crew boat and work boat was in service. Annual compliance certification that these records are maintained.

- 2. Yes \(\subseteq No \) Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
 - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number and/or Permit Condition Number: PO1493PC1 Condition No. 8	Description: Platform Grace Additional Requirements - Solvent Recordkeeping
---	---

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Records of solvent purchase and usage, along with records of solvent that is recycled or disposed of are maintained for solvents used in solvent cleaning activities, including wipe cleaning. Annual compliance certification that these records are maintained.

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
 3. Please indicate if this compliance determination method was continuous or intermittent:
 ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
 4. ☐Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number and/or Permit Condition Number: PO1493PC2 Condition Nos. 1 and 4	Description: Flare fuel consumption

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Each flare has individual fuel meter installed to record the amount of natural gas consumed. Monthly records of volume of gas combusted in flare are maintained in 12-month rolling records. Records also differentiate between emergency (unplanned) usage and non-emergency (planned) usage. Annual compliance certification that these records are maintained. See attached 12-month rolling data.

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
 3. Please indicate if this compliance determination method was continuous or intermittent:
 ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
 4. ☐Yes ☒No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number	Description:
and/or Permit Condition Number: PO1493PC2 Condition Nos. 2 and 3	Flare ignition system operation – each flare is equipped and maintained with a continuous pilot or autoignition system to ensure combustion disposal of all excess produced or recovered gases.

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Flare's ignition system is tested monthly and monthly records of the flare's ignition system tests and maintenance activities are maintained. Annual compliance certification that these records are maintained.

- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. The Mo During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number and/or Permit Condition Number: PO1493PC3	Description: Caterpillar Diesel Backup Generator operation. Cannot be fired simultaneously with either turbine, except during startup or shutdown periods not to exceed 1 hour. Can only be operated during maintenance and when the turbines or Generator G-03 cannot be operated due to mechanical malfunction.
---	---

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual compliance certification that the backup generator G-02 is only operated during maintenance testing or when the G-03 is mechanically malfunctioning. Records indicating reason for usage are maintained. Annual compliance certification that records are maintained. Turbines out of service therefore simultaneous operation was not possible. Turbines were removed from the platform in September of 2000.

- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

and/or Permit Condition Number:	escription: anks designated as out of service on the permit are shut down and cannot e operated.
---------------------------------	--

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual compliance certification that Tanks T-4, T-6, T-10, T-21A, T-21B, T-23, T-25, and T-22 have been shut down and had not been operated during this compliance period.

- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number	Description:
and/or Permit Condition Number:	Emissions of produced gas must be controlled at all times using a gas
71.1.C	collection system that directs all gas to a fuel or sales gas system, or to a
	flare that combusts ROCs.

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Fugitive I&M Program under Rule 74.10 for the gas collection system's gas and liquid piping connections; Annual compliance certification that the produced gas collection system is a closed system through a visual inspection. Flare is inspected on a quarterly basis. Records of visual and flare inspections are maintained at the facility.

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the <u>most recent</u> monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
 - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- 5. During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. The Mo During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.

NOV # 21912 was issued on 4/16/09 for vapor leak in excess of 50,000 ppm on T-3B.

8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number

5. □Yes ☑No

71.4.B.1	First stage sump prohibition
	tion specifically required to be submitted with the compliance ment or Part 70 permit condition.
. Please indicate the method(s) the monitoring and indicate the source	nat you use for determining compliance. Indicate the frequency of the test reference method, if applicable.
Annual certification that there are no	first stage production sumps at the facility.
	ently in compliance as indicated by the <u>most recent</u> monitoring or observation as described above?
. Please indicate if this compliance	e determination method was continuous or intermittent:
☑ Continuous - All monitoring ☐ Intermittent - One or more m	measurements show compliance with the Part 70 permit condition leasurements indicate a failure to meet the Part 70 permit condition
monitoring da "a departure monitoring u	ime period covered by this compliance certification, does the ta indicate any excursions, if applicable? An excursion is defined as from an indicator or surrogate parameter range established for nder the applicable requirement or Part 70 permit condition, h any averaging period specified for averaging the results of the
	Attach to this form any informate certification in the applicable required. Please indicate the method(s) the monitoring and indicate the source. Annual certification that there are no measurement of the compliance of the comp

During the time period covered by this compliance certification, does the

monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with

any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number and/or Permit Condition Number: 71.4.B.3	Description: Well cellar storage prohibition

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual certification including routine surveillance and visual inspections that no crude oil or petroleum material was stored in a well cellar except during periods of equipment maintenance or well workover, and in no case, no storage for more than 5 days. No well cellars are on Platform Grace.

- 2. Yes No Are you currently in compliance as indicated by the <u>most recent</u> monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
 - ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition
 ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number and/or Permit Condition Number: 74.6	Description: Surface cleaning and degreasing requirements including ROC content limits, application and storage requirements

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Records of current material list of ROC-containing material used in solvent cleaning activities are maintained. Routine surveillance of the applicable solvent cleaning activities is also performed.

- ZYes □No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
 Please indicate if this compliance determination method was continuous or intermittent:
 ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition
 ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
 ☐ Uyes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as
- "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number and/or Permit Condition Number: 74.10	Description: Fugitive leak and leak inspection requirements for components at crude oil production and processing facilities.
---	---

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Weekly visual inspections of pumps, including but not limited to rod pumps and compressor pumps for liquid leaks. Quarterly monitoring of the following components for gaseous leaks using EPA Reference Method 21: valves, packing seals on dump lever arms connected to gas traps, separators, or vessels, hatches on non-vapor recovery tanks, and polished rod stuffing boxes. All other components not exempt are monitored annually. Routine surveillance of the applicable components is also performed and includes verification of proper operation and equipment and inspection requirements are met. Detected leaks are visibly tagged with the date leak is detected, and repaired no later than 21 days (critical components are at next scheduled shutdown, but no later than 3 months). Repair is reinspected within one week of repair. Records of the following are maintained: location, type, description of each leaking component inspected, and name of any operating unit where each leaking component is found; date of leak detection and method of detection; date that leak is repaired and date of re-check; identification of leaks from critical process units; number of components inspected, number and percentage of leaking components found, categorized by groups: hatches, polished rod stuffing boxes, dumplever arms, valves (not open-ended), open-ended lines, flanges (if designated as exempt), other components.

2. ☑Yes ☐No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
3. Please indicate if this compliance determination method was continuous or intermittent:
☑ Continuous - All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent - One or more measurements indicate a failure to meet the Part 70 permit condition
4. ☐Yes ☒No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/12-24-98 Page 2 of 2

5. □Yes ☑No

During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

6. □Yes ☑No

During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?

- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number and/or Permit Condition Number: 74.22	Description: Natural gas-fired, fan-type central furnaces – NO _x limits and certification requirements
---	---

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual certification including a formal survey identifying each furnace, whether it was installed before or after May 31, 1994, and for those installed after May 31, 1994, information indicating that the certification is contained on the furnace nameplate, or that the furnace is included on a District-provided list of certified furnaces. Platform Grace does not have any natural gas-fired, fan-type central furnaces.

- Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above? 3. Please indicate if this compliance determination method was continuous or intermittent: ☑ Continuous - All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent - One or more measurements indicate a failure to meet the Part 70 permit condition During the time period covered by this compliance certification, does the 4. □Yes ☑No monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring." During the time period covered by this compliance certification, does the 5. □Yes ☑No monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms
 - of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

 $\underline{04}$ / $\underline{01}$ / $\underline{08}$ (MM/DD/YY) to $\underline{03}$ / $\underline{31}$ / $\underline{09}$ (MM/DD/YY)

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

monitoring."

Citation, Including Attachment Number	Description:
and/or Permit Condition Number:	Abrasive blasting requirements
74.1	g · · · · · · · · · · · · · · · · · · ·

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Routine surveillance including assuring that operation and equipment requirements are being met, and visual inspections to ensure there are no opacity violations of each abrasive blasting operation are performed. Records including date of operation, type of abrasive blasting media used, identity, size, and location of item blasted, whether the operation was conducted inside or outside a permanent building, and CARB certifications for the abrasives used are maintained.

Yes □No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
 Please indicate if this compliance determination method was continuous or intermittent:
 Continuous - All monitoring measurements show compliance with the Part 70 permit condition □ Intermittent - One or more measurements indicate a failure to meet the Part 70 permit condition
 □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for

monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the

During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

 $\underline{04}$ / $\underline{01}$ / $\underline{08}$ (MM/DD/YY) to $\underline{03}$ / $\underline{31}$ / $\underline{09}$ (MM/DD/YY)

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/12-24-98 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number	Description:
and/or Permit Condition Number:	Large Water Heaters and Small Boilers
74.11.1	5 · · · · · · · · · · · · · · · · · · ·
, , , , , ,	

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual certification including a formal survey identifying each large water heater or small boiler, whether it was installed before or after December 31, 1999, or December 31, 2000 and for those installed after December 31, 1999, or December 31, 2000, information indicating that the certification is contained on the unit's nameplate, or that the unit is included on a District-provided list of certified water heaters, boilers, steam generators and process heaters. Platform Grace does not have any of the applicable units.

- Zyes □No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
 Please indicate if this compliance determination method is continuous or intermittent:
 Continuous All monitoring measurements show compliance with the Part 70 permit condition □ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
 □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/12-24-98 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

04 / 01 / 08 (MM/DD/YY) to 03 / 31 / 09 (MM/DD/YY)

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number and/or Permit Condition Number: 74.2	Description: Architectural coating requirements	

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Routine surveillance and records including specifying the usage of compliant coatings and maintaining VOC records of coatings used (MSDSs are maintained). VOC content of coatings are measured using EPA Method 24, VOC content of exempt organic compounds are measured using CARB Method 432, and acid content of pretreatment wash primers are measured using ASTM Method D 1613-85, and metal content of metallic pigmented coatings are measured using SCAQMD Method 311-91.

- Zyes □No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
 Please indicate if this compliance determination method was continuous or intermittent:
 Continuous All monitoring measurements show compliance with the Part 70 permit condition □ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
 □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. The Mo During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

monitoring."

Citation, Including Attachment Number and/or Permit Condition Number: 40CFR61.M	Description: National emission standard for asbestos

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual compliance certification that compliance with 40 CFR 61 Subpart M is met if an asbestos demolition or renovation activity occurs. None has occurred during this reporting period.

- Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above? 3. Please indicate if this compliance determination method was continuous or intermittent: ☑ Continuous - All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent - One or more measurements indicate a failure to meet the Part 70 permit condition During the time period covered by this compliance certification, does the 4. □Yes ☑No monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the
- During the time period covered by this compliance certification, does the 5. □Yes ☑No monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

 $\underline{04}$ / $\underline{01}$ / $\underline{08}$ (MM/DD/YY) to $\underline{03}$ / $\underline{31}$ / $\underline{09}$ (MM/DD/YY)

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number	Description:
and/or Permit Condition Number: PO1493PC5	Stationary Natural Gas-Fired Rich-Burn I C Engines – BACT NO _x , ROC, and CO emission limits. CAM Requirements

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual source test of the G-03 generator using the following methods: ARB Method 100 for NO_x, ARB Method 100 for CO, EPA Method 25 or EPA Method 18 for ROC, ARB Method 100 for oxygen content, and ASTM Method 1826-77 for gaseous fuel heating value. Annual source test also to obtain air to fuel ratio set point. Quarterly monitoring and recordkeeping of set point. Annual Source Test was previously submitted. Annual compliance certification that daily NOx measurements utilizing a portable analyzer are being recorded, Biennial source testing to validate portable analyzer measured concentrations.

Zyes □No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
 Please indicate if this compliance determination method was continuous or intermittent:
 Continuous - All monitoring measurements show compliance with the Part 70 permit condition □ Intermittent - One or more measurements indicate a failure to meet the Part 70 permit condition
 □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

	□Yes			Durin	g the	e time	period	covered	by	this	compliance	certification,	does	the
mo	nitorin	g data	a indica	ate any	y exc	eedance	es, if app	plicable?	An	excee	dance is def	ined as "a con	dition 1	that
is (detected	d by	monito	oring t	that p	rovides	s data in	n terms o	f an	emis	ssion limitat	ion or standar	d and 1	that
ind	icates t	hat e	missio	ns (or	opac	ity) are	greater	than the	appl	icable	e emission l	imitation or st	andard	(or
less	than	the a	pplica	ble sta	andar	d in th	e case	of percen	t rec	ductio	on requireme	ent) consistent	with	any
ave	raging	perio	d speci	ified fo	or ave	eraging	the resu	lts of the	mon	itorin	ıg."			•

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment. No source test conducted during this compliance period (Biennial).

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number and/or Permit Condition Number: PO1493PC6	Description: Crane fuel consumption						
Attach to this form any informati	on enceifically required to 1						

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Monthly records of crane fuel consumption are maintained in 12-month rolling records. Annual compliance certification that these records are maintained. See attached rolling 12-month data.

- - ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition
 ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No

 During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

 $\underline{04}$ / $\underline{01}$ / $\underline{08}$ (MM/DD/YY) to $\underline{03}$ / $\underline{31}$ / $\underline{09}$ (MM/DD/YY)

\(\)\tura County Air Pollution Control Dis(\)\t\)\t COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

monitoring."

Citation, Including Attachment Number and/or Permit Condition Number: PO1493PC7 Description: Both turbines designated as out of service on the permit are shut dow cannot be operated.	n and
---	-------

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual compliance certification that Turbines G-1B and G-1C have been short down and bed at the source test reference method.

Ar op	nnual compliance of erated during this of	certification that Turbines G-1B and G-1C have been shut down and had not been compliance period. The turbines were removed in September of 2000.
2.	☑Yes □No	Are you currently in compliance as indicated by the <u>most recent</u> monitoring measurement or observation as described above?
3.	Please indicate if	this compliance determination method was continuous or intermittent:
	☑ Continuous - ☐ Intermittent -	All monitoring measurements show compliance with the Part 70 permit condition One or more measurements indicate a failure to meet the Part 70 permit condition
4.	□Yes ☑No	During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An <i>excursion</i> is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the

During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

04 / 01 / 07 (MM/DD/YY) to 03 / 31 / 08 (MM/DD/YY)

tura County Air Pollution Control Di

COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number and/or Permit Condition Number: Opacity requirements 50	
--	--

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Routine surveillance and visual inspections are performed to ensure that opacity requirements are being maintained. Records including date, time, and identity of emissions unit of any occurrences of visible emissions not meeting Rule 50 opacity requirements are maintained. District notification within subsequent 24 hours if visible emissions problem cannot be corrected within first 24 hours.

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the <u>most recent</u> monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
 - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent - One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No

 During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

OPACITY ANNUAL FORMAL SURVEY REPORT

PLATFORM GRACE

Venoco, Inc.

2008

					Т	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	
last for	ting more	one (1) hour?	••	No																				
If yes, did the emissions last for	a period or periods aggregating more	than three (3) minutes in any one (1) hour?	Please check one:	Yes (Include No. of Minutes)																				
Were there any visible emissions?	Please check one:	Not Running	at Time Survey	was Performed		REMOVED	REMOVED	×	×	×				REMOVED	N/A		×	×	×					
re any v	lease ch			No	×						×	×	×			×								
Were the	<u> </u>			Yes																				
				Emissions Unit	Waukesha Engine (G-03)	Solar Centaur Turbine (G-1B)	Solar Centaur Turbine (G-1C)	Back-up Generator (G-02)	Turbine Starter Engine (C-5B)	South Crane	North Crane	High Pressure Flare	Low Pressure Flare	Boom Boat (Monarch)	Boom Boat (Boomer) ON GAIL	Crew Boat	Work Boat	Emergency Fire Water Pump	Abrasive Blasting Operations					
			į	Time	13:30						13:00	13:15	13:15			9:00								
			,	Date	4/16/08			4/16/08	4/16/08	4/16/08	4/16/08	4/16/08	4/16/08			4/16/08	4/16/08	4/16/08	4/16/08					
			Operators	Initials	PTC			PTC	PTC	PTC	PTC	PTC	PTC			PTC	PTC	PTC	PTC					

tura County Air Pollution Control Di

COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number	Description:
and/or Permit Condition Number:	Particulate Matter – Concentration requirements (grain loading)
52	(grain loading)

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual compliance certification that particulate matter was not discharged into the atmosphere from any source at the facility in excess of the concentration listed in the table shown in Rule 52. This is based on a reference to the District analysis of Rule 52 compliance based on EPA emission factors as being sufficient. Periodic monitoring is not necessary to certify compliance.

- Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above? 3. Please indicate if this compliance determination method was continuous or intermittent: ☑ Continuous - All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent - One or more measurements indicate a failure to meet the Part 70 permit condition 4. □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as
- "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the 5. □Yes ☑No monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number	Description:
and/or Permit Condition Number: 54.B.1 (OCS)	Sulfur Compounds – Sulfur emission concentration requirements at point of discharge

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Records of each flaring event are maintained. Unplanned flaring event reports are provided to the District within one week if they exceed 24 hours. No unplanned flaring events exceeding 24 hours occurred at Platform Grace during this reporting period. The District is notified 72 hours prior to planned flaring. Records of planned flaring is maintained and includes the date, time, duration, flare volume, and estimated sulfur emissions during the entire event. A representative fuel analysis is being maintained.

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
 3. Please indicate if this compliance determination method was continuous or intermittent:
 ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
 4. ☐Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

 $\underline{04}$ / $\underline{01}$ / $\underline{08}$ (MM/DD/YY) to $\underline{03}$ / $\underline{31}$ / $\underline{09}$ (MM/DD/YY)

\tag{}\tura County Air Pollution Control Dis(\tag{}\ta

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number	Description:
and/or Permit Condition Number: 54.B.2 (OCS)	Sulfur Compounds – Sulfur emission concentration requirements at ground level

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Records of each flaring event are maintained. Unplanned flaring event reports are provided to the District within one week if they exceed 24 hours. No unplanned flaring events exceeding 24 hours occurred at Platform Grace during this reporting period. The District is notified 72 hours prior to planned flaring. Records of planned flaring is maintained and includes the date, time, duration, flare volume, and estimated sulfur emissions during the entire event. A representative fuel analysis is being maintained.

- 2. ☑Yes ☐No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
 3. Please indicate if this compliance determination method was continuous or intermittent:
 ☑ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
 4. ☐Yes ☒No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

 $\underline{04}$ / $\underline{01}$ / $\underline{07}$ (MM/DD/YY) to $\underline{03}$ / $\underline{31}$ / $\underline{08}$ (MM/DD/YY)

\(\) tura County Air Pollution Control Dis(\) t COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number and/or Permit Condition Number: 57.B Description: Combustion contaminants requirements – Specific – Fuel burning equipment	7
---	---

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual compliance certification that combustion contaminants were not discharged into the atmosphere from any fuel-burning equipment at the facility in excess of the concentration at the point of discharge, 0.1 grain per cubic foot of gas calculated to 12% CO₂ at standard conditions. This is based on a reference to the District analysis of Rule 57.B compliance based on EPA emission factors and a representative source test as being sufficient. Periodic monitoring is not necessary to certify compliance.

- ZYes □No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
 Please indicate if this compliance determination method was continuous or intermittent:
 Continuous All monitoring measurements show compliance with the Part 70 permit condition □ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
 □Yes ☑No During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number	Description:
and/or Permit Condition Number: 64.B.1	Gaseous fuel sulfur compounds concentration requirements for all combustion emissions units at this facility combusting gaseous fuel.

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual fuel analysis of the total sulfur content measured as hydrogen sulfide. Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above? 3. Please indicate if this compliance determination method was continuous or intermittent: ☑ Continuous - All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent - One or more measurements indicate a failure to meet the Part 70 permit condition During the time period covered by this compliance certification, does the 4. □Yes ☑No monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring." During the time period covered by this compliance certification, does the 5. □Yes ☑No monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

1210 E. 223rd Street, Suite #314 · Carson, California 90745 · 310/830-2226 · Fax 310/830-2227

CLIENT

OEC

PROJECT NAME:

Oilfied - SCAQMD

LABORATORY NO:

09-0138

SAMPLING DATE:

January 14, 2009

RECEIVING DATE:

January 15, 2009

ANALYSIS DATE:

January 15, 2009

REPORT DATE:

January 16, 2009

Laboratory Analysis Report

Analysis Method	SCAQMD 307-91											
Detection Limits	0.1 PPMV											
	Client ID	Pit. Gail Fuel Gas	Plt. Gail Fuel Gas Duplicate	Plt. Grace Fuel Gas	Plt. Grace Fuel Gas Duplicate							
	OEC ID	0900138-01	0900138-02	0900138-03	0900138-04							
	Sampling Date	1/14/2009	1/14/2009	1/14/2009	1/14/2009							
	Lab ID	01509-1	01509-2	01509-3	01509-4							
Analyte	Units	PPMV	PPMV	PPMV	PPMV							
Hydrogen Sulfide		6.3	9.7	0.2	0.2							
Carbonyl Sulfide		4.2	4.7	<0.1	<0.1							
Methyl Mercaptan		1.1	1.2	<0.1	<0.1							
Ethyl Mercaptan		0.3	0.3	<0.1	<0.1							
Un-Identified S Co	mpounds	2.6	2.6	0.1	0.1							
TRS as H2S		14.6	18.5	0.3	0.3							

TRS: Total Reduced Sulfur as Hydrogen Sulfide

Dr. Andrew Kitto President

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number	Description:
and/or Permit Condition Number: 64.B.2	Solid or liquid fuel sulfur compounds concentration requirements for all combustion emissions units at this facility combusting solid or liquid fuel.

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Fuel supplier's certifications containing fuel sulfur content by weight for each fuel delivery are maintained.

- Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above? 3. Please indicate if this compliance determination method was continuous or intermittent: ☑ Continuous - All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent - One or more measurements indicate a failure to meet the Part 70 permit condition During the time period covered by this compliance certification, does the □Yes ☑No monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the 5. □Yes ☑No monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. Days No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

02/25/09

Letter of Conformance

This is to certify that the CARB Ultra Low sulfur dyed Diesel Fuel sold and Delivered to <u>VENOCO PLATFORM GAIL AND GRACE FROM 01/01/08-12/31/08</u> was in compliance with South Coast Air Quality Management District Requirements for Santa Barbara, Ventura and Los Angeles Counties.

The test Results meet ASTM D-4294 and is typical of all CARB Ultra Low Sulfur Dyed Diesel Fuel sold by General Petroleum. The sulfur content is Guaranteed to be less than .0015%. (15PPM) The high heat content is typically in the 19,950 to 20,200 BTU per pound range.

Hope Bowles

General Manager General Petroleum Oxnard Division Office (805) 299-1219

tura County Air Pollution Control Dis

COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number	Description:
and/or Permit Condition Number: 68	Carbon Monoxide concentration requirements for external combustion equipment

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual compliance certification that carbon monoxide (CO) was not discharged into the atmosphere from any natural gas-fired or fuel oil-fired external combustion equipment at the facility in excess of 2000 ppmv measured on a dry basis at standard conditions. This is based on a reference to the District analysis of Rule 68 compliance based on EPA emission factors as being sufficient. Periodic monitoring is not necessary to certify compliance.

- Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above? 3. Please indicate if this compliance determination method was continuous or intermittent: ☑ Continuous - All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent - One or more measurements indicate a failure to meet the Part 70 permit condition During the time period covered by this compliance certification, does the 4. □Yes ☑No monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."
- During the time period covered by this compliance certification, does the 5. □Yes ☑No monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition that is detected by monitoring that provides data in terms of an emission limitation or standard and that indicates that emissions (or opacity) are greater than the applicable emission limitation or standard (or less than the applicable standard in the case of percent reduction requirement) consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.
- 8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment.

Time Period Covered by Compliance Certification:

\text{\text{tura County Air Pollution Control Dis()}} t

COMPLIANCE CERTIFICATION PERMIT FORM

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number	Description:
and/or Permit Condition Number:	Stationary Natural Gas-Fired Rich-Burn I C Engines – BACT NO _x , ROC,
PO1493PC7	and CO emission limits. CAM Requirements. G-6A, G-6B, G-6C, G-1A,
	G-1B.

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Bienniel source test of the generators using the following methods: ARB Method 100 for NO_x, ARB Method 100 for CO, EPA Method 25 or EPA Method 18 for ROC, ARB Method 100 for oxygen content, and ASTM Method 1826-77 for gaseous fuel heating value. Biennial source test also to obtain air to fuel ratio set point. Quarterly monitoring and recordkeeping of set point. **Initial Source Tests were previously submitted.** Annual compliance certification that daily NOx measurements utilizing a portable analyzer are being recorded, Biennial source testing to validate portable analyzer measured concentrations.

- 2.

 Yes
 No Are you currently in compliance as indicated by the most recent monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
 - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No

 During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

5. MYes No During the time period covered by this compliance certification, does	the
monitoring data indicate any exceedances, if applicable? An exceedance is defined as "a condition the	hat
is detected by monitoring that provides data in terms of an emission limitation or standard and the	hat
indicates that emissions (or opacity) are greater than the applicable emission limitation or standard	(or
less than the applicable standard in the case of percent reduction requirement) consistent with a	inv
averaging period specified for averaging the results of the monitoring."	•

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.

NOV # 22006 was issued for exceedance of NOx limitation on G-6C during initial source test.

8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment. No source test conducted during this compliance period (Biennial).

Time Period Covered by Compliance Certification:

 $\underline{04}/\underline{01}/\underline{07}$ (MM/DD/YY) to $\underline{03}/\underline{31}/\underline{08}$ (MM/DD/YY)

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 1 of 2

Applicable Requirement or Part 70 Permit Condition

Citation, Including Attachment Number	Description:
and/or Permit Condition Number: PO1493PC8	1791BHP Cummins Diesel Backup Generator (G-07)

Attach to this form any information specifically required to be submitted with the compliance certification in the applicable requirement or Part 70 permit condition.

1. Please indicate the method(s) that you use for determining compliance. Indicate the frequency of monitoring and indicate the source test reference method, if applicable.

Annual certification that monthly fuel consumption records are maintained, and monthly hourly use records are maintained.

- 2. Yes \(\subseteq No \) Are you currently in compliance as indicated by the \(\text{most} \) recent monitoring measurement or observation as described above?
- 3. Please indicate if this compliance determination method was continuous or intermittent:
 - ☐ Continuous All monitoring measurements show compliance with the Part 70 permit condition ☐ Intermittent - One or more measurements indicate a failure to meet the Part 70 permit condition
- 4. □Yes ☑No

 During the time period covered by this compliance certification, does the monitoring data indicate any excursions, if applicable? An excursion is defined as "a departure from an indicator or surrogate parameter range established for monitoring under the applicable requirement or Part 70 permit condition, consistent with any averaging period specified for averaging the results of the monitoring."

Applicable Requirement or Part 70 Permit Condition Attachment

Form TVPF46/07-21-03 Page 2 of 2

5.	✓Yes	□No	During	the t	ime j	period	covered	by	this	compliance	certification,	does	the
mo	nitorin	g data ind	icate any e	exceed	lances	, if app	olicable?	An	excee	dance is defi	ined as "a con-	dition	that
											on or standard		
											mitation or sta		
les	s than	the applic	cable stand	dard in	n the	case o	of percen	t rec	ductio	on requireme	nt) consistent	with	any
ave	eraging	period spe	ecified for	averag	ging th	ne resui	lts of the	mon	itorin	ıg."	•		•

- 6. □Yes ☑No During the time period covered by this compliance certification, do you have any other information or data that indicates that you are not in compliance?
- 7. If you answered "yes" to Question Nos. 4, 5, or 6 above, please identify all instances of excursions, exceedances, or other indications of non-compliance during the certification period. Attach all relevant information to this form. You may reference deviation reports, by date and subject, previously submitted to the District.

NOV # 22006 was issued for exceedance of NOx limitation on G-6C during initial source test.

8. If this applicable requirement or Part 70 permit condition requires a source test to demonstrate compliance with a quantifiable emission rate, attach a summary of the most recent source test to this form; or complete and attach Form TVPF47, the quantifiable applicable requirement or Part 70 permit condition attachment. No source test conducted during this compliance period (Biennial).

Time Period Covered by Compliance Certification: