

Ormond Beach Power, LLC Ormond Beach Generating Station 6635 S. Edison Drive Oxnard, CA 93033

February 12, 2024

Mr. Steve Bova **Ventura County Air Pollution Control District** 669 County Square Drive Ventura, CA 93003

#### RE: 2023 Title V Annual Compliance Certification Ormond Beach Power, LLC Ormond Beach Generating Station Permit No. 00065

Dear Mr. Bova:

Ormond Beach Power, LLC is submitting the 2023 Title V Annual Compliance Certification Report for the Ormond Beach Generating Station (Federal Operating Permit No. 00065, permit term October 16, 2019, to December 31, 2023) located in Oxnard, CA.

Please find enclosed VCAPCD Signature Cover Form - Certification by Responsible Official, Permit Attachment Form and supporting documents. These documents serve as the annual certification for the period January 01, 2023, through December 31, 2023, and the deviation report for the period July 01, 2023, through December 31, 2023.

If you have any questions or require additional information, please do not hesitate to contact me at (805) 341-6167or roger.kahle@genon.com.

Sincerely, Ormond Beach Generating Station

"ha

Roger Kahle Environmental Specialist

cc: Ms. Roshni Brahmbhatt Enforcement & Compliance Enforcement Division EPA Region 9 75 Hawthorne Street San Francisco, CA 94105

Enclosures



## ANNUAL COMPLIANCE CERTIFICATION SIGNATURE COVER FORM

TV Permit # \_\_\_\_00065

A copy of each Annual Compliance Certification shall be submitted to EPA, Region 9, at the following address:

Ms. Roshni Brahmbhatt Enforcement & Compliance Enforcement Division EPA Region 9 75 Hawthorne Street San Francisco, CA 94105

#### Confidentiality

All information in a Part 70 permit compliance certification is public information. The Part 70 permit is also public information.

#### **Certification by Responsible Official**

I certify that, based on information and belief formed after reasonable inquiry, the statements and information in this compliance certification are true, accurate, and complete.

| Signature and Title of Responsible Official:                                      | Date:    |
|-----------------------------------------------------------------------------------|----------|
| Title: Plant Manager - Ormond Beach Power, LLC<br>Ormond Beach Generating Station | 2-9-2024 |

Time Period Covered by Compliance Certification

<u>01</u> / <u>01</u> / <u>2023</u> (MM/DD/YY) to <u>12</u> / <u>31</u> / <u>2023</u> (MM/DD/YY)



## ANNUAL COMPLIANCE CERTIFICATION PERMIT ATTACHMENT FORM

Period Covered by Compliance Certification: 01/01/23 (MM/DD/YY) to 12/31/23 (MM/DD/YY)

| A. Attachment # or Permit Condition #: Attachment 59N1, Condition #1                                                                                               | D. Frequency of monitoring:                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|
| B. Description: NOx Emission Limit                                                                                                                                 | Continuous                                         |
| Condition 1a – Certified CEMS data demonstrates that there have been no exceedances of the 0.10 lbs/NMW-hr limit.                                                  | E. Source test reference method, if applicable.    |
| Condition 1b – Ormond Beach is prohibited from burning fuel oil in these units. None was burned during the compliance certification time period.                   | Attach Source Test Summary Form, if applicable N/A |
| Condition 1c – Ormond Beach is prohibited from burning mixed fuel oil/natural gas in these units. None was burned during the compliance certification time period. |                                                    |
| C. Method of monitoring: CEMs Records and Emission Calculations                                                                                                    | F. Currently in Compliance? (Y or N): Y            |
|                                                                                                                                                                    | G. Compliance Status? (C or I):                    |
|                                                                                                                                                                    | H. *Excursions, exceedances, or                    |
|                                                                                                                                                                    | other non-compliance? (Y or N): <u>N</u>           |
|                                                                                                                                                                    | *If yes, attach Deviation Summary Form             |

| A. Attachment # or Permit Condition #: Attachment 59N1, Condition #2                                                                     | D. Frequency of monitoring:                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| B. Description: Oil Burned During Force Majeure<br>Ormond Beach Generating Station is only permitted to burn natural gas in its boilers. | Continuous                                                                                               |
|                                                                                                                                          | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A |
| C. Method of monitoring: Fuel Usage Logs                                                                                                 | F. Currently in Compliance? (Y or N): Y                                                                  |
|                                                                                                                                          | G. Compliance Status? (C or I):                                                                          |
|                                                                                                                                          | H. *Excursions, exceedances, or<br>other non-compliance? (Y or N): <u>N</u>                              |
|                                                                                                                                          | *If yes, attach Deviation Summary Form                                                                   |

| A. Attachment # or Permit Condition #: Attachment 59N1, Condition #3                                                                                                                                      | D. Frequency of monitoring:                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. Description: NH3 Emissions<br>The Annual Ammonia Slip test for Unit 2 was conducted on May 23, 2023 and the                                                                                            | Continuous                                                                                                                                                                                                                |
| average ammonia slip result was 2.3 ppm @ 3% O <sub>2</sub> , which is within the 10 ppmv limit.<br>No Annual Ammonia Slip test was required for Unit 1 due to insufficient quarterly<br>operating hours. | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>BAAQMD method ST-1B dated 01/20/1982                                                                                 |
| C. Method of monitoring: Source Testing                                                                                                                                                                   | F. Currently in Compliance?       (Y or N):Y         G. Compliance Status?       (C or I):C         H. *Excursions, exceedances, or other non-compliance?       (Y or N):N         *If yes, attach Deviation Summary Form |



# ANNUAL COMPLIANCE CERTIFICATION PERMIT ATTACHMENT FORM

Period Covered by Compliance Certification: 01/01/23 (MM/DD/YY) to 12/31/23 (MM/DD/YY)

| A. Attachment # or Permit Condition #: Attachment 59N1, Condition #4                                                                                    | D. Frequency of monitoring:                                                                              |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| B. Description: Cold Start-up waiver for NOx and NH3 Emission Limits                                                                                    | Continuous                                                                                               |
| The Unit 1 and Unit 2 cold start log is documented and maintained on site.                                                                              |                                                                                                          |
| Plant records indicate that no cold start-up lasted more than 20 hours, nor have any excess NOx emissions lasted longer than a cold start-up procedure. | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A |
| C. Method of monitoring: CEMs Records and Operator Logs                                                                                                 | F. Currently in Compliance? (Y or N): Y                                                                  |
|                                                                                                                                                         | G. Compliance Status? (C or I):                                                                          |
|                                                                                                                                                         | H. *Excursions, exceedances, or                                                                          |
|                                                                                                                                                         | other non-compliance? (Y or N):                                                                          |
|                                                                                                                                                         | *If yes, attach Deviation Summary Form                                                                   |

| A. Attachment # or Permit Condition #: Attachment 59N1, Condition #5                                   | D. Frequency of monitoring:                                                                       |
|--------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| B. Description: NOx lbs/NMW-Hr                                                                         | Continuous                                                                                        |
| Condition 5a - CEMs are used to monitor and calculate the NOx emission rate.                           |                                                                                                   |
| Condition 5b - The megawatt metering calibration test was performed on 12/17/2023                      | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable |
| Condition 5c - The hourly lb/NMW-hr NOx is measured according to the procedures in 40 CFR 75.10(d)(1). | N/A                                                                                               |
| Condition 5d - The documents are retained at the plant and available for District review.              |                                                                                                   |
| C. Method of monitoring: CEMs Records, physical inspection, and Emission Calculations                  | F. Currently in Compliance? (Y or N): Y                                                           |
|                                                                                                        | G. Compliance Status? (C or I):                                                                   |
| 2                                                                                                      | H. *Excursions, exceedances, or                                                                   |
|                                                                                                        | other non-compliance? (Y or N): <u>N</u>                                                          |
| ·                                                                                                      | *If yes, attach Deviation Summary Form                                                            |

| A. Attachment # or Permit Condition #: Attachment 59N1, Conditions #6 & #7                                                        | D. Frequency of monitoring:                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| B. Description: Hourly Recordkeeping<br>The Station maintains operational records as detailed in Conditions 6 and 7. Such records | Continuous                                                                                               |
| are provided to the District every quarter and made available to the District upon request.                                       | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A |
| C. Method of monitoring: CEMs Records and Operator Logs                                                                           | F. Currently in Compliance? (Y or N): Y                                                                  |
|                                                                                                                                   | G. Compliance Status? (C or I):                                                                          |
|                                                                                                                                   | H. *Excursions, exceedances, or                                                                          |
|                                                                                                                                   | other non-compliance? (Y or N):                                                                          |
|                                                                                                                                   | *If yes, attach Deviation Summary Form                                                                   |



## ANNUAL COMPLIANCE CERTIFICATION PERMIT ATTACHMENT FORM

Period Covered by Compliance Certification: 01/01/23 (MM/DD/YY) to 12/31/23 (MM/DD/YY)

| A. Attachment # or Permit Condition #: Attachment 59N3, Condition #1                                            | D. Frequency of monitoring:                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. Description: NOx Limits (Aux Boilers) 0.040 lbs/MMBTU<br>There were no Auxiliary Boiler exceedances in 2023. | Continuous                                                                                                                                                                                                                |
|                                                                                                                 | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A                                                                                                                  |
| C. Method of monitoring: CEMs Records and Emission Calculations                                                 | F. Currently in Compliance?       (Y or N):Y         G. Compliance Status?       (C or I):C         H. *Excursions, exceedances, or other non-compliance?       (Y or N):N         *If yes, attach Deviation Summary Form |

| A. Attachment # or Permit Condition #: Attachment 59N3, Condition #2                                                                               | D. Frequency of monitoring:                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. Description: Cold Start-up, NOx Emission Limits<br>The North Auxiliary Boiler cold starts and South Auxiliary Boiler cold starts are logged and | Continuous                                                                                                                                                                                                                |
| maintained on site during the compliance period. These units are subject to a 4-hour NOx emission exemption period.                                | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A                                                                                                                  |
| C. Method of monitoring: CEMs Records and Operator Logs                                                                                            | F. Currently in Compliance?       (Y or N):Y         G. Compliance Status?       (C or I):C         H. *Excursions, exceedances, or other non-compliance?       (Y or N):N         *If yes, attach Deviation Summary Form |

| A. Attachment # or Permit Condition #: Attachment 59N3, Condition #3                                                                                                               | D. Frequency of monitoring:                                                                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>B. Description: NOx Limits (Aux Boilers) calculation method</li> <li>Hourly natural gas emissions figures are calculated as required by this permit condition.</li> </ul> | Continuous                                                                                                                                                                                                                      |
|                                                                                                                                                                                    | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A                                                                                                                        |
| C. Method of monitoring: CEMs Records and Emission Calculations                                                                                                                    | F. Currently in Compliance?       (Y or N): _Y         G. Compliance Status?       (C or I): _C         H. *Excursions, exceedances, or other non-compliance?       (Y or N): _N         *If yes, attach Deviation Summary Form |



# ANNUAL COMPLIANCE CERTIFICATION PERMIT ATTACHMENT FORM

Period Covered by Compliance Certification: 01/01/23 (MM/DD/YY) to 12/31/23 (MM/DD/YY)

| A. Attachment # or Permit Condition #: Attachment 59N3, Conditions #4 - #5             | D. Frequency of monitoring:                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. Description: Record keeping<br>Daily and hourly records are maintained as required. | Continuous                                                                                                                                                                                                                |
|                                                                                        | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A                                                                                                                  |
| C. Method of monitoring: CEMS Records and Operator Logs                                | F. Currently in Compliance?       (Y or N):Y         G. Compliance Status?       (C or I):C         H. *Excursions, exceedances, or other non-compliance?       (Y or N):N         *If yes, attach Deviation Summary Form |

| A. Attachment # or Permit Condition #: Attachment 74.9N7 , Conditions #1 - #4                                                                        | D. Frequency of monitoring:                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| B. Description: Stationary Internal Combustion Engines                                                                                               | Periodic                                                                                          |
| Condition 1 - Hourly operating records verify compliance with the 50 hour annual limit.                                                              |                                                                                                   |
| Condition 2 - A non-resettable elapsed hour meter is operated on the unit.                                                                           | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable |
| Condition 3 - The Cummins model NTA 855-G5 emergency generator is located in the emergency generator building next to (south of) the admin building. | N/A                                                                                               |
| Condition 4 - Calendar year hours of maintenance and operation are reported by Feb 15.                                                               |                                                                                                   |
| C. Method of monitoring: Maintenance and Operating Logs                                                                                              | F. Currently in Compliance? (Y or N): Y                                                           |
|                                                                                                                                                      | G. Compliance Status? (C or I): <u>C</u>                                                          |
|                                                                                                                                                      | H. *Excursions, exceedances, or                                                                   |
|                                                                                                                                                      | other non-compliance? (Y or N): <u>N</u>                                                          |
|                                                                                                                                                      | *If yes, attach Deviation Summary Form                                                            |

| A. Attachment # or Permit Condition #: Attachement ATCM Engine N2, Conditions #1 - #3                                   | D. Frequency of monitoring:                                                                       |
|-------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| B. Description: Fuel Use and Operation Recordkeeping                                                                    | Periodic                                                                                          |
| Condition 1 - Only CARB Diesel Fuel is used at the facility                                                             |                                                                                                   |
| Condition 2 - Maintenance and testing operation of the emergency generator is limited to 20 hr/yr and is logged monthly | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable |
| Condition 3 - Records of operation and fuel purchased (type and quantity) are maintained on site                        | N/A                                                                                               |
| C. Method of monitoring: Purchase Records and Operation Log                                                             | F. Currently in Compliance? (Y or N): Y                                                           |
|                                                                                                                         | G. Compliance Status? (C or I):                                                                   |
|                                                                                                                         | H. *Excursions, exceedances, or                                                                   |
|                                                                                                                         | other non-compliance? (Y or N): <u>N</u>                                                          |
|                                                                                                                         | *If yes, attach Deviation Summary Form                                                            |



# ANNUAL COMPLIANCE CERTIFICATION PERMIT ATTACHMENT FORM

Period Covered by Compliance Certification: 01/01/23 (MM/DD/YY) to 12/31/23 (MM/DD/YY)

| A. Attachment # or Permit Condition #: Attachment RICE MACT, Conditions #1 - #2       | D. Frequency of monitoring:                                                                       |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| B. Description: Maintenance and Operation Recordkeeping                               | Periodic                                                                                          |
| Condition 1 – Engines inspected, serviced and oil changed annually or every 500 hours |                                                                                                   |
| Condition 2 – Operated according to manufacturer specifications                       | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable |
|                                                                                       | N/A                                                                                               |
| C. Method of monitoring: Generator Service Report                                     | F. Currently in Compliance? (Y or N): Y                                                           |
|                                                                                       | G. Compliance Status? (C or I):                                                                   |
|                                                                                       | H. *Excursions, exceedances, or                                                                   |
|                                                                                       | other non-compliance? (Y or N):N                                                                  |
|                                                                                       | *If yes, attach Deviation Summary Form                                                            |

| A. Attachment # or Permit Condition #: Attachment RICE MACT, Conditions #3 - #9                                                                                                                                       | D. Frequency of monitoring:                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>B. Description: Operation Recordkeeping</li> <li>Condition 3 – The engine is equipped with a non-resettable timer</li> </ul>                                                                                 | Continuous                                                                                                                                                                                                                |
| Condition 4 – Engine idle time is restricted to less than 30 minutes per event<br>Condition 5-9 – Operation is limited to less than the 100 hours and in compliance with 40<br>CFR part 63, Subpart ZZZZ (RICE MACT). | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A                                                                                                                  |
| C. Method of monitoring: Maintenance and Operation Log                                                                                                                                                                | F. Currently in Compliance?       (Y or N):Y         G. Compliance Status?       (C or I):C         H. *Excursions, exceedances, or other non-compliance?       (Y or N):N         *If yes, attach Deviation Summary Form |

| A. Attachment # or Permit Condition #: Attachment 103N1-65, Conditions #1 - #3                                                | D. Frequency of monitoring:                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| B. Description: Continuous Monitoring Systems                                                                                 | Continuous                                                                                        |
| Conditions 1, 2 – A CEMS system is installed on Unit 1 and Unit 2. The CEMS system is                                         |                                                                                                   |
| operated and maintained at the station and meets the requirements of Rule 103.A.1 and 103.C.1.                                | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable |
| Condition 3 - Monitored violations are reported to the District within 96 hours of each occurance pursuant with Rule 103.B.1. | N/A                                                                                               |
| C. Method of monitoring: CEMs Inspection, Maintenance, Testing, and Reporting                                                 | F. Currently in Compliance? (Y or N): Y                                                           |
| Records                                                                                                                       | G. Compliance Status? (C or I):                                                                   |
|                                                                                                                               | H. *Excursions, exceedances, or                                                                   |
|                                                                                                                               | other non-compliance? (Y or N): N                                                                 |
|                                                                                                                               | *If yes, attach Deviation Summary Form                                                            |



# ANNUAL COMPLIANCE CERTIFICATION PERMIT ATTACHMENT FORM

Period Covered by Compliance Certification: 01/01/23 (MM/DD/YY) to 12/31/23 (MM/DD/YY)

| A. Attachment # or Permit Condition #: Attachment 103N1-65, Conditions #4 - #6                                                                                      | D. Frequency of monitoring:                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>B. Description: Continuous Monitoring Systems</li> <li>Condition 4 – Permanent CEMS records are maintained as required.</li> </ul>                         | Continuous                                                                                                                                                                                                                |
| Condition 5 – Data is reduced according to Appendix F of 40 CFR Part 75.<br>Condition 6 - CEMS and excess emission reports are submitted to the District quarterly. | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A                                                                                                                  |
| C. Method of monitoring: CEMs Inspection, Maintenance, Testing, and Reporting Records                                                                               | F. Currently in Compliance?       (Y or N):Y         G. Compliance Status?       (C or I):C         H. *Excursions, exceedances, or other non-compliance?       (Y or N):N         *If yes, attach Deviation Summary Form |

| A. Attachment # or Permit Condition #: Attachment 103N3-65, Conditions #1 - #3                                                                                                                                                     | D. Frequency of monitoring:                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>B. Description: Continuous Monitoring Systems</li> <li>Conditions 1, 2 – A CEMS system is installed on AUX-N and AUX-S. The CEMS system</li> </ul>                                                                        | Continuous                                                                                                                                                                                                                   |
| is operated and maintained at the station and meets the requirements of Rule 103.A.3 and 103.C.3.<br>Condition 3 – Monitored violations are reported to the District within 96 hours of each occurance pursuant with Rule 103.B.1. | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A                                                                                                                     |
| C. Method of monitoring: CEMs Inspection, Maintenance, Testing, and Reporting Records                                                                                                                                              | F. Currently in Compliance?       (Y or N): Y         G. Compliance Status?       (C or I): C         H. *Excursions, exceedances, or other non-compliance?       (Y or N): N         *If yes, attach Deviation Summary Form |



# ANNUAL COMPLIANCE CERTIFICATION PERMIT ATTACHMENT FORM

Period Covered by Compliance Certification: 01/01/23 (MM/DD/YY) to 12/31/23 (MM/DD/YY)

| A. Attachment # or Permit Condition #: Attachment 103N3-65, Conditions #4 - #6                                                                         | D. Frequency of monitoring:                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>B. Description: Continuous Monitoring Systems</li> <li>Condition 4 – Permanent CEMS records are maintained as required.</li> </ul>            | Continuous                                                                                                                                                                                                                |
| Condition 5 – Data is reduced as required by the condition.<br>Condition 6 - CEMS and excess emission reports are submitted to the District quarterly. | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A                                                                                                                  |
| C. Method of monitoring: CEMs Inspection, Maintenance, Testing, and Reporting Records                                                                  | F. Currently in Compliance?       (Y or N):Y         G. Compliance Status?       (C or I):C         H. *Excursions, exceedances, or other non-compliance?       (Y or N):N         *If yes, attach Deviation Summary Form |

| A. Attachment # or Permit Condition #: PO00065PC1-231, Conditions #1 - #2                                                                                                                                                                                                                                        | D. Frequency of monitoring:                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. Description: General Recordkeeping Requirements and Solvent Cleaning Additional Requirements                                                                                                                                                                                                                  | Continuous                                                                                                                                                                                                                |
| Condition 1 - Monthly record-keeping of permitted throughput and consumption are maintained onsite.<br>Condition 2 - Ormond Beach only uses cleaning products in non-refillable aerosol cans (Rule F.6) and <160 oz. per day, <25g/liter of ROC or SCAQMD Clean Air Solvents .<br>Records are maintained onsite. | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A                                                                                                                  |
| C. Method of monitoring: Rules 26 and 29 Fuel Throughput/Consumption and Rule 29 Solvent Usage Records                                                                                                                                                                                                           | F. Currently in Compliance?       (Y or N):Y         G. Compliance Status?       (C or I):C         H. *Excursions, exceedances, or other non-compliance?       (Y or N):N         *If yes, attach Deviation Summary Form |

| A. Attachment # or Permit Condition #: PO00065PC2, Conditions #1 - #2, #3 - #4, #5                                                            | D. Frequency of monitoring:                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| B. Description: Rule 26 Permitted Throughput and Consumption Limit for Unit 1 and 2,<br>Aux. Boilers and Rule 29 Natural Gas Only Requirement | Continuous                                                                                        |
| Conditions 1, 2 - Monthly and rolling 12-month records are maintained on-site.                                                                | E Source test reference method if applicable                                                      |
| Conditions 3, 4 - Units 1 and 2 and the north and south auxiliary boilers only fire natural gas.                                              | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable |
| Condition 5 - Emissions and fuel records and source test reports are maintained on-site.                                                      | N/A                                                                                               |
| C. Method of monitoring: Fuel Usage, Emission Records, and Test Reports                                                                       | F. Currently in Compliance? (Y or N): Y                                                           |
|                                                                                                                                               | G. Compliance Status? (C or I):                                                                   |
|                                                                                                                                               | H. *Excursions, exceedances, or                                                                   |
|                                                                                                                                               | other non-compliance? (Y or N):                                                                   |
|                                                                                                                                               | *If yes, attach Deviation Summary Form                                                            |



## ANNUAL COMPLIANCE CERTIFICATION PERMIT ATTACHMENT FORM

Period Covered by Compliance Certification: 01/01/23 (MM/DD/YY) to 12/31/23 (MM/DD/YY)

| A. Attachment # or Permit Condition #: Attachment 50, Conditions #1 - #4                                                                       | D. Frequency of monitoring:                                                                       |
|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| B. Description: Opacity Limitations                                                                                                            | Periodic                                                                                          |
| Method 9 opacity readings were done on the following sources during the compliance period; records are attached verifying no visible emissions |                                                                                                   |
| Main Units                                                                                                                                     | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable |
| Auxiliary Boilers                                                                                                                              | N/A                                                                                               |
| Emergency Generator                                                                                                                            |                                                                                                   |
| C. Method of monitoring: Routine Visual Surveillance and Certification Records                                                                 | F. Currently in Compliance? (Y or N): Y                                                           |
|                                                                                                                                                | G. Compliance Status? (C or I):                                                                   |
|                                                                                                                                                | H. *Excursions, exceedances, or                                                                   |
|                                                                                                                                                | other non-compliance? (Y or N): <u>N</u>                                                          |
|                                                                                                                                                | *If yes, attach Deviation Summary Form                                                            |

| A. Attachment # or Permit Condition #: Attachment 54.B.1, Conditions #1 - #3               | D. Frequency of monitoring:                                                                       |
|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| B. Description: Sulfur Compounds                                                           | Annually                                                                                          |
| Compliance with Rule 64 ensures compliance with this rule based on District analysis.      |                                                                                                   |
| Compliance is assured because only PUC-regulated natural gas is combusted at the facility. | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable |
|                                                                                            | N/A                                                                                               |
| C. Method of monitoring: Natural Gas Analyses for Sulfur                                   | F. Currently in Compliance? (Y or N): Y                                                           |
|                                                                                            | G. Compliance Status? (C or I):                                                                   |
|                                                                                            | H. *Excursions, exceedances, or                                                                   |
|                                                                                            | other non-compliance? (Y or N): <u>N</u>                                                          |
|                                                                                            | *If yes, attach Deviation Summary Form                                                            |

| A. Attachment # or Permit Condition #: Attachment 54.B.2, Conditions #1 - #3                                                                                                                                                          | D. Frequency of monitoring:                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| B. Description: Sulfur Compounds Ground Level                                                                                                                                                                                         | Annually                                                                                                                              |
| Units 1, 2, and the auxiliary boilers burn PUC quality natural gas. A fuel sulfur sample<br>analysis is conducted annually to ensure compliance. Laboratory analysis of natural<br>gas sample dated Nov. 7, 2023 confirms compliance. | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A                              |
| C. Method of monitoring: Recordkeeping, Natural Gas Analyses for Sulfur and Modeling<br>Demonstration                                                                                                                                 | F. Currently in Compliance?       (Y or N): Y         G. Compliance Status?       (C or I): C         H. *Excursions, exceedances, or |
|                                                                                                                                                                                                                                       | other non-compliance? (Y or N): <u>N</u><br>*If yes, attach Deviation Summary Form                                                    |



# ANNUAL COMPLIANCE CERTIFICATION PERMIT ATTACHMENT FORM

Period Covered by Compliance Certification: 01/01/23 (MM/DD/YY) to 12/31/23 (MM/DD/YY)

| A. Attachment # or Permit Condition #: Attachment 55, Conditions #1 - #7                          | D. Frequency of monitoring:                                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. Description: Fugitive Dust                                                                     | Periodic                                                                                                                                                                                                                  |
| There are no operations, disturbed surface areas, or man-made conditions subject to Rule 55.      | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A                                                                                                                  |
| C. Method of monitoring: On-site Operations Review - Permit Condition Not<br>Currently Applicable | F. Currently in Compliance?       (Y or N):Y         G. Compliance Status?       (C or I):C         H. *Excursions, exceedances, or other non-compliance?       (Y or N):N         *If yes, attach Deviation Summary Form |

| A. Attachment # or Permit Condition #: Attachment 57.1, Conditions #1 - #2                                                                                         | D. Frequency of monitoring:                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| B. Description: Particulate Emissions from Fuel Burning Equipment<br>Periodic Monitoring not required. District Rule 57.B analysis dated 12/03/97 is sufficient to | Continuous                                                                                               |
| certify compliance.                                                                                                                                                | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A |
| C. Method of monitoring: Rule 57.B District Analysis                                                                                                               | F. Currently in Compliance? (Y or N): Y                                                                  |
|                                                                                                                                                                    | G. Compliance Status? (C or I):                                                                          |
|                                                                                                                                                                    | H. *Excursions, exceedances, or                                                                          |
|                                                                                                                                                                    | other non-compliance? (Y or N): <u>N</u>                                                                 |
|                                                                                                                                                                    | *If yes, attach Deviation Summary Form                                                                   |

| A. Attachment # or Permit Condition #: Attachment 64.B.1, Conditions #1 - #4                 | D. Frequency of monitoring:                                                                                                                                                                                                  |
|----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. Description: Sulfur Content of Gaseous Fuels                                              | Continuous                                                                                                                                                                                                                   |
| Only PUC-regulated Natural Gas is combusted at this facility. Records are available on site. | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A                                                                                                                     |
| C. Method of monitoring: Natural Gas Analyses for Sulfur                                     | F. Currently in Compliance?       (Y or N): Y         G. Compliance Status?       (C or I): C         H. *Excursions, exceedances, or other non-compliance?       (Y or N): N         *If yes, attach Deviation Summary Form |



## ANNUAL COMPLIANCE CERTIFICATION PERMIT ATTACHMENT FORM

Period Covered by Compliance Certification: 01/01/23 (MM/DD/YY) to 12/31/23 (MM/DD/YY)

| A. Attachment # or Permit Condition #: Attachment 64.B.2, Conditions #1 - #3                                                                                                                                        | D. Frequency of monitoring:                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. Description: Sulfur Content of Liquid Fuel<br>The site uses CARB-approved diesel exclusively in the emergency generator. Gasoline                                                                                | Continuous                                                                                                                                                                                                                   |
| and diesel purchase records are maintained onsite for District review; delivery records are<br>available for confirming use of CARB-certified diesel fuels. Gasoline is purchased from a<br>local gasoline station. | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A                                                                                                                     |
| C. Method of monitoring: CARB Diesel Fuel Delivery Records                                                                                                                                                          | F. Currently in Compliance?       (Y or N): Y         G. Compliance Status?       (C or I): C         H. *Excursions, exceedances, or other non-compliance?       (Y or N): N         *If yes, attach Deviation Summary Form |

| A. Attachment # or Permit Condition #: Attachment 74.6, Conditions #1 - #15                                                         | D. Frequency of monitoring:                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| B. Description: Surface Cleaning and Degreasing<br>Regulated cleaning products used at Ormond Beach are dispenced in non-refillable | Continuous                                                                                               |
| aerosol cans. Records are maintained onsite.                                                                                        | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A |
| C. Method of monitoring: Routine surveillance of Solvent Usage and Activity Records                                                 | F. Currently in Compliance? (Y or N): Y                                                                  |
|                                                                                                                                     | G. Compliance Status? (C or I): <u>C</u>                                                                 |
|                                                                                                                                     | H. *Excursions, exceedances, or                                                                          |
|                                                                                                                                     | other non-compliance? (Y or N): <u>N</u>                                                                 |
|                                                                                                                                     | *If yes, attach Deviation Summary Form                                                                   |

| A. Attachment # or Permit Condition #: Attachment 74.11.1, Conditions #1 - #4                                                              | D. Frequency of monitoring:                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. Description: Large Water Heaters and Small Boilers                                                                                      | N/A                                                                                                                                                                                                                          |
| Only electric water heaters are used at the site and no small boilers exist at the facility, consiquently, Rule 74.11.1 is not applicable. | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A                                                                                                                     |
| C. Method of monitoring: Equipment Design Record Review - Permit Condition Not<br>Currently Applicable                                     | F. Currently in Compliance?       (Y or N): Y         G. Compliance Status?       (C or I): C         H. *Excursions, exceedances, or other non-compliance?       (Y or N): N         *If yes, attach Deviation Summary Form |



## ANNUAL COMPLIANCE CERTIFICATION PERMIT ATTACHMENT FORM

Period Covered by Compliance Certification: 01/01/23 (MM/DD/YY) to 12/31/23 (MM/DD/YY)

| A. Attachment # or Permit Condition #: Attachment 74.22, Conditions #1 - #3                                                                                | D. Frequency of monitoring:                                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. Description: Natural gas Fired Fan-type Central Furnaces<br>No natural gas-fired fan-type central furnaces to which the attachment applies exist at the | N/A                                                                                                                                                                                                                          |
| facility, compliance with the requirements is not required.                                                                                                | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A                                                                                                                     |
| C. Method of monitoring: Equipment Design Record Review - Permit Condition Not<br>Currently Applicable                                                     | F. Currently in Compliance?       (Y or N): Y         G. Compliance Status?       (C or I): C         H. *Excursions, exceedances, or other non-compliance?       (Y or N): N         *If yes, attach Deviation Summary Form |

| A. Attachment # or Permit Condition #: Attachment 74.1, Conditions #1 - #7                                               | D. Frequency of monitoring:                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. Description: Abrasive Blasting<br>Bead blast was replaced with a Zero Emissions enclosed blast unit in October 2014 - | N/A =                                                                                                                                                                                                                        |
| Permit Condition Not Currently Applicable                                                                                | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A                                                                                                                     |
| C. Method of monitoring: Onsite Operations Review - Permit Condition Not Currently Applicable                            | F. Currently in Compliance?       (Y or N): Y         G. Compliance Status?       (C or I): C         H. *Excursions, exceedances, or other non-compliance?       (Y or N): N         *If yes, attach Deviation Summary Form |

| A. Attachment # or Permit Condition #: Attachment 74.2, Conditions #1 - #6                                                                                                          | D. Frequency of monitoring:                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| B. Description: Architectural Coatings                                                                                                                                              | Continuous                                      |
| Facility maintains records of paints used and VOC content for District review. Contractors who maintain an Architectural Coating Permit are employed for coating and the contractor | E. Source test reference method, if applicable. |
| maintains their usage and VOC records for District review in accordance with their permit.                                                                                          | Attach Source Test Summary Form, if applicable  |
|                                                                                                                                                                                     | N/A                                             |
| C. Method of monitoring: Routine Surveillance of GenOn Paint Usage and Activity                                                                                                     | F. Currently in Compliance? (Y or N): Y         |
| Records. Contractor maintains their own permit with the District                                                                                                                    | G. Compliance Status? (C or I): C               |
|                                                                                                                                                                                     | H. *Excursions, exceedances, or                 |
|                                                                                                                                                                                     | other non-compliance? (Y or N): <u>N</u>        |
|                                                                                                                                                                                     | *If yes, attach Deviation Summary Form          |



# ANNUAL COMPLIANCE CERTIFICATION PERMIT ATTACHMENT FORM

Period Covered by Compliance Certification: 01/01/23 (MM/DD/YY) to 12/31/23 (MM/DD/YY)

| A. Attachment # or Permit Condition #: Attachment 74.29N3, Conditions #1 - #14                | D. Frequency of monitoring:                                                                                           |
|-----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| B. Description: Soil Decontamination Operations                                               | N/A                                                                                                                   |
| No soil remediation has taken place at the Ormond Beach Generating Station.                   |                                                                                                                       |
|                                                                                               | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A              |
| C. Method of monitoring: Onsite Operations Review - Permit Condition Not Currently Applicable | F. Currently in Compliance?         (Y or N):           G. Compliance Status?         (C or I):                       |
|                                                                                               | H. *Excursions, exceedances, or<br>other non-compliance? (Y or N): <u>N</u><br>*If yes, attach Deviation Summary Form |

| A. Attachment # or Permit Condition #: Attachment 40CFR61.M, Conditions #1 - #2 | D. Frequency of monitoring:                                                                       |
|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| B. Description: Asbestos Standard                                               | Periodic                                                                                          |
| Inspection, Notification, and Contractor Records are maintained on-site.        |                                                                                                   |
|                                                                                 | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable |
|                                                                                 | N/A                                                                                               |
|                                                                                 |                                                                                                   |
| C. Method of monitoring: Inspection, Notification, and Contractor Records       | F. Currently in Compliance? (Y or N): Y                                                           |
|                                                                                 | G. Compliance Status? (C or I):                                                                   |
|                                                                                 | H. *Excursions, exceedances, or                                                                   |
|                                                                                 | other non-compliance? (Y or N): <u>N</u>                                                          |
|                                                                                 | *If yes, attach Deviation Summary Form                                                            |

| A. Attachment # or Permit Condition #: Attachment Part 70 General, Conditions #1 - #4                                                                                                                                                                                                                           | D. Frequency of monitoring:                                                                                                                                                                                               |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. Description: General Part 70 Permit Conditions<br>Condition 1 - Compliance status of each federally enforceable condition is reviewed.                                                                                                                                                                       | Continuous                                                                                                                                                                                                                |
| Condition 2 - Facility strives to comply with all applicable conditions.<br>Condition 3 - Deviations from Part 70 requirements are reported within 4 hours after<br>detection.<br>Condition 4 - Facility understands that the need to halt an activity to comply is not a<br>defense against enforcement action | <ul> <li>E. Source test reference method, if applicable.</li> <li>Attach Source Test Summary Form, if applicable</li> <li>N/A</li> </ul>                                                                                  |
| C. Method of monitoring: Title V Reports and Periodic Review of Requirements                                                                                                                                                                                                                                    | F. Currently in Compliance?       (Y or N):Y         G. Compliance Status?       (C or I):C         H. *Excursions, exceedances, or other non-compliance?       (Y or N):N         *If yes, attach Deviation Summary Form |



# ANNUAL COMPLIANCE CERTIFICATION PERMIT ATTACHMENT FORM

Period Covered by Compliance Certification: 01/01/23 (MM/DD/YY) to 12/31/23 (MM/DD/YY)

| A. Attachment # or Permit Condition #: Attachment Part 70 General, Conditions #5                                                                 | D. Frequency of monitoring:                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| B. Description: General Part 70 Permit Conditions<br>Condition 5 - All required records, monitoring data, and support information are maintained | Continuous                                                                                               |
| for a period of 5 years.                                                                                                                         | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A |
| C. Method of monitoring: Title V Reports and Periodic Review of Requirements                                                                     | F. Currently in Compliance? (Y or N): Y                                                                  |
|                                                                                                                                                  | G. Compliance Status? (C or I):                                                                          |
|                                                                                                                                                  | H. *Excursions, exceedances, or                                                                          |
|                                                                                                                                                  | other non-compliance? (Y or N): <u>N</u>                                                                 |
|                                                                                                                                                  | *If yes, attach Deviation Summary Form                                                                   |

| D. Frequency of monitoring:                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Continuous                                                                                                                                                                                                                                             |
| <ul> <li>E. Source test reference method, if applicable.<br/>Attach Source Test Summary Form, if applicable<br/>N/A</li> </ul>                                                                                                                         |
| <ul> <li>F. Currently in Compliance? (Y or N): <u>Y</u></li> <li>G. Compliance Status? (C or I): <u>C</u></li> <li>H. *Excursions, exceedances, or other non-compliance? (Y or N): <u>N</u></li> <li>*If yes, attach Deviation Summary Form</li> </ul> |
|                                                                                                                                                                                                                                                        |

| A. Attachment # or Permit Condition #: Attachment Part 70 General, Conditions #8 - #10                                                                                | D. Frequency of monitoring:                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| <ul> <li>B. Description: General Part 70 Permit Conditions</li> <li>Condition 8 - Facility understands that the permit may be modified, revoked, reopened,</li> </ul> | Continuous                                                                                        |
| reissued, or terminated for cause<br>Condition 9 - Facility understands that the permit may be reopened by the District under<br>specific conditions.                 | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable |
| Condition 10 - Facility strives to pay all fees in a timely manner to maintain the permit active.                                                                     | N/A                                                                                               |
| C. Method of monitoring: Title V Reports and Periodic Review of Requirements                                                                                          | F. Currently in Compliance? (Y or N):                                                             |
|                                                                                                                                                                       | G. Compliance Status? (C or I):                                                                   |
|                                                                                                                                                                       | H. *Excursions, exceedances, or                                                                   |
|                                                                                                                                                                       | other non-compliance? (Y or N):                                                                   |
|                                                                                                                                                                       | *If yes, attach Deviation Summary Form                                                            |



## ANNUAL COMPLIANCE CERTIFICATION PERMIT ATTACHMENT FORM

Period Covered by Compliance Certification: 01/01/23 (MM/DD/YY) to 12/31/23 (MM/DD/YY)

| A. Attachment # or Permit Condition #: Attachment Part 70 General, Conditions #11 - #15                                                                             | D. Frequency of monitoring:                                                                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| B. Description: General Part 70 Permit Conditions                                                                                                                   | Continuous                                                                                        |
| Condition 11 - Facility recognizes that the permit does not provide any specific property<br>rights                                                                 |                                                                                                   |
| Condition 12 - Facility recognizes that the permit provisions are severable.                                                                                        | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable |
| Condition 13 - Facility recognizes that an application for permit renewal is required no more than 18 months and no less than 6 months prior to the expiration date | N/A                                                                                               |
| Condition 14 - Facility recognizes that any document submitted on behalf of this permit must be certified by a responsible official                                 |                                                                                                   |
| Condition 15 - Facility submits a certification of compliance with all applicable requirements to the District and EPA on an annual basis                           |                                                                                                   |
| C. Method of monitoring: Title V Reports and Periodic Review of Requirements                                                                                        | F. Currently in Compliance? (Y or N): Y                                                           |
|                                                                                                                                                                     | G. Compliance Status? (C or I):                                                                   |
|                                                                                                                                                                     | H. *Excursions, exceedances, or                                                                   |
|                                                                                                                                                                     | other non-compliance? (Y or N): <u>N</u>                                                          |
|                                                                                                                                                                     | *If yes, attach Deviation Summary Form                                                            |

| A. Attachment # or Permit Condition #: Attachment PO General, Conditions #1 - #2                                                                                                  | D. Frequency of monitoring:                                                                       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| B. Description: General Permit to Operate Conditions                                                                                                                              | Continuous                                                                                        |
| Condition 1 - Facility recognizes that petitions to review or revise conditions issued on a<br>permit to operate must be submitted within 30 days of receipt of permit to operate |                                                                                                   |
| Condition 2 - Facility maintains copies of the permit reasonably close to the equipment and                                                                                       | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable |
| readily accessible for District review                                                                                                                                            | N/A                                                                                               |
| C. Method of monitoring: Periodic Review of Requirements                                                                                                                          | F. Currently in Compliance? (Y or N): Y                                                           |
|                                                                                                                                                                                   | G. Compliance Status? (C or I):                                                                   |
|                                                                                                                                                                                   | H. *Excursions, exceedances, or                                                                   |
|                                                                                                                                                                                   | other non-compliance? (Y or N):                                                                   |
|                                                                                                                                                                                   | *If yes, attach Deviation Summary Form                                                            |

| A. Attachment # or Permit Condition #: Attachment PO General, Conditions #3 - #4                                                                                                                                                                                                                           | D. Frequency of monitoring:                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| B. Description: General Permit to Operate Conditions                                                                                                                                                                                                                                                       | Continuous                                                                                               |
| Condition 3 - Facility recognizes that equipment that is not permitted as portable is not transferable from one location to another<br>Condition 4 - Facility recognizes that the District may suspend the permit if District is denied access to requested information within a reasonable amount of time | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A |
| C. Method of monitoring: Periodic Review of Requirements                                                                                                                                                                                                                                                   | F. Currently in Compliance? (Y or N): Y                                                                  |
|                                                                                                                                                                                                                                                                                                            | G. Compliance Status? (C or I):                                                                          |
|                                                                                                                                                                                                                                                                                                            | H. *Excursions, exceedances, or                                                                          |
|                                                                                                                                                                                                                                                                                                            | other non-compliance? (Y or N): <u>N</u>                                                                 |
|                                                                                                                                                                                                                                                                                                            | *If yes, attach Deviation Summary Form                                                                   |



## ANNUAL COMPLIANCE CERTIFICATION PERMIT ATTACHMENT FORM

Period Covered by Compliance Certification: 01/01/23 (MM/DD/YY) to 12/31/23 (MM/DD/YY)

| A. Attachment # or Permit Condition #: Attachment SHIELD - D, Da, Db                                                                        | D. Frequency of monitoring:                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. Description: Permit Shield - New Source Performance Standards<br>Facility periodically reviews applicability of identified NSPS subparts | Continuous                                                                                                                                                                                                                   |
|                                                                                                                                             | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A                                                                                                                     |
| C. Method of monitoring: Periodic Review of Potentially Applicable Requirements                                                             | F. Currently in Compliance?       (Y or N): Y         G. Compliance Status?       (C or I): C         H. *Excursions, exceedances, or other non-compliance?       (Y or N): N         *If yes, attach Deviation Summary Form |

| A. Attachment # or Permit Condition #: Attachment 40CFR68RMP-65                   | D. Frequency of monitoring:                                                                              |
|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| B. Description: Risk Management Plan                                              | Annually                                                                                                 |
| The site has a current and complete federal Risk Management Plan on-file with the |                                                                                                          |
| Oxnard Fire Department's Certified Unified Program Agency (CUPA).                 | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A |
| C. Method of monitoring: Risk Management Plan Documentation and Review            | F. Currently in Compliance? (Y or N): Y                                                                  |
|                                                                                   | G. Compliance Status? (C or I):                                                                          |
|                                                                                   | H. *Excursions, exceedances, or                                                                          |
|                                                                                   | other non-compliance? (Y or N): <u>N</u>                                                                 |
|                                                                                   | *If yes, attach Deviation Summary Form                                                                   |

| A. Attachment # or Permit Condition #: Attachment 40CFR72-78                                                           | D. Frequency of monitoring:                                                                                                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. Description: Acid Rain Program<br>Facility maintains records to ensure compliance with monitoring, emission limits, | Continuous                                                                                                                                                                                                                |
| recordkeeping, and reporting requirements.                                                                             | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A                                                                                                                  |
| C. Method of monitoring: Periodic Review of Requirements                                                               | F. Currently in Compliance?       (Y or N):Y         G. Compliance Status?       (C or I):C         H. *Excursions, exceedances, or other non-compliance?       (Y or N):N         *If yes, attach Deviation Summary Form |



## ANNUAL COMPLIANCE CERTIFICATION PERMIT ATTACHMENT FORM

Period Covered by Compliance Certification: 01/01/23 (MM/DD/YY) to 12/31/23 (MM/DD/YY)

| A. Attachment # or Permit Condition #: Attachment 40CFR82                                                                              | D. Frequency of monitoring:                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B. Description: Protection of Stratospheric Ozone<br>Certified contractors are used to conduct any air conditioning work in the plant. | Continuous                                                                                                                                                                                                                |
|                                                                                                                                        | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable<br>N/A                                                                                                                  |
| C. Method of monitoring: Inspection, Notification, and Contractor Records                                                              | F. Currently in Compliance?       (Y or N):Y         G. Compliance Status?       (C or I):C         H. *Excursions, exceedances, or other non-compliance?       (Y or N):N         *If yes, attach Deviation Summary Form |

| A. Attachment # or Permit Condition #: INTENTIONALLY LEFT BLANK | D. Frequency of monitoring:                                                                       |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| B. Description:                                                 |                                                                                                   |
|                                                                 | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable |
| C. Method of monitoring:                                        | F. Currently in Compliance? (Y or N): Y                                                           |
|                                                                 | G. Compliance Status? (C or I):                                                                   |
|                                                                 | H. *Excursions, exceedances, or                                                                   |
|                                                                 | other non-compliance? (Y or N): <u>N</u>                                                          |
|                                                                 | *If yes, attach Deviation Summary Form                                                            |

| A. Attachment # or Permit Condition #: INTENTIONALLY LEFT BLANK | D. Frequency of monitoring:                                                                       |
|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| B. Description:                                                 |                                                                                                   |
|                                                                 | E. Source test reference method, if applicable.<br>Attach Source Test Summary Form, if applicable |
|                                                                 | *                                                                                                 |
| C. Method of monitoring:                                        | F. Currently in Compliance? (Y or N): Y                                                           |
|                                                                 | G. Compliance Status? (C or I):                                                                   |
|                                                                 | H. *Excursions, exceedances, or                                                                   |
|                                                                 | other non-compliance? (Y or N): <u>N</u>                                                          |
|                                                                 | *If yes, attach Deviation Summary Form                                                            |



## ANNUAL COMPLIANCE CERTIFICATION

## SOURCE TEST SUMMARY FORM

### Period Covered by Compliance Certification: 01/01/23 (MM/DD/YY) 12/31/23 (MM/DD/YY)

| A. Emission Unit Descrip                                                | B. Pollutant: NO <sub>x</sub>               |                                                                                           |               |
|-------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------|---------------|
| C. Measured Emission Rate:<br>Insufficient runtime to<br>require a RATA | D. Limited Emission Rate:<br>0.10 lbs./NMWh | E. Specific Source Test or<br>Monitoring Record Citation:<br>Attachment 59N1, Condition 1 | F. Test Date: |

| A. Emission Unit Descrip                                                        | B. Pollutant: NH <sub>3</sub>                                  |                                                                                           |               |
|---------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------|
| C. Measured Emission Rate:<br>Insufficient runtime to<br>require a Ammonia Slip | <ul> <li>D. Limited Emission Rate:</li> <li>10 ppmv</li> </ul> | E. Specific Source Test or<br>Monitoring Record Citation:<br>Attachment 59N1, Condition 3 | F. Test Date: |

| A. Emission Unit Description:      | B. Pollutant: NO <sub>x</sub>               |                                                                                           |                             |
|------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------|
| C. Measured Emission Rate:<br>0.0% | D. Limited Emission Rate:<br>0.10 lbs./NMWh | E. Specific Source Test or<br>Monitoring Record Citation:<br>Attachment 59N1, Condition 1 | F. Test Date:<br>05/23/2023 |

| A. Emission Unit Description:                         | B. Pollutant: NH <sub>3</sub>        |                                                                                           |                             |
|-------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------|-----------------------------|
| C. Measured Emission Rate:<br>2.3 @ 3% O <sub>2</sub> | D. Limited Emission Rate:<br>10 ppmv | E. Specific Source Test or<br>Monitoring Record Citation:<br>Attachment 59N1, Condition 3 | F. Test Date:<br>05/23/2023 |



## ANNUAL COMPLIANCE CERTIFICATION DEVIATION SUMMARY FORM

Period Covered by Compliance Certification: 01/01/23 (MM/DD/YY) 12/31/23 (MM/DD/YY)

| A. Attachment # or Permit Condition #: | B. Equipment description | :                            | C. Deviation Period: Date & Time |
|----------------------------------------|--------------------------|------------------------------|----------------------------------|
| There were no deviations in 2023       |                          |                              | Begin:                           |
| There were no deviations in 2023       |                          |                              | End:                             |
|                                        |                          |                              | When Discovered:                 |
|                                        |                          |                              |                                  |
| D. Parameters monitored:               | E. Limit:                |                              | F. Actual:                       |
|                                        |                          |                              |                                  |
| G. Probable Cause of Deviation:        |                          | H. Corrective actions taken: |                                  |
|                                        |                          |                              |                                  |
|                                        |                          |                              |                                  |
|                                        |                          |                              |                                  |

| A. Attachment # or Permit Condition #: | B. Equipment description | :                            | C. Deviation Period: Date & Time<br>Begin: |
|----------------------------------------|--------------------------|------------------------------|--------------------------------------------|
|                                        |                          |                              | End:                                       |
|                                        |                          |                              | When Discovered:                           |
|                                        |                          |                              |                                            |
| D. Parameters monitored:               | E. Limit:                |                              | F. Actual:                                 |
|                                        |                          |                              |                                            |
| G. Probable Cause of Deviation:        |                          | H. Corrective actions taken: |                                            |
|                                        |                          |                              |                                            |
|                                        |                          |                              |                                            |
|                                        |                          |                              |                                            |

| B. Equipment description |                              | C. Deviation Period: Date & Time<br>Begin: |
|--------------------------|------------------------------|--------------------------------------------|
|                          |                              | End:                                       |
|                          |                              | When Discovered:                           |
|                          |                              |                                            |
| E. Limit:                |                              | F. Actual:                                 |
| _                        | H. Corrective actions taken: |                                            |
|                          |                              |                                            |

## 2023 ANNUAL COMPLIANCE CERTIFICATION ATTACHMANTS

ORMOND BEACH GENERATING STATION PERMIT NO. 00065

## **AMMONIA SLIP TEST**

## TEST REPORT FOR 2023 ANNUAL AMMONIA SLIP TEST AT ORMOND BEACH POWER, LLC UNIT 2

**Prepared For:** 

## Ormond Beach Power, LLC Ormond Beach Generating Station

6635 S. Edison Drive Oxnard, California 93033

For Submittal To:

## **Ventura County Air Pollution Control District**

4567 Telephone Road, 2<sup>nd</sup> Floor Ventura, California 92876

Prepared By:

### Montrose Air Quality Services, LLC

1631 E. St. Andrew Pl. Santa Ana, California 92705 (714) 279-6777

Matt McCune

 Test Date:
 May 23, 2023

 Production Date:
 June 7, 2023

 Report Number:
 W002AS-026975-RT-4716





### **CONFIDENTIALITY STATEMENT**

Except as otherwise required by law or regulation, this information contained in this communication is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it.



### **REVIEW AND CERTIFICATION**

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

| Signature: | MA MC       | Date:  | 6/7/2023                |  |
|------------|-------------|--------|-------------------------|--|
| Name:      | Matt McCune | Title: | Regional Vice President |  |

I have reviewed, technically and editorially, details, calculations, results, conclusions, and other appropriate written materials contained herein. I hereby certify that, to the best of my knowledge, the presented material is authentic, accurate, and conforms to the requirements of the Montrose Quality Management System and ASTM D7036-04.

| Signature: | Michal Manta          | Date:  | 6/7/2023              |
|------------|-----------------------|--------|-----------------------|
| Name:      | Michael Chowsanithhon | Title  | Penorting Hub Manager |
| Name:      | Michael Chowsanitphon | Title: | Reporting Hub Manager |



### TABLE OF CONTENTS

| <u>SEC</u>       | TION   | PA                                  | <u>GE</u> |
|------------------|--------|-------------------------------------|-----------|
| 1.0              | INTRO  | ODUCTION AND SUMMARY                | 5         |
| 2.0              | UNIT   | AND CEMS DESCRIPTION                | 6         |
|                  | 2.1    | UNIT DESCRIPTION                    | 6         |
|                  | 2.2    | CEMS DESCRIPTION                    | 6         |
|                  | 2.3    | TEST CONDITIONS                     | 6         |
|                  | 2.4    | SAMPLE LOCATION                     | 6         |
| 3.0              | TEST   | DESCRIPTION                         | 7         |
| 4.0              | TEST   | RESULTS AND OVERVIEW                | 8         |
|                  | 4.1    | TEST RESULTS                        | 8         |
|                  | 4.2    | TEST OVERVIEW                       | 8         |
| LIS <sup>.</sup> | T OF A | PPENDICES                           |           |
| А                | TEST   | DATA                                | 9         |
|                  | A.1    | Sample Location Data                | .10       |
|                  | A.2    | Sample Data Sheets                  | .12       |
|                  | A.3    | Laboratory Data                     | .16       |
|                  | A.4    | QA/QC Data                          | .19       |
| В                | FACIL  | ITY CEMS DATA                       | .23       |
| С                | CALC   | ULATIONS                            | .30       |
|                  | C.1    | General Emissions Calculations      | .31       |
|                  | C.2    | Spreadsheet Summaries               | .35       |
| D                | QUAL   | ITY ASSURANCE                       | .38       |
|                  | D.1    | Quality Assurance Program Summary   |           |
|                  | D.2    | STAC Certification                  | .45       |
|                  | D.3    | Individual QI Certificates          | .47       |
| LIS              | Г OF T | ABLES                               |           |
| 1-1              | AMM    | IONIA SLIP TEST RESULTS SUMMARY     | 5         |
| 4-1              | AMM    | IONIA SLIP TEST RESULTS             | 8         |
| LIS              | l of f | IGURES                              |           |
| 3-1              | BAA    | QMD METHOD ST-1B SAMPLING EQUIPMENT | 7         |



### 1.0 INTRODUCTION AND SUMMARY

Montrose Air Quality Services, LLC (MAQS) was contracted by Ormond Beach Power, LLC (Ormond Beach) to perform the annual ammonia slip test at Ormond Beach Unit 2 as required by Authority to Construct Number 0065, Condition Number 11. This report documents the results of the ammonia slip test performed on May 23, 2023. The test was conducted in accordance with the test plan Document Number W002AS-026975-PP-750 submitted to Ormond Beach on April 21, 2023. The test was performed by Matt McCune, Luis Olivares, Leandrew Escobeda, and Adrian Enwright of MAQS. Matt McCune was the on-site Qualified Individuals for MAQS. Roger Kahle and Mike Escarcega of Ormond Beach Power, LLC coordinated and documented unit operation during the test. Ed Swede of the Ventura County Air Pollution Control District was on-site to witness the NH<sub>3</sub> slip test.

The test consisted of triplicate, 36-minute, ammonia tests which were performed while the unit was operating at a steady operating condition of 264 megawatts. The results of the tests are summarized in Table 1-1. The table shows that the ammonia slip from this unit was less than the permitted limit of 10 ppm corrected to  $3\% O_2$ .

Section 2.0 of this document provides a brief description of the unit, test conditions, sample location, and CEMS. Details of the test procedures are provided in Section 3.0. Section 4.0 provides the results of the test. All raw data, calculations, quality assurance data, unit operating conditions, and CEMS data are provided in the appendices.

#### TABLE 1-1 AMMONIA SLIP TEST RESULTS SUMMARY ORMOND BEACH GENERATING STATION UNIT 2 MAY 23, 2023

| Parameter/Units           | Average Measured Value | Permit Limit |  |
|---------------------------|------------------------|--------------|--|
| Load, MW                  | 264                    |              |  |
| <b>O</b> <sub>2</sub> , % | 4.92                   |              |  |
| NH <sub>3</sub>           |                        |              |  |
| ppm                       | 2.1                    |              |  |
| ppm @ 3% O <sub>2</sub>   | 2.3                    | 10           |  |
| lb/hr                     | 2.8                    |              |  |
| lb/MMBtu                  | 0.0010                 |              |  |
| lb/MMSCF                  | 1.10                   |              |  |



### 2.0 UNIT AND CEMS DESCRIPTION

#### 2.1 UNIT DESCRIPTION

Unit 2 at the Ormond Beach Generating Station consists of a utility boiler and steam turbine electric generator. The boiler and generator have a full load rating of 750 megawatts. The boiler is fired on natural gas only. The unit is equipped with selective catalytic reduction (SCR) for  $NO_x$  reduction.

#### 2.2 CEMS DESCRIPTION

NO<sub>x</sub> emissions from the unit is monitored by a dry, extractive Continuous Emission Monitoring System (CEMS). Stack flow rate is determined from fuel flow rate, O<sub>2</sub> concentration, standard F-Factor, and fuel higher heating value using EPA Method 19.

#### 2.3 TEST CONDITIONS

The test was performed on May 23, 2023, with the unit operating at 35% of full load (264 megawatts). The test was performed while the unit was firing natural gas and operating under normal conditions. Unit operation was established by the operators and unit operations data are contained in the facility CEMS 1-minute printouts in the Appendix.

#### 2.4 SAMPLE LOCATION

The reference method measurements were made from sample ports accessible from the stack sampling platform on the unit. There are four six-inch sample ports equally spaced at this location. The sample ports are located greater than 2.0 diameters downstream of the nearest flow disturbance and greater than 0.5 diameters from the stack exit. A diagram of the sample location and traverse points is located in Appendix A.1.



### 3.0 TEST DESCRIPTION

The test consisted of triplicate, 36-minute, flue gas samples which were collected nonisokinetically using Bay Area Air Quality Management District (BAAQMD) Method ST-1B. The sample gas was drawn through a Teflon sample line, two impingers each containing 100 ml of 0.1N HCl, an empty impinger, an impinger containing silica gel, and a dry gas meter. The test was performed using a 12-point traverse. Each traverse point was selected using EPA Method 1 and sampled for 3 minutes. The contents of the sample line and the first three impingers were recovered and analyzed by BAAQMD ST-1A and ST-1B for ammonia concentration by ion specific electrode analysis. A diagram of the sampling equipment is presented as Figure 3-1.

Stack  $O_2$  concentration and volumetric flow rate data were recorded from the certified Continuous Emission Monitoring System (CEMS) which is installed on the unit. These data were used to correct the ammonia concentration to 3%  $O_2$  and to calculate the ammonia mass emission rate in units of pounds per hour.

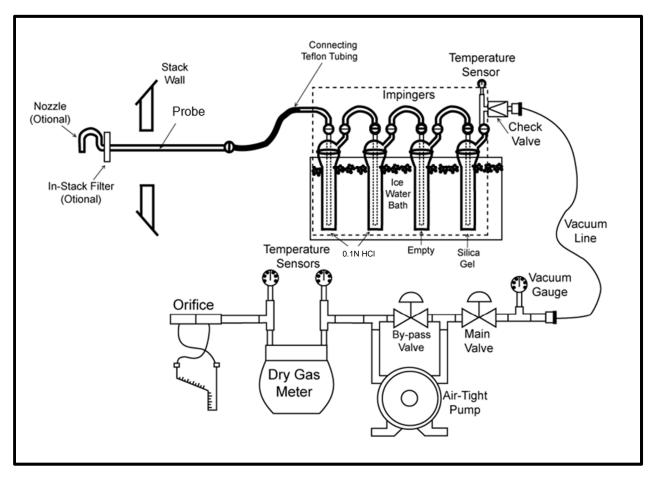



FIGURE 3-1 BAAQMD METHOD ST-1B SAMPLING EQUIPMENT



### 4.0 TEST RESULTS AND OVERVIEW

#### 4.1 TEST RESULTS

The results of the test are presented in Table 4-1. The results show that the average ammonia slip was 2.3 ppm @ 3% O<sub>2</sub> which is less than the permitted limit of 10 ppm @ 3% O<sub>2</sub>.

| MAY 23, 2023                                                     |                                     |                                     |                                     |                                     |                |  |
|------------------------------------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|----------------|--|
| Parameter/Units                                                  | 1-NH <sub>3</sub>                   | <b>2-NH</b> ₃                       | 3-NH₃                               | Average                             | Limit          |  |
| Time                                                             | 1120/1159                           | 1215/1255                           | 1303/1342                           |                                     |                |  |
| Load, MW                                                         | 262.9                               | 263.6                               | 264.7                               | 263.7                               |                |  |
| Stack Flow, dscfm @ T <sub>ref</sub> <sup>(1)</sup>              | 512,000                             | 516,300                             | 518,000                             | 515,433                             |                |  |
| <b>O</b> <sub>2</sub> , % <sup>(1)</sup>                         | 4.93                                | 4.93                                | 4.91                                | 4.92                                |                |  |
| NO <sub>x</sub> <sup>(1)</sup><br>ppm<br>ppm @ 3% O <sub>2</sub> | 5.90<br>6.6                         | 5.86<br>6.6                         | 5.87<br>6.6                         | 5.88<br>6.6                         |                |  |
| NH₃<br>ppm @ 3% O₂<br>lb/hr<br>lb/MMBtu<br>lb/MMSCF              | 2.4<br>2.7<br>3.3<br>0.0012<br>1.29 | 1.9<br>2.2<br>2.7<br>0.0010<br>1.03 | 1.9<br>2.1<br>2.6<br>0.0009<br>0.98 | 2.1<br>2.3<br>2.9<br>0.0010<br>1.10 | <br>10<br><br> |  |

#### TABLE 4-1 AMMONIA SLIP TEST RESULTS ORMOND BEACH UNIT 2 MAY 23, 2023

(1) From facility CEMS

#### 4.2 TEST OVERVIEW

The test program was successful in meeting the program objectives. The sample trains were leak checked before and after the test and all QA/QC requirements of BAAQMD Method ST-1B were satisfied.



Ormond Beach Power, LLC – Ormond Beach Generating Station 2023 Unit 2  $\ensuremath{\mathsf{NH}}_3$ 

## APPENDIX A TEST DATA



Ormond Beach Power, LLC – Ormond Beach Generating Station 2023 Unit 2  $\ensuremath{\mathsf{NH}}_3$ 

## Appendix A.1 Sample Location Data



MONTROSE MR. QUALITY SERVICES

## METHOD 1 DATA SHEET SAMPLE LOCATION

Client: Ormond Beach Power, LLC Date: 5/23/23 Sample Location: Unit 2 Performed By: MM Diameters > 0.5 0 384 inches > 2.0 Diameters Diameter (in.) 384.0 Sample % of Dist from Dist from Point Diameter Wall (inches) Port (inches) Upstream (ft.) > 64.0 1 4.4 16.9 28.9 2 14.6 56.1 68.1 Downstream (ft.) 3 29.6 > 16.0 113.7 125.7 Coupling (in.) 12.0 Stack Area (ft<sup>2</sup>) 804.25

🧤 I' AIR QUALITY SERVI

Ormond Beach Power, LLC – Ormond Beach Generating Station 2023 Unit 2  $\ensuremath{\mathsf{NH}}_3$ 

## Appendix A.2 Sample Data Sheets



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                      |                                  | AY AREA       | BAY AREA AQMD AMMONIA WE                                                     | IONIA W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | /ET CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EMICAL S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | YSTEM DA             | ITA ANI                             | D WORK                                                                                                                                                         | SHEET                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|---------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| CLIENT: GenOn Ener<br>DATE: DATE: | ClenOn<br>ON: Water<br>OR: LE<br>BOX NO:<br>AREA, FT<br>AREA, FT<br>AREA, FT<br>AREA, FT<br>AREA, FT<br>AREA, FT<br>AREA, FT<br>AREA, FT<br>AREA, FT |                                  | D.O.          | AMBII<br>BARC<br>ASSU<br>ASSU<br>ASSU<br>ASSU<br>ASSU<br>ASSU<br>ASSU<br>ASS | AMBIENT TEMPERATURE:<br>BAROMETRIC PRESSURE:<br>ASSUMED MOISTURE:<br>PITOT TUBE COEFF, CP:<br>PROBE ID NO/MATERIAL:<br>PROBE LENGTH: 12 AE<br>NOZZLE ID NO/ MATERIAL:<br>NOZZLE ID NO/ MATERIAL:<br>PROBE LENGTH: 20<br>FILTER NO/TYPE:<br>PRE-TEST LEAK RATE: 20<br>PROFT-TEST LEAK RA | REATURE:<br>STURE:<br>STURE:<br>ATERIAL:<br>CODY:<br>RECK - PRIAL:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CODY:<br>CO | EE: 61°<br>MA<br>AL: 729.00<br>AL: 7 | AMBIENT TEMPERATURE: 61°<br>BAROMETRIC PRESSURE: 29.80<br>ASSUMED MOISTURE: 29.80<br>PITOT TUBE COEFF, CP: NA<br>PROBE ID NO/MATERIAL: 7610A<br>PROBE LENGTH: 1246<br>NOZZLE DIAMETER: 1246<br>NOZZLE DIAMETER: 1246<br>NOZZLE DIAMETER: 1246<br>PRE-TEST LEAK RATE: 20.005 CFM@ 15<br>PRE-TEST LEAK RATE: 20.005 PRE-TEST LEAK RATE: 20.005 PRE-TEST LEAK PRE-TEST LEAK RATE: 20.005 PR | H H H H              | 적 100 101 14 100 107 1 <u>-</u><br> | Imp. # Contents       1     0.1N HCL       2     0.1N HCL       3     Empty       4     Silica Gel       5     LR       6     IR       6     IR       6     IR | Its Post-Test - Pre-<br>CL 854.7<br>CL 615.4<br>637.9<br>381 871.1 | - Pre-Test = Dif<br>- Pre-Test = | Post-Test - Pre-Test = Difference<br>859.7 665.2<br>637.9 694.7<br>637.9 63.9<br>871.1 362.6 |
| Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Time                                                                                                                                                 | Meter<br>Volume, ft <sup>3</sup> | ∆P<br>in. H₂O | AH<br>in. H2O                                                                | Stack<br>Temp, °                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | p, °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Probe<br>Temp, °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Filter<br>Temp, °F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Imp. Out<br>Temp, °F | Meter 7                             | Meter Temp, °F<br>In Out                                                                                                                                       | Vacuum<br>in. Hg.                                                  | 6 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Pstatic<br>in. H <sub>2</sub> O                                                              |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1120                                                                                                                                                 | 684 530                          | N A           | 115                                                                          | I NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57                   | 64                                  | 66                                                                                                                                                             | ŝ                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |
| ત                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1123                                                                                                                                                 | 686.650                          | -             | 1.5                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 57                   | 64                                  | 66                                                                                                                                                             | 2                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1120                                                                                                                                                 | 689.840                          |               | 5                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55                   | 62                                  | 65                                                                                                                                                             | 5                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |
| ي<br>ب                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1124                                                                                                                                                 | <u> </u>                         | -             | 1                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ( ]                  | 1                                   | (                                                                                                                                                              | (                                                                  | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11.50                                                                                                                                                | 641.020                          |               | 1,5                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57                   | 67                                  | 62                                                                                                                                                             | 5                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |
| ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 001                                                                                                                                                  | 001.200                          |               | 0                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57                   | 49                                  | 65                                                                                                                                                             | 5                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 921                                                                                                                                                  | 642.400                          |               | Q1                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 57                   | t9                                  | 65                                                                                                                                                             | 6                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |
| <u>ې</u> و                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1201                                                                                                                                                 | 04 - 10                          |               | 2                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.2                  | 197                                 | ( )                                                                                                                                                            | 1 2                                                                | {                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |
| t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 014                                                                                                                                                  |                                  |               | 24                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 20                   | 00                                  | 00                                                                                                                                                             | 01                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 11 46                                                                                                                                                | -                                |               | 120                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 X<br>X             | 080                                 | 003                                                                                                                                                            | 04                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |
| 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1149                                                                                                                                                 | 1.0                              |               | ì                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | >1                   | 31                                  |                                                                                                                                                                | -1                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1150                                                                                                                                                 | 703.690                          |               | ۰ <i>5</i>                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58                   | 69                                  | 40                                                                                                                                                             | Ŷ                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 153                                                                                                                                                  | 705.880                          |               | 1.5                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58                   | 69                                  | 29                                                                                                                                                             | -v                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1156                                                                                                                                                 | 1.1                              |               | 1 105                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 58                   | 69                                  | 64                                                                                                                                                             | v.                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |
| Ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 159                                                                                                                                                  |                                  | 11/           | 1                                                                            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                    |                                     | 1                                                                                                                                                              |                                                                    | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                      |                                  | 2             | R                                                                            | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | >                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |                                     | E                                                                                                                                                              |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |
| Average:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                      | 25450                            | 1             | 2                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | 06                                  | 6.6                                                                                                                                                            |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |
| Commente.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                      |                                  |               |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | )                                   |                                                                                                                                                                |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |
| )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                      |                                  |               |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                     |                                                                                                                                                                |                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |

DS901067 Master Document Storage/Forms\Datasheets\Field Datasheets

Date of last revision 2/10/2017

W002AS-026975-RT-4716

13 of 51

Comments:

26.565

Average:

Date of last revision 2/10/2017

\*LE 55/123/23

DS901067 Master Document Storage/Forms\Datasheets\Field Datasheets

OIH

14 of 51

|                                                                          | Test - Pre-Test = Difference<br>949,9 665,3<br>699,2 696,4<br>639, 637,9<br>878,7 871.1<br>20<br>20<br>21<br>21<br>22<br>23<br>24<br>24<br>20<br>24<br>20<br>24<br>20<br>24<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20<br>20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | % in H2O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | DS834049                                                  |
|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
| g                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vacuum<br>in Hor Nor Nor Nor Nor J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Datasheets                                                |
| ドナ 人とろ いよう<br>WET CHEMICAL SAMPLING SYSTEM DATA AND WORKSHEET – STANDARD | Imp. # Contents<br>$\frac{1}{10000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Meter Temp, F<br>Meter Temp, F<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H<br>H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Master Document Storage\Forms\Datasheets\Field Datasheets |
| ORKSHEE"                                                                 | 10. Hg.<br>10. Hg.<br>た<br>人<br>た                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Temp. Out<br>Temp. Temp.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ge\Forms\Dat                                              |
| ATA AND W                                                                | A<br>A<br>CFM@ /5<br>CFM@ /5<br>CFM@ /5<br>CFM@ /5<br>CFM@ /5<br>CFM@ /5<br>CFM@ /5<br>CFM@ /5<br>CFM@ /5<br>CFM@ /5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Filter<br>NA<br>NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | sument Stora                                              |
| SYSTEM D                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Probe<br>VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Master Doo                                                |
| N H                                                                      | AMBIENT TEMPERATURE: 10<br>BAROMETRIC PRESSURE: 24.00<br>ASSUMED MOISTURE: 24.00<br>ASSUMED MOISTURE: 24.00<br>PROBE ID NOIMATERIAL: 14.10<br>PROBE LENGTH: 2.11<br>NOZZLE ID NOIMATERIAL: 14.10<br>NOZZLE ID NOIMATERIAL: 14.10<br>NOZZLE ID NOIMATERIAL: 14.10<br>NOZZLE ID NOIMATERIAL: 14.10<br>PRE-TEST LEAK RATE: 20.005<br>CFM@<br>POST-TEST LEAK RATE: 20.005<br>CFM@<br>POS                                                                                                                                                                                                                                                                                                                                   | Stack<br>MA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | of                                                        |
| CHEMICAL                                                                 | AMBIENT TEI<br>BAROMETRIQ<br>ASSUMED M<br>PITOT TUBE<br>PROBE ID NO<br>PROBE IE NO<br>NOZZLE DIAI<br>PRE-TEST LE<br>PRE-TEST LE<br>PRE-TEST LE<br>PRE-TEST LE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | in H20<br>Los 1<br>Los | Page                                                      |
| 3A7<br>WET                                                               | VIPOINT: 3<br>VIPOINT: 3<br>VIPOINT: 3<br>VIPOINT: 3<br>VIPOINT: 3<br>VIPOINT: 3<br>VIPOINT: 3<br>VIPOINT: 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | In H20<br>MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                           |
|                                                                          | TENERY OFMOND<br>2023<br>12023<br>12023<br>12023<br>12023<br>12023<br>12021<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>1202<br>120 | Meter<br>Volume, ft <sup>3</sup><br>742, 158<br>744, 340<br>750, 400<br>751, 1530<br>751, 1530<br>752, 400<br>752, 400<br>752, 400<br>752, 400<br>752, 400<br>752, 400<br>752, 400<br>762, 920<br>762, 920<br>767, 920<br>777, 9200<br>777, 9200<br>7777, 9200<br>777, 9200<br>777, 9200, 9200, 9200, 9200, 9                                                                                                                                                                                                                                                                                                                                                    | on 2/14/2017                                              |
|                                                                          | CLIENT: GenOn Energy Or M<br>LOCATION: Vart &<br>DATE: 05/23/2023<br>RUN NO: 05/23/2023<br>RUN NO: 05/23/2023<br>RUN NO: 05/23/2023<br>RUN NO: 05/23/2023<br>STACK AREA FT2: 001,25<br>STACK AREA, FT2: 001,25<br>STACK AREA, FT2: 001,25<br>TRAVERSE POINTS, MIN/POINT:<br>AH= 1.55 X AP:<br>TRAVERSE POINTS, MIN/POINT:<br>Probe Condition, pre/post test: 900<br>Silica Gel Expanded, Y/N: N<br>Filter Condition after Test: MA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Point Time<br>Point Point Time<br>Point Point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Date of last revision 2/14/2017                           |
|                                                                          | - 근 검 준 은 및 및 및 등 은 복 운 등 분 중<br>002AS-026975-RT-4716<br>02AS-026975-RT-4716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15 of 51<br>15 of 51<br>15 of 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Dai                                                       |

--

### Appendix A.3 Laboratory Data





#### Ammonia by Ion Selective Electrode Analysis District Method: BAAQMD Method 1A

| Project #:<br>Client/Location; | PROJ-026975<br>Ormund Beach | 1st Cal F | Point 1 | .0 ppm NH | l. as N | Sample Date:<br>Analysis Date: | 5/23/2023<br>5/23/2023 |
|--------------------------------|-----------------------------|-----------|---------|-----------|---------|--------------------------------|------------------------|
| Sample Location:               | Unit 2                      |           |         | 0 ppm N   |         | Analyst's Initials:            | AE                     |
| Test #'s:                      | 1-NH3 to 3-NH3              |           | -56.7   | ••        | •       | Value (-57 ±3)                 | <u> </u>               |
|                                |                             | 0.0p0.    | ••••    |           |         | ( 01 ±0)                       |                        |
| Sample                         | NH <sub>3</sub> conc.       | Aliquot   | DF      | Spike     | TV, ml  | µg NH₃/                        | Comments               |
|                                | µg/ ml, as N                | ml        |         | µg/ml     |         | sample                         |                        |
|                                |                             |           |         | as N      |         |                                | % Recovery             |
| Standard Check:                | 3.84                        | 49        | 1       | 0         |         |                                | 96.0                   |
| 4 μg NH <sub>3</sub> /ml       | _                           |           |         |           |         |                                |                        |
| 1-NH <sub>3</sub>              | 1.77                        | 49        | 1       | 0         | 576.0   | 1263.25                        |                        |
| 2-NH <sub>3</sub>              | 1.43                        | 49        | 1       | 0         | 588.8   | 1043.27                        |                        |
| 3-NH <sub>3</sub>              | 1.30                        | 49        | 1       | 0         | 581.5   | 936.67                         |                        |
| Standard Check:                | 3.85                        | 49        | 1       | 0         |         |                                | 96.3                   |
| 4 µg NH₃/ml                    |                             |           |         |           |         |                                |                        |
|                                | _                           |           |         |           |         |                                |                        |
|                                |                             |           |         |           |         |                                |                        |
|                                |                             |           |         |           |         |                                |                        |
|                                |                             |           |         |           |         |                                |                        |
|                                |                             |           |         |           |         |                                |                        |
|                                | -                           |           |         |           |         |                                |                        |
|                                |                             |           |         |           |         |                                |                        |
|                                |                             |           |         |           |         |                                |                        |
|                                |                             |           |         |           |         |                                |                        |
|                                |                             |           |         |           |         |                                |                        |
|                                |                             |           |         |           |         |                                |                        |
|                                |                             |           |         |           |         |                                |                        |
|                                |                             |           |         |           |         |                                |                        |

Notes:

Total volume of samples and standards used: 49ml

Volume of pH adjusting ISA used in ml: 1 ml

Absorbing solution: 0.1 N HCI

DF = Dilution Factor. DF = 1 if no dilution is made, = 2 if concentration is diluted 50%.

Dilution Factor = Volume diluted to / sample aliquot

Calculations:

mg NH<sub>3</sub>/sample = (mg/ ml NH3 as N - Spike) x 50 ml/ Al ml x DF x TV x 17 / 14

mg/sample = (mg /sample)/ 1000

ppm NH<sub>3</sub> = mg NH<sub>3</sub>/sample x 1/Vmstd x 1/454000 x SV/17 x 106



### AMMONIA BY ION SELECTIVE ELECTRODE ANALYSIS

| Project #: PROT-026975        | District Method: BAAQMD Method 1A Sample Date: 5/23/202                                       | 3 |
|-------------------------------|-----------------------------------------------------------------------------------------------|---|
| Client/Location: Ormund Beach | 1 <sup>st</sup> Calibration Point: <u>1.0 ppm NH<sub>3</sub> as N Analysis Date</u> : 5/23/20 |   |
| Sample Location:              | 2 <sup>nd</sup> Calibration Point: 10.0 ppm NH <sub>3</sub> as N Analyst's Initials: A E      |   |
| Test #s: 1-NH3 to 3-NH3       | Slope:56. 7 Acceptable Value (-57 ±3)                                                         |   |

| Sample                                            | NH <sub>3</sub> conc.<br>µg/ ml, as N | Aliquot<br>ml | DF | Spike<br>µg/ml<br>as N | TV, mł | µg NH₃/<br>sample | Comments       |
|---------------------------------------------------|---------------------------------------|---------------|----|------------------------|--------|-------------------|----------------|
| <b>Standard Check:</b><br><u>4</u> µg NH5/ml as N | 3.84                                  | 49            | 1  | 0                      |        |                   | 96% Recover    |
|                                                   |                                       |               |    |                        |        |                   |                |
| 1-NH3                                             | 1.77                                  | 49            | 1  | 0                      | 576.0  | 1263.25           |                |
| 2-NH3                                             | 1.43                                  | 49            | l  | 0                      | 588.8  | 1043.27           |                |
| 3-NH3                                             | 1-30                                  | 49            | 1  | 0                      | 581.5  | 936.67            |                |
| Stondard Check<br>4 19 NH3/m 45N                  | 3.85                                  | 49            | 1  | G                      |        |                   | 46.3 / Recover |
|                                                   |                                       |               |    |                        |        |                   |                |
|                                                   |                                       |               |    |                        |        |                   |                |
|                                                   |                                       |               |    |                        | 2      |                   |                |
|                                                   |                                       |               |    | 40 C                   |        | 3                 |                |
|                                                   |                                       |               |    |                        |        |                   |                |
| ·/                                                |                                       |               |    |                        |        |                   |                |
|                                                   |                                       |               |    |                        |        |                   |                |
|                                                   |                                       |               |    |                        |        |                   |                |

| Notes:           | Total volume of samples and standards used: 39 mL                                                             |  |
|------------------|---------------------------------------------------------------------------------------------------------------|--|
|                  | Volume of pH adjusting ISA used in ml:                                                                        |  |
|                  | Absorbing solution: 0.1 N HU                                                                                  |  |
|                  | DF = Dilution Factor. DF = 1 if no dilution is made, = 2 if concentration is diluted 50%.                     |  |
| Calculations:    | μg NHs/sample = (μg/ ml NHs as N - Spike) x 50 ml/ Al ml x DF x TV x 17 / 14<br>mg/sample = μg /sample + 1000 |  |
|                  | ppm NH <sub>3</sub> = mg NH <sub>3</sub> /sample x 1/Vmstd x 1/454000 x SV/17 x 10 <sup>8</sup>               |  |
|                  | ROSE DODD 100                                                                                                 |  |
| Date of last rev | vision 2/14/2017 Master Document Storage\Forms\Datasbeets\Lab Form                                            |  |

W002AS-026975-RT-4716

## Appendix A.4 QA/QC Data



SEMI-ANNUAL DRY GAS METER/ORIFICE CALIBRATION

| Mixed and the cubic | FIREADINGS         Final Temps.           Initial Temps.         Final Temps.           Initial Temps.         Final Temps.           Initial Temps.         Final Temps.           Initial Temps.         Initial Temps.           Initial Temps.         Final Temps.           Inlet         Outlet         Initial Temps.           Initial Temps.         Final Temps.           Initial Temps.         Final Temps.           69.0         68.0         69.0         68.0           71.0         67.0         70.0         67.0           71.0         67.0         71.0         67.0           71.0         67.0         71.0         67.0           71.0         67.0         71.0         67.0           71.0         65.0         71.0         65.0           71.0         65.0         71.0         65.0           71.0         65.0         71.0         65.0           71.0         65.0         71.0         65.0           71.0         65.0         71.0         65.0           71.0         65.0         71.0         65.0           71.0         65.0         71.0         65.0 | Il Termps.<br>Il Termps.<br>Il Termps.<br>Final Termps.<br>65.0 69.0 69.0 69.0 69.0 67.0 65.0 65.0 65.0 65.0 65.0 65.0 77.1 65.0 65.0 77.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | File Modified Form, AFEK S23 Series Meer box Calibration<br>4(1)         Deriv GAS METER READMOS           Annotes         Volume<br>(min)         Volume<br>(min)         Volume<br>(min)         Final         Final         Final           m1         m1         main         Final         Final         Final         Final         Final           m1         m1         main         Final         Final         Final         Final         Final           m1         200         135.775         1135/90         135.775         1135/90         550         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690         690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PRY GAS METER READINGS           me         Volume         Initial Termps.         Final Termps.           me         5560         69.0         68.0         70.0         68.0           710         5540         69.0         68.0         71.0         65.0         69.0           710         5410         71.0         67.0         71.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0         65.0 <th>DRY GAS METER READINGS           Final Temps.         Final Temps.           Fino Toto Toto Toto Toto Toto Toto Toto To</th> | DRY GAS METER READINGS           Final Temps.         Final Temps.           Fino Toto Toto Toto Toto Toto Toto Toto To |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ETER READINGS<br>Initial Temps<br>Initial Temps<br>(499. f) (49. c)<br>(499. f) (49. c)<br>(499. f) (49. c)<br>(499. f) (49. c)<br>(49. c) (49. c) (49. c)<br>(49. c) (49. c) (49. c)<br>(49. c) (49. c) | DRY GAS METER READINGS           me         DRY GAS METER READINGS           me         Volume         Initial Terms           ni         cut ni         cut of<br>(deg f)         out<br>of<br>(deg f)         out<br>of<br>(deg f)           rol         cut ni         (cut ni)         (deg f)         out<br>of<br>(deg f)         out<br>of<br>(deg f)         out<br>of<br>(deg f)           rol         5.560         69.0         69.0         66         67.0         67           rol         5.140         71.0         66         70.0         67         66           rol         5.160         71.0         66         63.0         63.0         63.0           rol         5.160         71.0         66         63.0         63.0         63.0         63.0           rol         (terns)         (terns)         71.0         65         63.0         63.0           rol         5.160         71.0         65         5.202         63.0         63.0         63.0           rol         (terns)         (terns)         (cut n)         vortation         71.0         65         63.0           rol         157.4         5.322         5.441         vortation         71.0         63 <td>DRY GAS METER READINGS           mm         Volume         Initial Temps           mm         Curtin         (deg F)         (det<br/>0           mm         5.540         69.0         66           mm         5.540         71.0         67           mm         5.410         71.0         67           mm         5.140         71.0         66           mm         Volume         71.0         67           mm         Volume         71.0         63           mm         Volume</td> <td>DRY GAS METER READINGS           re         Volume         Volume         Volume         Mail Tenna           re         Volume         Volume         Volume         Volume         Volume         Out           00         102400         135.775         5.560         69.0         67         69           00         135.775         141.335         5.560         69.0         67         67           00         113.610         113.610         113.610         5410         71.0         67           00         113.510         113.510         113.610         5140         71.0         67           00         91.900         97.040         5.140         71.0         65         63.0           01         113.510         113.510         113.510         71.0         65         63.0           0         91.900         97.040         5.140         71.0         65         63           0         102.180         107.340         5.160         71.0         65         63           0         88.210         81.155         5.405         5.060         71.0         65           0         88.210         5.150         5.050&lt;</td> | DRY GAS METER READINGS           mm         Volume         Initial Temps           mm         Curtin         (deg F)         (det<br>0           mm         5.540         69.0         66           mm         5.540         71.0         67           mm         5.410         71.0         67           mm         5.140         71.0         66           mm         Volume         71.0         67           mm         Volume         71.0         63           mm         Volume                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | DRY GAS METER READINGS           re         Volume         Volume         Volume         Mail Tenna           re         Volume         Volume         Volume         Volume         Volume         Out           00         102400         135.775         5.560         69.0         67         69           00         135.775         141.335         5.560         69.0         67         67           00         113.610         113.610         113.610         5410         71.0         67           00         113.510         113.510         113.610         5140         71.0         67           00         91.900         97.040         5.140         71.0         65         63.0           01         113.510         113.510         113.510         71.0         65         63.0           0         91.900         97.040         5.140         71.0         65         63           0         102.180         107.340         5.160         71.0         65         63           0         88.210         81.155         5.405         5.060         71.0         65           0         88.210         5.150         5.050<                        |

29WCS Semi Annual Cal 4-6-2023 WCS 4/6/2023 11:45 AM



#### DIGITAL TEMPERATURE READOUT CALIBRATION

Digital Temperature Readout ID: 29-WCS Readout Description: Control Box Date: 1/3/2023 Performed By: LO, RMo, DA

Calibrated Thermocouple ID: TC-CAL T1 Reference Thermometer ID: 313010 T2 Reference Thermometer ID: 242196 T3 Reference Thermometer ID: 805002770

| T/C                           |         |           | T/C - I   | Readout   |         |           | Reference 1 | hermometer |         | Diffe | rence   | 1   |
|-------------------------------|---------|-----------|-----------|-----------|---------|-----------|-------------|------------|---------|-------|---------|-----|
| I.D.                          | Readout |           |           | ۴F        |         |           | c           | 'F         |         |       |         |     |
| TC-CAL                        | I.D.    | Reading 1 | Reading 2 | Reading 3 | Average | Reading 1 | Reading 2   | Reading 3  | Average | °F    | %, (°R) |     |
| T3 (OIL)                      | 29-WCS  | 369       | 369       | 369       | 369     | 361       | 361         | 361        | 361     | 8.0   | 1.0%    | Pas |
| T2 (Boiling H <sub>2</sub> O) | 29-WCS  | 220       | 220       | 220       | 220     | 212       | 212         | 212        | 212     | 8.0   | 1.2%    | Pas |
| T1 (Ice/Water)                | 29-WCS  | 37        | 37        | 37        | 37      | 32        | 32          | 32         | 32      | 5.0   | 1.0%    | Pas |

1) Difference % ( $^{\circ}$ R) = Difference ( $^{\circ}$ F) / (Average Tref + 460)

2) Pass if all Differences are less than 1.5% (°R)

#### Thermocouple Source Readings

|             |            |           | T/C - F   | Readout   |         |           | T/C S     | Source    |         | Diffe | rence   | 1  |
|-------------|------------|-----------|-----------|-----------|---------|-----------|-----------|-----------|---------|-------|---------|----|
|             | T/C Source |           |           | ۴F        |         |           | a         | 'F        |         |       |         |    |
|             | S/N        | Reading 1 | Reading 2 | Reading 3 | Average | Reading 1 | Reading 2 | Reading 3 | Average | ٩F    | %, (°R) |    |
| T4 (~650 F) | 129103     | 653       | 653       | 653       | 653     | 650       | 650       | 650       | 650     | 3.0   | 0.3%    | Pa |
| T3 (~370 F) | 129103     | 372       | 372       | 372       | 372     | 370       | 370       | 370       | 370     | 2.0   | 0.2%    | Pa |
| T2 (~212 F) | 129103     | 214       | 214       | 214       | 214     | 212       | 212       | 212       | 212     | 2.0   | 0.3%    | Pa |
| T1 (~32 F)  | 129103     | 34        | 34        | 34        | 34      | 32        | 32        | 32        | 32      | 2.0   | 0.4%    | Pa |

1) Difference % (°R) = Difference (°F) / (Average Tref + 460)

2) Pass if all Differences are less than 1.5% (°R)

Date: 05/23/23

Time: \_\_\_\_\_

Data By: MM

Reference:

http://forecast.weather.gov/MapClick.php?lat=3:

| Reference Barometer ID                                 | Oxnard, Oxnard Airport (KOXR)              |
|--------------------------------------------------------|--------------------------------------------|
| Reference Barometer Location                           |                                            |
| Reference Barometer Other Info.                        | Lat: 34.20056°NLon: 119.20306°WElev: 43ft. |
| Reference Barometer Indication, corrected to sea level | 29.92                                      |
| Reference Barometer Reference Elevation                | 43                                         |
| Reference Barometer Actual Pressure                    | 29.88                                      |
| Test Barometer Location/Site                           | Ormond Beach                               |
| Location/Site Elevation                                | 0                                          |
| Location/Site Barometric Pressure                      | 29.92                                      |
| Sampling Location Height (above/below site elevation)  | 125                                        |
| Sampling Location Barometric Pressure                  | 29.80                                      |

### APPENDIX B FACILITY CEMS DATA



Report Period: 05/23/2023 11:20 Through 05/23/2023 1 Time Online Criteria: 1 minute(s) Average Data Plant: ORMOND BEACH GEN STA Interval: 1 Minute Type: Roll

ħ

ORMOND U-2

|   | SLIP | #/  |   |
|---|------|-----|---|
| ) | NH3  | RUK |   |
|   |      |     | d |

| NH3 SLIF | QUN #1 |      |  |
|----------|--------|------|--|
|          |        | 1:59 |  |

| Sot       | Source            |                          |                |                  |                       | ORB2       |                  |                 |                    |                   |
|-----------|-------------------|--------------------------|----------------|------------------|-----------------------|------------|------------------|-----------------|--------------------|-------------------|
| Para      | Parameter<br>Unit | GASFLOW LO/<br>(HSCFH) ( | LOADMW<br>(MW) | NH3FLOW<br>(GPM) | NOX#/MM<br>(LB/MMBTU) | NOX#/NMWV) | MOXPPM<br>(MPPM) | 02<br>(PERCENT) | STKFLOW<br>(KSCFM) | UNITOPHR<br>(MIN) |
|           | 11:20             | 25,534.2                 | 262.5          | 0.18             | 0.008                 | 0.085      | 5.84             | 5.06            | 514.8              | 1.0               |
| 05/23/23  | 11:21             | 25,471.6                 | 261.9          | 0.17             | 0.008                 | 0.084      | 5.85             | 4.90            | 507.1              | 1.0               |
| 005/23/23 | 11:22             | 25,425.2                 | 261.8          | 0.16             | 0.008                 | 0.083      | 5.74             | 5.01            | 509.4              | 1.0               |
| 05/23/23  | 11:23             | 25,494.7                 | 262.0          | 0.18             | 0.008                 | 0.085      | 5.92             | 4.91            | 507.6              | 1.0               |
| 05/23/23  | 11:24             | 25,563.1                 | 260.6          | 0.20             | 0.008                 | 0.088      | 6.08             | 4.91            | 509.0              | 1.0               |
| 05/23/23  | 11:25             | 25,512.8                 | 263.1          | 0.19             | 0.008                 | 0.086      | 6.04             | 4.91            | 508.0              | 1.0               |
| 05/23/23  | 11:26             | 25,537.5                 | 261.8          | 0.18             | 0.008                 | 0.085      | 5.90             | 4,93            | 508.5              | 1.0               |
| 05/23/23  | 11:27             | 25,431.5                 | 261.4          | 0.17             | 0.008                 | 0.084      | 5.83             | 4.89            | 506.4              | 1.0               |
| 05/23/23  | 11:28             | 25,481.9                 | 262.5          | 0.17             | 0.008                 | 0.085      | 5.88             | 4.94            | 507.4              | 1.0               |
| 05/23/23  | 11:29             | 25,415.4                 | 261.5          | 0.19             | 0.008                 | 0,086      | 5.98             | 5.01            | 509.2              | 1.0               |
| 1         | 11:30             | 25,469.4                 | 261.9          | 0.19             | 0.008                 | 0.087      | 6.06             | 4,88            | 507.1              | 1.0               |
| 205/23/23 | 11:31             | 25,547.2                 | 261.4          | 0.20             | 0.008                 | 0.086      | 5.95             | 4.97            | 511.9              | 1.0               |
| 05/23/23  | 11:32             | 25,662.9                 | 261.9          | 0.18             | 0.008                 | 0.085      | 5.89             | 4.85            | 511.0              | 1.0               |
|           | 11:33             | 25,577,4                 | 262.9          | 0.17             | 0.008                 | 0.083      | 5.76             | 4.92            | 509.3              | 1.0               |
| 23/23     | 11:34             | 25,538.3                 | 261.9          | 0.18             | 0.008                 | 0.084      | 5.88             | 4.88            | 508.5              | 1.0               |
| 05/23/23  | 11:35             | 25,441.8                 | 265.1          | 0.18             | 0.008                 | 0.085      | 5.99             | 4.96            | 509.7              | 1.0               |
| 05/23/23  | 11:36             | 25,606.3                 | 263.3          | 0.21             | 0.008                 | 0.088      | 6.09             | 4.94            | 509.8              | 1.0               |
| 05/23/23  | 11:37             | 25,616.2                 | 265.3          | 0.20             | 0.008                 | 0.086      | 6.05             | 4.91            | 510.0              | 1.0               |
| 05/23/23  | 11:38             | 25,850.5                 | 263.8          | 0.20             | 0.008                 | 0.086      | 5.93             | 4.90            | 514.7              | 1.0               |
| 05/23/23  | 11:39             | 25,851.1                 | 266.9          | 0.19             | 0.008                 | 0.084      | 5.92             | 4.83            | 511.5              | 1.0               |
|           | 11:40             | 25,814.6                 | 266.6          | 0.18             | 0.008                 | 0.083      | 5.83             | 4.89            | 514.0              | 1.0               |
| 05/23/23  | 11:41             | 25,849.9                 | 265.3          | 0.20             | 0.008                 | 0.085      | 5.87             | 4.93            | 514.7              | 1.0               |
| 05/23/23  | 11:42             | 26,039.7                 | 269.4          | 0.20             | 0.008                 | 0.086      | 6.05             | 4.82            | 515.2              | 1.0               |
| 05/23/23  | 11:43             | 25,876.8                 | 267.3          | 0.19             | 0.008                 | 0.085      | 5.96             | 4.96            | 518.5              | 1.0               |
| 05/23/23  | 11:44             | 25,597.5                 | 267.3          | 0.17             | 0.008                 | 0.084      | 5.92             | 4.96            | 512.9              | 1.0               |
| 05/23/23  | 11:45             | 25,361.8                 | 266.5          | 0.15             | 0.008                 | 0.082      | 5.76             | 5.05            | 508.1              | 1.0               |
| 05/23/23  | 11:46             | 25,127.3                 | 262.5          | 0.16             | 0.008                 | 0.084      | 5.86             | 5.07            | 506.6              | 1.0               |
| 05/23/23  | 11:47             | 25,217.7                 | 262.6          | 0.19             | 0.008                 | 0.087      | 6.14             | 4.96            | 505.3              | 1.0               |
| 05/23/23  | 11:48             | 25,515.2                 | 259.9          | 0.22             | 0.008                 | 0:090      | 6.20             | 4.97            | 511.2              | 1.0               |
| 05/23/23  | 11:49             | 25,688.1                 | 261.3          | 0.23             | 0.008                 | 060'0      | 6.22             | 4.87            | 511.5              | 1.0               |
| 05/23/23  | 11:50             | 25,832.6                 | 259.2          | 0.22             | 0.008                 | 0.087      | 5,92             | 4.89            | 514.3              | 1.0               |
| 05/23/23  | 11:51             | 25,920.5                 | 261.7          | 0.20             | 0.008                 | 0.084      | 5.76             | 4.86            | 516.1              | 1.0               |
| 05/23/23  | 11:52             | 25,991.6                 | 261.1          | 0.20             | 0.008                 | 0.085      | 5.78             | 4.94            | 517.5              | 1.0               |
| 05/23/23  | 11:53             | 25,803.0                 | 260.0          | 0.21             | 0.008                 | 0.084      | 5.76             | 4.91            | 513.7              | 1.0               |
| 05/23/23  | 11:54             | 26.100.0                 | 262.9          | 0.21             | 0.008                 | 0.085      | F 23             | A 95            | £10.7              |                   |

GONPRODUMEscarcega

Version 6.18

Report Generated: 05/23/23 12:08

Report Period: 05/23/2023 11:20 Through 05/23/2023 11:59 Plant: ORMOND BEACH GEN STA Time Online Criteria: 1 minute(s) Average Data Interval: 1 Minute Type: Roll

UNITOPHR (MIN) 1.0 1.0 1.0 1.0 STKFLOW (KSCFM) 519.9 516.5 518.8 512.0 505.3 520.8 20,478.9 512.7 520.8 <del>6</del> 6 02 (PERCENT) 4.84 4.93 4.82 5.07 197.17 5.01 4.93 4.91 5.04 **6** 6 (Mdd) 5.74 5.78 5.82 5.74 5.65 5.90 5.65 6.22 236.17 <del>6</del> <del>6</del> (NWN/#XON 0.084 0.086 0.083 0.085 0.082 0.090 3.408 40 40 0.085 0.084 **ORB2** NOX#/MM (LB/MMBTU) 0.008 0.008 0.008 0.008 0.008 0.320 <del>6</del> <del>6</del> 0.008 NH3FLOW (GPM) 0.19 0.15 0.23 7.63 40 0.20 0.19 0.22 0.20 LOADMW (MW) 262.9 259.2 269.4 10,516.7 261.1 263.7 265.2 259.9 259.7 <del>6</del> <del>6</del> GASFLOW (HSCFH) 25,665.3 25,127.3 26,100.0 1,026,612.5 25,948.9 26,054.6 25,939.4 25,912.1 404 25,992.2 Average Minimum Maximum Summation Included Data Points Total number of Data Points M00528/23/23 11:57 M012 11:58 11:59 05/23/23 05/23/23

**GONPRODU\MEscarcega** D = Shutdown I = Invalid S = Substituted U = Startup C = Calibration Version 6.18 \* = Suspect T = Out Of Control E = Exceedance Report Generated: 05/23/23 12:08 M = Maintenance F = Unit Offline

2 of 2

Report Period: 05/23/2023 12:15 Through 05/23/2023 12:55 Time Online Criteria: 1 minute(s) Average Data Plant: ORMOND BEACH GEN STA Interval: 1 Minute Type: Roll

ORMOND U-2 NH3 SLIP RUN # 2

| W002AS                |                   |                                                                                                                 | Ľ               | Report Period:   | Interval: 1 Minute<br>Type: Roll<br>05/23/2023 12:15 Through 05/2<br>Time Online Criteria: 1 minute(s) | Interval: 1 Minute<br>Type: Roll<br>Report Period: 05/23/2023 12:15 Through 05/23/2023 12:55<br>Time Online Criteria: 1 minute(s) | 23 12:55        | RUN #           | #<br>V             |                   |
|-----------------------|-------------------|-----------------------------------------------------------------------------------------------------------------|-----------------|------------------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------|--------------------|-------------------|
|                       | Source            |                                                                                                                 |                 |                  |                                                                                                        | ORB2                                                                                                                              |                 |                 |                    |                   |
|                       | Parameter<br>Unit | GASFLOW LOADMW<br>(HSCFH) (MW)                                                                                  |                 | NH3FLOW<br>(GPM) | NOX#/MM<br>(LB/MMBTU)                                                                                  | NOX#/NMW<br>(LB/NMW)                                                                                                              | MOXPPM<br>(PPM) | 02<br>(PERCENT) | STKFLOW<br>(KSCFM) | UNITOPHR<br>(MIN) |
| <sup>сг/сг/90</sup> 4 | 12:15             | 25,948.5                                                                                                        | 261.7           | 0.21             | 0.008                                                                                                  | 0.085                                                                                                                             | 5.81            | 4.93            | 516.6              | 1.0               |
| 05/23/23              | 12:16             | 26,155.3 2                                                                                                      | 260.8           | 0.24             | 0.008                                                                                                  | 0.089                                                                                                                             | 6.07            | 4.79            | 517.5              | 1.0               |
| 005/23/23             | 12:17             | 26,181.2                                                                                                        | 267.3           | 0.20             | 0.008                                                                                                  | 0.086                                                                                                                             | 5.97            | 4.83            | 518.0              | 1.0               |
| 05/23/23              | 12:18             | 25,759.4                                                                                                        | 263.4           | 0.18             | 0.008                                                                                                  | 0.082                                                                                                                             | 5.63            | 5.03            | 516,1              | 1.0               |
| 05/23/23              | 12:19             | 25,849.7 2                                                                                                      | 262.3           | 0.21             | 0.008                                                                                                  | 0.085                                                                                                                             | 5.85            | 4.93            | 514.7              | 1.0               |
| 05/23/23              | 12:20             | 25,939.3                                                                                                        | 266.8           | 0.19             | 0.008                                                                                                  | 0.085                                                                                                                             | 5.92            | 4.90            | 516.5              | 1.0               |
| 05/23/23              | 12:21             |                                                                                                                 | 263.3           | 0.19             | 0.008                                                                                                  | 0.083                                                                                                                             | 5.71            | 5.04            | 515.0              | 1.0               |
| 05/23/23              | 12:22             |                                                                                                                 | 261.8           | 0.21             | 0.008                                                                                                  | 0.086                                                                                                                             | 5.90            | 4.89            | 514.7              | 1.0               |
| 05/23/23              | 12:23             |                                                                                                                 | 266.3           | 0.20             | 0.008                                                                                                  | 0.086                                                                                                                             | 5.96            | 4.87            | 517.2              | 1.0               |
| 05/23/23              | 12:24             |                                                                                                                 | 263.7           | 0.19             | 0.008                                                                                                  | 0.085                                                                                                                             | 5.85            | 5.07            | 518.3              | 1.0               |
| 05/23/23              | 12:25             | 25,695.9 2                                                                                                      | 259.5           | 0.22             | 0.008                                                                                                  | 0.087                                                                                                                             | 5.94            | 4,91            | 511.6              | 1.0               |
| 205/23/23             |                   |                                                                                                                 | 265.4           | 0.20             | 0.008                                                                                                  | 0.086                                                                                                                             | 5.95            | 4.84            | 514.5              | 1.0               |
| 05/23/23              |                   |                                                                                                                 | 264.7           | 0.18             | 0.008                                                                                                  | 0.083                                                                                                                             | 5.75            | 5.02            | 516.7              | 1.0               |
| 05/23/23              |                   |                                                                                                                 | 263.9           | 0.20             | 0.008                                                                                                  | 0.083                                                                                                                             | 5.79            | 4.96            | 514.8              | 1.0               |
| -05/23/23             |                   |                                                                                                                 | 262.7           | 0.21             | 0.008                                                                                                  | 0.087                                                                                                                             | 5.97            | 4.89            | 517.9              | 1.0               |
| 05/23/23              | 12:30             |                                                                                                                 | 263.7           | 0.20             | 0.008                                                                                                  | 0.085                                                                                                                             | 5.88            | 4.92            | 515.2              | 1.0               |
| 05/23/23              | 12:31             |                                                                                                                 | 264.7           | 0.19             | 0.008                                                                                                  | 0.084                                                                                                                             | 5.81            | 4.94            | 514.1              | 1.0               |
| 05/23/23              | 12:32             |                                                                                                                 | 261.7           | 0.19             | 0.008                                                                                                  | 0.084                                                                                                                             | 5.79            | 5.00            | 513.9              | 1.0               |
| 05/23/23              | 12:33             |                                                                                                                 | 265.7           | 0.20             | 0.008                                                                                                  | 0.086                                                                                                                             | 5.99            | 4.88            | 512.9              | 1.0               |
| 05/23/23              | 12:34             |                                                                                                                 | 261,3           | 0.21             | 0.008                                                                                                  | 0.086                                                                                                                             | 5.88            | 4.96            | 517.0              | 1.0               |
| 05/23/23              | 12:35             |                                                                                                                 | 265.0           | 0.20             | 0.008                                                                                                  | 0.085                                                                                                                             | 5.95            | 4.84            | 511.0              | 1.0               |
| 05/23/23              | 12:36             |                                                                                                                 | 261.8           | 0.20             | 0.008                                                                                                  | 0.085                                                                                                                             | 5.84            | 4.97            | 516.0              | 1.0               |
| 05/23/23              | 12:37             |                                                                                                                 | 264.4           | 0.19             | 0.008                                                                                                  | 0.084                                                                                                                             | 5.88            | 4.92            | 510.3              | 1.0               |
| 05/23/23              | 12:38             |                                                                                                                 | 262.1           | 0.20             | 0.008                                                                                                  | 0.085                                                                                                                             | 5.84            | 5.01            | 514.0              | 1.0               |
| 05/23/23              | 12:39             |                                                                                                                 | 262.5           | 0.21             | 0.008                                                                                                  | 0.086                                                                                                                             | 5.95            | 4.94            | 511.0              | 1.0               |
| 05/23/23              | 12:40             |                                                                                                                 | 266.1           | 0.21             | 0.008                                                                                                  | 0.086                                                                                                                             | 6.00            | 4.93            | 515.0              | 1.0               |
| 05/23/23              | 12:41             |                                                                                                                 | 263.9           | 0.19             | 0.008                                                                                                  | 0.084                                                                                                                             | 5.81            | 4.99            | 517.3              | 1.0               |
| 05/23/23              | 12:42             |                                                                                                                 | 261.2           | 0.22             | 0.008                                                                                                  | 0.086                                                                                                                             | 5.92            | 4.95            | 512.8              | 1.0               |
| 05/23/23              | 12:43             |                                                                                                                 | 264.0           | 0.22             | 0.008                                                                                                  | 0.087                                                                                                                             | 6.00            | 4.87            | 517.6              | 1.0               |
| 05/23/23              | 12:44             |                                                                                                                 | 264.9           | 0.19             | 0.008                                                                                                  | 0.083                                                                                                                             | 5.78            | 4.94            | 515.0              | 1.0               |
| 05/23/23              | 12:45             |                                                                                                                 | 263.1           | 0.20             | 0.008                                                                                                  | 0.084                                                                                                                             | 5.78            | 4.96            | 517.0              | 1.0               |
| 05/23/23              | 12:46             | a anno an ann | 262.8           | 0.23             | 0.008                                                                                                  | 0.088                                                                                                                             | 5.97            | 4.87            | 521.0              | 1.0               |
| 05/23/23              | 12:47             |                                                                                                                 | 262.2           | 0.23             | 0,008                                                                                                  | 0.087                                                                                                                             | 5.91            | 4.89            | 522.0              | 1.0               |
| 05/23/23              | 12:48             |                                                                                                                 | 264.0           | 0.20             | 0.008                                                                                                  | 0.084                                                                                                                             | 5.72            | 4.97            | 521.9              | 1.0               |
| 05/23/23              | 12:49             | 25,924.0                                                                                                        | 265.1           | 0.19             | 0.008                                                                                                  | 0.082                                                                                                                             | 5.69            | 4.98            | 519.4              | 1.0               |
| л<br>П                | = Unit Offline    | E = Exceedance                                                                                                  | C = Calibration | s<br>S           | Substituted                                                                                            | I = Invalid                                                                                                                       |                 |                 |                    |                   |
| M = 1                 | M = Maintenance   | T = Out Of Control                                                                                              | ol * = Suspect  | = 0              | Startup                                                                                                | D = Shutdown                                                                                                                      |                 |                 |                    |                   |
| 1                     |                   |                                                                                                                 |                 |                  |                                                                                                        |                                                                                                                                   |                 |                 |                    |                   |

GONPRODU/MEscarcega

Version 6.18

Report Generated: 05/23/23 13:06

|                                                                                                                              |        | UNITOPHR<br>(MIN)     | 1.0            | 1.0                     | 1.0            | 1.0            | 1.0            | 1.0            | 1.0      | 1.0      | 1.0      | 41.0        | 41                                                                 |
|------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------|----------------|-------------------------|----------------|----------------|----------------|----------------|----------|----------|----------|-------------|--------------------------------------------------------------------|
|                                                                                                                              |        | R                     |                |                         |                |                |                |                |          |          |          |             |                                                                    |
|                                                                                                                              |        | STKFLOW<br>(KSCFM)    | 519.3          | 519.3                   | 519.5          | 520.7          | 519.7          | 516.6          | 516.3    | 510.3    | 522.0    | 21,169.6    | 41                                                                 |
|                                                                                                                              |        | 02<br>(PERCENT)       | 4.95           | 4.88                    | 4.93           | 4.97           | 4.97           | 4,83           | 4.93     | 4.79     | 5.07     | 202.16      | 41                                                                 |
| 2023 12:55                                                                                                                   |        | MOXPPM<br>(MPM)       | 5.67           | 5.84                    | 5.87           | 5.90           | 5.83           | 5.81           | 5.86     | 5.63     | 6.07     | 240.38      | 41                                                                 |
| l Minute<br>Roll<br>15 Through 05/23,<br>eria: 1 minute(s)                                                                   | ORB2   | NOX#/NM/V/            | 0.083          | 0.086                   | 0.086          | 0.085          | 0.085          | 0.085          | 0.085    | 0.082    | 0.089    | 3.489       | 41                                                                 |
| Type: Townute<br>Type: Roll<br>Report Period: 05/23/2023 12:15 Through 05/23/2023 12:55<br>Time Online Criteria: 1 minute(s) |        | NOX#/MM<br>(LB/MMBTU) | 0.008          | 0.008                   | 0.008          | 0.008          | 0.008          | 0.008          | 0.008    | 0.008    | 0.008    | 0.328       | 41                                                                 |
| Report Perio                                                                                                                 |        | NH3FLOW<br>(GPM)      | 0.19           | 0.21                    | 0.21           | 0.21           | 0.21           | 0.21           | 0.20     | 0.18     | 0.24     | 8.34        | 41                                                                 |
|                                                                                                                              |        | LOADMW<br>(MW)        | 263.1          | 262.7                   | 264.6          | 266.1          | 264.6          | 263.4          | 263.6    | 259.5    | 267.3    | 10,808.3    | 41                                                                 |
|                                                                                                                              |        | GASFLOW<br>(HSCFH)    | 25,919.2       | 26,082.2                | 26,091.8       | 25,988.2       | 25,937.0       | 26,108.2       | 25,885.2 | 25,631.8 | 26,219.5 | 1,061,292.2 | 41                                                                 |
| W002AS-0                                                                                                                     | eonros | Duit Farameter        | 05/23/23 12:50 | <b>V</b> 05/23/23 12:51 | D5/23/23 12:52 | 05/23/23 12:53 | 05/23/23 12:54 | 05/23/23 12:55 | Average  | Minimum  | Maximum  | Summation   | Included Data Points<br>Total number of Data<br>Points<br>12 Jo L2 |

| F = Unit Offline                 | E = Exceedance        | C = Calibration | n S = Substituted | I = Invalid  |
|----------------------------------|-----------------------|-----------------|-------------------|--------------|
| M = Maintenance                  | ce T = Out Of Control | * = Suspect     | U = Startup       | D = Shutdown |
| Report Generated: 05/23/23 13:00 | 23 13:06              | Version 6.18    |                   | GONPRODUME   |

Report Period: 05/23/2023 13:03 Through 05/23/2023 13:42 Time Online Criteria: 1 minute(s) Average Data Plant: ORMOND BEACH GEN STA Interval: 1 Minute Type: Roll

ORMOND U-Z NH3 SLIP RUN # S

| č.<br>V.           | Solitro           |                |                |               |                       |             |                 |                 |                    |                   |
|--------------------|-------------------|----------------|----------------|---------------|-----------------------|-------------|-----------------|-----------------|--------------------|-------------------|
|                    |                   |                |                |               |                       |             |                 |                 |                    |                   |
| U                  | Larameter<br>Unit | (HSCFH) LO     | LOADMW<br>(MW) | (GPM)         | NOX#/MM<br>(LB/MMBTU) | (LB/NMW)    | MOXPPM<br>(MPM) | 02<br>(PERCENT) | STKFLOW<br>(KSCFM) | UNITOPHR<br>(MIN) |
| 3/23               | 13:03             | 26,002.6       | 265.0          | 0.21          | 0,008                 | 0.086       | 5.92            | 4.88            | 517.7              | 1.0               |
| <b>J</b> 5/23/23   | 13:04             | 26,013.5       | 263.7          | 0.20          | 0.008                 | 0.085       | 5.84            | 4.90            | 517.9              | 1.0               |
| 005/23/23          | 13:05             | 26,068.2       | 264.9          | 0.21          | 0.008                 | 0.085       | 5.83            | 4.91            | 519.0              | 1.0               |
| 05/23/23           | 13:06             | 26,238.3       | 266.2          | 0.22          | 0.008                 | 0.087       | 6.00            | 4.90            | 522.4              | 1.0               |
| 05/23/23           | 13:07             | 26,073.9       | 263.8          | 0.22          | 0,008                 | 0.087       | 5.92            | 4.94            | 519.2              | 1.0               |
| 05/23/23           | 13:08             | 26,030.9       | 265.1          | 0.21          | 0.008                 | 0.085       | 5.82            | 4.95            | 518.3              | 1.0               |
| 05/23/23           | 13:09             | 26,012.4       | 264.4          | 0.19          | 0.008                 | 0.083       | 5.72            | 4.93            | 517.9              | 1.0               |
| 05/23/23           | 13:10             | 26,070.3       | 263.3          | 0.22          | 0.008                 | 0.086       | 5.83            | 4.96            | 522.3              | 1.0               |
| 05/23/23           | 13:11             | 26,171.9       | 265.3          | 0.21          | 0.008                 | 0.086       | 5.90            | 4.83            | 517.9              | 1.0               |
| 05/23/23           | 13:12             | 26,091.9       | 263.6          | 0.20          | 0.008                 | 0.084       | 5.77            | 4.92            | 519.5              | 1.0               |
| 05/23/23           | 13:13             | 26,106.8       | 265.3          | 0.21          | 0.008                 | 0.085       | 5.89            | 4.86            | 519.8              | 1.0               |
| 005/23/23          | 13:14             | 26,176.1       | 265.7          | 0.20          | 0.008                 | 0.085       | 5.87            | 4.91            | 521.2              | 1.0               |
| 05/23/23           | 13:15             | 26,020.6       | 263.4          | 0.21          | 0.008                 | 0.085       | 5.80            | 4.97            | 521.3              | 1.0               |
| G6123123           | 13:16             | 26,030.5       | 264.8          | 0.21          | 0.008                 | 0.086       | 5.93            | 4.89            | 518.3              | 1.0               |
| - <b>b</b> 5/23/23 | 13:17             | 25,986.2       | 263.1          | 0.21          | 0.008                 | 0.085       | 5.82            | 4.96            | 520.7              | 1.0               |
| 05/23/23           | 13:18             | 26,006.5       | 264.3          | 0.22          | 0.008                 | 0.086       | 5.91            | 4.88            | 517.8              | 1.0               |
| 05/23/23           | 13:19             | 26,145.0       | 264.3          | 0.22          | 0.008                 | 0.086       | 5.90            | 4.87            | 520.6              | 1.0               |
| 05/23/23           | 13:20             | 26,074.2       | 266.0          | 0.20          | 0.008                 | 0.084       | 5.84            | 4.84            | 515.9              | 1.0               |
| 05/23/23           | 13:21             | 25,996.5       | 265.2          | 0.20          | 0.008                 | 0.084       | 5.81            | 4.93            | 517.6              | 1.0               |
| 05/23/23           | 13:22             | 25,903.9       | 264.3          | 0.20          | 0.008                 | 0.085       | 5.84            | 4.94            | 515.8              | 1.0               |
| 05/23/23           | 13:23             | 25,878.4       | 265.3          | 0.19          | 0.008                 | 0.084       | 5.83            | 4.91            | 515.2              | 1.0               |
| 05/23/23           | 13:24             | 25,883.1       | 264.1          | 0.20          | 0.008                 | 0.085       | 5.83            | 4.96            | 518.6              | 1.0               |
| 05/23/23           | 13:25             | 26,021.0       | 266.4          | 0.21          | 0.008                 | 0.086       | 6.02            | 4.84            | 514.9              | 1.0               |
| 05/23/23           | 13:26             | 26,005.6       | 264.5          | 0.22          | 0.008                 | 0.088       | 6.01            | 4.97            | 521.0              | 1.0               |
| 05/23/23           | 13:27             | 25,922.5       | 265.1          | 0.21          | 0.008                 | 0.085       | 5.91            | 4.93            | 516.1              | 1.0               |
| 05/23/23           | 13:28             | 25,887.3       | 264.6          | 0.20          | 0.008                 | 0.085       | 5.85            | 4.94            | 515.4              | 1.0               |
| 05/23/23           | 13:29             | 25,858.8       | 265.4          | 0.20          | 0.008                 | 0.085       | 5.89            | 4.90            | 514.9              | 1.0               |
| 05/23/23           | 13:30             | 25,944.6       | 263.6          | 0.21          | 0.008                 | 0.085       | 5.82            | 4.92            | 516.6              | 1.0               |
| 05/23/23           | 13:31             | 26,083.0       | 265.5          | 0.21          | 0.008                 | 0.085       | 5.86            | 4,87            | 519.3              | 1.0               |
| 05/23/23           | 13:32             | 25,997.7       | 265.2          | 0.20          | 0.008                 | 0.084       | 5.80            | 4.89            | 517.6              | 1.0               |
| 05/23/23           | 13:33             | 25,910.6       | 266.5          | 0.20          | 0.008                 | 0.084       | 5.86            | 4,92            | 515.9              | 1.0               |
| 05/23/23           | 13:34             | 26,004.8       | 264.0          | 0.19          | 0.008                 | 0.084       | 5.81            | 4.84            | 514.6              | 1.0               |
| 05/23/23           | 13:35             | 25,914.3       | 262.9          | 0.20          | 0.008                 | 0.085       | 5.84            | 4.94            | 516.0              | 1.0               |
| 05/23/23           | 13:36             | 25,929.0       | 265.9          | 0.21          | 0.008                 | 0.086       | 5.98            | 4.91            | 516.3              | 1.0               |
| 05/23/23           | 13:37             | 26,048.3       | 265.3          | 0.22          | 0.008                 | 0.087       | 5.98            | 4.89            | 518.6              | 1.0               |
| ٦<br>=             | F = Unit Offline  | E = Exceedance | C              | = Calibration | S = Substituted       | l = Invalid |                 |                 |                    |                   |
|                    |                   |                |                |               |                       |             |                 |                 |                    |                   |

GONPRODU/MEscarcega

Version 6.18

Report Generated: 05/23/23 14:45

Report Period: 05/23/2023 13:03 Through 05/23/2023 13:42 Plant: ORMOND BEACH GEN STA Time Online Criteria: 1 minute(s) Average Data Interval: 1 Minute Type: Roll

UNITOPHR (MIN) 1.0 1.0 1.0 STKFLOW (KSCFM) 514.9 518.8 518.8 518.3 518.0 514.6 522.4 20,718.3 515.4 <del>6</del> 6 02 (PERCENT) 4.94 4.87 4.94 4.88 4.90 4.91 4.83 4.97 4.97 196.33 40 (MOXPPM (MJ) 6.04 5.91 5.82 5.74 5.73 5.87 5.72 6.04 234.69 40 (LB/NMW) 0.084 0.083 0.088 0.086 0.083 0.085 0.083 0.088 3.407 **6**4 **ORB2** NOX#/MM (LB/MMBTU) 0.008 0.008 0.008 0.008 0.008 0.008 0.320 0.008 0.008 <del>6</del> 6 NH3FLOW (GPM) 0.23 0.20 0.19 0.20 0.21 0.19 0.23 8.28 40 40 LOADMW (MW) 264.7 262.9 266.5 10,589.3 265.5 265.5 264.8 263.7 263.8 <del>6</del> 4 GASFLOW (HSCFH) 26,010.1 25,858.8 26,238.3 1,040,402.5 26,057.9 26,056.3 26,030.3 25,861.3 25,887.5 <del>6</del> 4 Included Data Points Total number of Data Points Average Minimum Maximum Summation 13:39 13:40 13:41 13:38 13:42 Parameter Source Unit W002AS-026975-RT-47 O<sup>5/23/23</sup> 05/23/23 05/23/23

D = Shutdown I = Invalid S = Substituted U = Startup C = Calibration Version 6.18 \* = Suspect T = Out Of Control E = Exceedance Report Generated: 05/23/23 14:45 M = Maintenance F = Unit Offline

Ormond Beach Power, LLC – Ormond Beach Generating Station 2023 Unit 2  $\rm NH_3$ 

## APPENDIX C CALCULATIONS



## Appendix C.1 General Emissions Calculations



### **GENERAL EMISSION CALCULATIONS**

- I. <u>Stack Gas Velocity</u>
  - A. Stack gas molecular weight, lb/lb-mole

$$MW_{dry} = 0.44 * \%CO_2 + 0.32 * \%O_2 + 0.28 * \%N_2$$

MW 
$$_{wet} =$$
 MW  $_{dry}$  \* (1 - B  $_{wo}$ ) + 18 \* B  $_{wo}$ 

B. Absolute stack pressure, iwg

$$Ps = Pbar + \frac{Psg}{13.6}$$

C. Stack gas velocity, ft/sec

$$V_{s} = 2.9 * C_{p} * \sqrt{\Delta P} * \sqrt{T_{s}} * \sqrt{\frac{29.92 * 28.95}{P_{s} * MW_{wet}}}$$

II. Moisture

A. Sample gas volume, dscf

$$V_{mstd} = 0.03342 * V_{m} * (P_{bar} + \frac{\Delta H}{13.6}) * \frac{T_{ref}}{T_{m}} * Y_{d}$$

B. Water vapor volume, scf

$$V_{wstd} = 0.0472 * V_{lc} * \frac{T_{ref}}{528 \ ^{\circ}R}$$

C. Moisture content, dimensionless

$$\mathsf{B}_{\mathsf{wo}} = \frac{\mathsf{V}_{\mathsf{wstd}}}{(\mathsf{V}_{\mathsf{mstd}} + \mathsf{V}_{\mathsf{wstd}})}$$

III. Stack gas volumetric flow rate

A. Actual stack gas volumetric flow rate, wacfm

$$Q = V_{s} * A_{s} * 60$$

B. Standard stack gas flow rate, dscfm

$$Q_{sd} = Q * (1 - B_{wo}) * \frac{T_{ref}}{T_s} * \frac{P_s}{29.92}$$



Ormond Beach Power, LLC – Ormond Beach Generating Station 2023 Unit 2  $\text{NH}_{3}$ 

IV. Gaseous Mass Emission Rates, lb/hr

$$M = \frac{ppm * MW_{i} * Q_{sd} * 60}{SV * 10^{6}}$$

V. Emission Rates, Ib/MMBtu

$$\frac{lb}{MMBtu} = \frac{ppm * MW_{i} * F}{SV * 10^{6}} * \frac{20.9}{20.9 - \%O_{2}}$$

VI. <u>Percent Isokinetic</u>

$$I = \frac{17.32 \text{ x } T_{s} \text{ (V_mstd)}}{(1-\text{Bwo) } 0 \text{ x } \text{Vs } \text{x } \text{Ps } \text{x } \text{Dn2}} \text{ x } \frac{520^{\circ}\text{R}}{\text{T_{ref}}}$$

### VII. Particulate emissions

- (a) Grain loading, gr/dscf C =  $0.01543 (M_n/V_m \text{ std})$
- (b) Grain loading at 12% CO<sub>2</sub>, gr/dscf  $C_{12\%}$  CO<sub>2</sub> = C (12/% CO<sub>2</sub>)
- (c) Mass emissions, lb/hr  $M = C \times Qsd \times (60 \text{ min/hr})/(7000 \text{ gr/lb})$

(d) Particulate emission factor  

$$lb/10^6$$
 Btu = Cx  $\frac{1 lb}{7000 gr}$  x F x  $\frac{20.9}{20.9 - \% O_2}$ 



### Nomenclature:

| As<br>Bwo<br>C12%CO2<br>C<br>Cp<br>Dn<br>F<br>H<br>I<br>Mn<br>Mi<br>MW<br>Mwi | <ul> <li>stack area, ft<sup>2</sup></li> <li>flue gas moisture content, dimensionless</li> <li>particulate grain loading, gr/dscf corrected to 12% CO<sub>2</sub></li> <li>particulate grain loading, gr/dscf</li> <li>pitot calibration factor, dimensionless</li> <li>nozzle diameter, in.</li> <li>fuel F-Factor, dscf/MMBtu @ 0% O<sub>2</sub></li> <li>orifice differential pressure, iwg</li> <li>% isokinetics</li> <li>mass of collected particulate, mg</li> <li>mass emission rate of specie i, lb/hr</li> <li>molecular weight of flue gas, lb/lb-mole</li> <li>molecular weight of specie i:</li> <li>SO<sub>2</sub>: 64</li> <li>NO<sub>x</sub>: 46</li> <li>CO: 28</li> </ul> |
|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                               | HC: 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 0                                                                             | = sample time, min.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ΔP                                                                            | = average velocity head, iwg = $(\sqrt{\Delta P})^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| P <sub>bar</sub>                                                              | = barometric pressure, inches Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Ps                                                                            | = stack absolute pressure, inches Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| P <sub>sg</sub>                                                               | = stack static pressure, iwb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Q                                                                             | = wet stack flow rate at actual conditions, wacfm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Q <sub>sd</sub><br>SV                                                         | <ul> <li>= dry standard stack flow rate, dscfm</li> <li>= specific molar volume of an ideal gas at standard conditions, ft<sup>3</sup>/lb-mole</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| σν<br>T <sub>m</sub>                                                          | = meter temperature, °R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| T <sub>ref</sub>                                                              | = reference temperature, °R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Ts                                                                            | = stack temperature, °R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Vs                                                                            | = stack gas velocity, ft/sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V <sub>Ic</sub>                                                               | = volume of liquid collected in impingers, ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| V <sub>m</sub><br>V <sub>mstd</sub>                                           | <ul> <li>uncorrected dry meter volume, dcf</li> <li>dry meter volume at standard conditions, dscf</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| V mstd<br>V <sub>wstd</sub>                                                   | = volume of water vapor at standard conditions, scf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Y <sub>d</sub>                                                                | = meter calibration coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



## Appendix C.2 Spreadsheet Summaries



## APPENDIX D QUALITY ASSURANCE



### BAAQMD METHOD ST-1B DATA WORKSHEET AND SUMMARY

| Facility.                                                 |             |              | Parameter    |         | NH <sub>3</sub> |
|-----------------------------------------------------------|-------------|--------------|--------------|---------|-----------------|
| Unit                                                      |             |              | Fuel         |         | Natural gas     |
| Sample Location                                           |             |              | Data By      |         | MM              |
| Test Number                                               |             | 2-NH3        | 3-NH3        | Average | Limit           |
| Reference Temperature (°F)                                |             | 68           | 68           |         |                 |
| Test Date                                                 |             | 5/23/2023    | 5/23/2023    |         |                 |
| Test Method                                               |             | BAAQMD ST-1B | BAAQMD ST-1B |         |                 |
| Sample Train                                              | 29-WCS      | 29-WCS       | 29-WCS       |         |                 |
| Meter Calibration Factor                                  |             | 1.013        | 1.013        |         |                 |
| Stack Area (ft <sup>2</sup> )                             | 804.25      | 804.25       | 804.25       |         |                 |
| Sample Time (Minutes)                                     | 36          | 36           | 36           |         |                 |
| Barometric Pressure ("Hg)                                 |             | 29.80        | 29.80        |         |                 |
| Start/Stop Time                                           | 1120/1159   | 1215/1254    | 1303/1342    |         |                 |
| Meter Volume (acf)                                        |             | 26.565       | 24.925       |         |                 |
| Veter Temperature (°F)                                    |             | 71.0         | 72.0         |         |                 |
| Meter Pressure (iwg)                                      | 1.5         | 1.5          | 1.5          |         |                 |
| _iquid Volume (ml)                                        |             | 107.5        | 94.6         |         |                 |
| Stack O <sub>2</sub> (%)                                  | 4.93        | 4.93         | 4.91         | 4.92    |                 |
| Jnit Load (MW)                                            | 262.9       | 263.6        | 264.7        | 263.7   |                 |
| Standard Sample Volume (SCF)                              |             | 26.748       | 25.049       |         |                 |
| Noisture Fraction                                         |             | 0.159        | 0.151        |         |                 |
| Stack Flow Rate (dscfm, 68 °F)                            |             | 516,300      | 518,000      | 515,433 |                 |
| Stack Flow Rate (@ Tref)                                  |             | 516,300      | 518,000      |         |                 |
| Gas Constant (ft-lbf/lb-mole-R)                           |             | 1545.33      | 1545.33      |         |                 |
| Molecular Weight NH3 (lb/lb-mole)                         | 17.03       | 17.03        | 17.03        |         |                 |
| Specific Molar Volume (ft <sup>3</sup> /lb-mole)          | 385.3384615 | 385.3384615  | 385.3384615  |         |                 |
| -Factor (dscf/MMBtu)                                      | 8,710       | 8,710        | 8,710        |         |                 |
| HV(Btu/SCF)                                               | 1,050       | 1,050        | 1,050        |         |                 |
| Mass Conversion (lb/ug)                                   | 2.2046E-09  | 2.2046E-09   | 2.2046E-09   |         |                 |
| D <sub>2</sub> Correction Factor (%)                      |             | 3            | 3            |         |                 |
| /lass NH <sub>3</sub> (ug)                                | 1,263       | 1,043        | 937          |         |                 |
| Mass NH <sub>3</sub> (lb)                                 | 2.78E-06    | 2.30E-06     | 2.07E-06     |         |                 |
| NH <sub>3</sub> (ppmv, flue gas)                          | 2.4         | 1.9          | 1.9          | 2.1     |                 |
| NH <sub>3</sub> (ppmv @ O <sub>2</sub> Correction Factor) | 2.7         | 2.2          | 2.1          | 2.3     | 10              |
| NH <sub>3</sub> (lb/hr)                                   | 3.3         | 2.7          | 2.6          | 2.8     |                 |
| IH₃ (lb/MMBtu)                                            |             | 0.0010       | 0.0009       | 0.0010  |                 |
| NH <sub>3</sub> (Ib/MMSCF)                                | 1.29        | 1.03         | 0.98         | 1.10    |                 |

Note: O2, Stack Flow Rate, and Unit Load are from facility certified CEMS.

### BAAQMD ST-1B EXAMPLE CALCULATION TEST NUMBER: 1-NH3

| Identifier | Description                      | Units              | Equation                                    | Value      |
|------------|----------------------------------|--------------------|---------------------------------------------|------------|
|            |                                  | _                  |                                             |            |
| A          | Reference Temperature            | F                  |                                             | 68         |
| В          | Reference Temperature            | R                  | A + 460                                     | 528        |
| С          | Meter Calibration Factor (Yd)    |                    |                                             | 1.013      |
| D          | Barometric Pressure              | " Hg               |                                             | 29.80      |
| E          | Meter Volume                     | acf                | <b>~~</b>                                   | 25.450     |
| F          | Meter Temperature                | F                  |                                             | 66.6       |
| G          | Meter Temperature                | R                  | F + 460                                     | 526.6      |
| н          | Delta H                          | " H <sub>2</sub> O |                                             | 1.5        |
| I          | Meter Volume (standard)          | dscf               | 0.03342 * E * (D + H/13.6) * B/G * C        | 25.839     |
| J          | Liquid Collected                 | grams              |                                             | 104.7      |
| K          | Water vapor volume               | scf                | 0.0472 * J * B/528                          | 4.942      |
| L          | Moisture Content                 |                    | K/(K + I)                                   | 0.161      |
| М          | Gas Constant                     | ft-lbf/lb-mole-R   |                                             | 1545.33    |
| N          | Specific Molar Volume            | SCF/lb-mole        | 385.3 * B / 528                             | 385.3      |
| 0          | F-Factor                         | dscf/MMBtu         |                                             | 8,710      |
| Р          | HHV                              | Btu/SCF            |                                             | 1,050      |
| Q          | Mass Conversion Factor           | lb/ug              |                                             | 2.2046E-09 |
| R          | O <sub>2</sub> Correction Factor |                    |                                             | 3          |
| S          | Stack Flow Rate @ 68 F           | dscfm              |                                             | 512,000    |
| Т          | Stack Flow Rate @ Tref           | dscfm              | S * B/528                                   | 512,000    |
| U          | Mass NH <sub>3</sub>             | ug                 |                                             | 1,263      |
| V          | Mass NH <sub>3</sub>             | lb                 | U * Q                                       | 2.78E-06   |
| W          | MW of NH <sub>3</sub>            | lb/lb-mole         |                                             | 17.03      |
| х          | NH <sub>3</sub>                  | ppm                | (V * N *10°)/(I * W)                        | 2.4        |
| Ŷ          | Flue Gas O <sub>2</sub>          | %                  |                                             | 4.93       |
| Z          | NH <sub>3</sub>                  | ppmc               | X * (20.9 - R)/(20.9 - Y)                   | 2.7        |
| AA         | NH <sub>3</sub>                  | lb/hr              | X * T * W * 60/(N * 10°)                    | 3.3        |
| AB         | NH <sub>3</sub>                  | lb/MMBtu           | (X * W * O)/(385.3 * 10°) * 20.9/(20.9 - Y) | 0.001      |
| AC         | NH <sub>3</sub>                  | lb/MMSCF           | AB * P                                      | 1.3        |

Note:

(1) Some values may be slightly different from those shown on the run sheets due to round off errors. This page is intended to show the calculation methodology only.

## Appendix D.1 Quality Assurance Program Summary



### QUALITY ASSURANCE PROGRAM SUMMARY

As part of Montrose Air Quality Services, LLC (Montrose) ASTM D7036-04 certification, Montrose is committed to providing emission related data which is complete, precise, accurate, representative, and comparable. Montrose quality assurance program and procedures are designed to ensure that the data meet or exceed the requirements of each test method for each of these items. The quality assurance program consists of the following items:

- Assignment of an Internal QA Officer
- Development and use of an internal QA Manual
- Personnel training
- Equipment maintenance and calibration
- Knowledge of current test methods
- Chain-of-custody
- QA reviews of test programs

<u>Assignment of an Internal QA Officer</u>: Montrose has assigned an internal QA Officer who is responsible for administering all aspects of the QA program.

Internal Quality Assurance Manual: Montrose has prepared a QA Manual according to the requirements of ASTM D7036-04 and guidelines issued by EPA. The manual documents and formalizes all of Montrose's QA efforts. The manual is revised upon periodic review and as Montrose adds capabilities. The QA manual provides details on the items provided in this summary.

<u>Personnel Testing and Training</u>: Personnel testing and training is essential to the production of high quality test results. Montrose training programs include:

- A requirement for all technical personnel to read and understand the test methods performed
- A requirement for all technical personnel to read and understand the Montrose QA manual
- In-house testing and training
- Quality Assurance meetings
- Third party testing where available
- Maintenance of training records.

<u>Equipment Maintenance and Calibration</u>: All laboratory and field equipment used as a part of Montrose's emission measurement programs is maintained according to manufacturer's recommendations. A summary of the major equipment maintenance schedules is summarized in Table 1. In addition to routine maintenance, calibrations are performed on all sampling equipment according to the procedures outlined in the applicable test method. The calibration intervals and techniques for major equipment components is summarized in Table 2. The calibration technique may vary to meet regulatory agency requirements.

<u>Knowledge of Current Test Methods</u>: Montrose maintains current copies of EPA, ARB, and SCAQMD Source Test Manuals and Rules and Regulations.



<u>Chain-of-Custody</u>: Montrose maintains chain-of-custody documentation on all data sheets and samples. Samples are stored in a locked area accessible only to Montrose source test personnel. Data sheets are kept in the custody of the originator, program manager, or in locked storage until return to Montrose office. Electronic field data is duplicated for backup on secure storage media. The original data sheets are used for report preparation and any additions are initialed and dated.

<u>QA Reviews:</u> Periodic field, laboratory, and report reviews are performed by the in-house QA coordinator. Periodically, test plans are reviewed to ensure proper test methods are selected and reports are reviewed to ensure that the methods were followed and any deviations from the methods are justified and documented.

#### ASTM D7036-04 Required Information

#### Uncertainty Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is presented in the report appendices.

#### Performance Data

Performance data are available for review.

#### Qualified Personnel

A qualified individual (QI), defined by performance on a third party or internal test on the test methods, is present on each test event.

#### Plant Entry and Safety Requirements

#### Plant Entry

All test personnel are required to check in with the guard at the entrance gate or other designated area. Specific details are provided by the facility and project manager.



### **Safety Requirements**

All personnel shall have the following personal protective equipment (PPE) and wear them where designated:

- Hard Hat
- Safety Glasses
- Steel Toe Boots
- Hearing Protection
- Gloves
- High Temperature Gloves (if required)
- Flame Resistant Clothing (if required)

The following safety measures are followed:

- Good housekeeping
- SDS for all on-site hazardous materials
- Confine selves to necessary areas (stack platform, mobile laboratory, CEMS data acquisition system, control room, administrative areas)
- Knowledge of evacuation procedures

Each facility will provide plant specific safety training.



| Equipment                     | Acceptance Limits                                                                                            | Frequency of Service           | Methods of Service                                                                                                           |
|-------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Pumps                         | <ol> <li>Absence of leaks</li> <li>Ability to draw<br/>manufacturers required<br/>vacuum and flow</li> </ol> | As recommended by manufacturer | <ol> <li>Visual inspection</li> <li>Clean</li> <li>Replace parts</li> <li>Leak check</li> </ol>                              |
| Flow Meters                   | 1. Free mechanical movement                                                                                  | As recommended by manufacturer | <ol> <li>Visual inspection</li> <li>Clean</li> <li>Calibrate</li> </ol>                                                      |
| Sampling Instruments          | <ol> <li>Absence of malfunction</li> <li>Proper response to zero<br/>span gas</li> </ol>                     | As recommended by manufacturer | As recommended by manufacturer                                                                                               |
| Integrated Sampling<br>Tanks  | 1. Absence of leaks                                                                                          | Depends on nature of use       | 1. Steam clean<br>2. Leak check                                                                                              |
| Mobile Van Sampling<br>System | 1. Absence of leaks                                                                                          | Depends on nature of use       | <ol> <li>Change filters</li> <li>Change gas dryer</li> <li>Leak check</li> <li>Check for system<br/>contamination</li> </ol> |
| Sampling Lines                | 1. Sample degradation less than 2%                                                                           | After each test series         | 1. Blow dry, inert gas through line until dry                                                                                |

# TABLE 1EQUIPMENT MAINTENANCE SCHEDULE



| Sampling Equipment                                         | Calibration Frequency             | Calibration Procedure                                                   | Acceptable Calibration<br>Criteria              |
|------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|
| Continuous Analyzers                                       | Before and After Each<br>Test Day | 3-point calibration error test                                          | < 2% of analyzer range                          |
| Continuous Analyzers                                       | Before and After Each<br>Test Run | 2-point sample system<br>bias check                                     | < 5% of analyzer range                          |
| Continuous Analyzers                                       | After Each Test Run               | 2-point analyzer drift determination                                    | < 3% of analyzer range                          |
| CEMS System                                                | Beginning of Each Day             | leak check                                                              | < 1 in. Hg decrease in 5<br>min. at > 20 in. Hg |
| Continuous Analyzers                                       | Semi-Annually                     | 3-point linearity                                                       | < 1% of analyzer range                          |
| NO <sub>x</sub> Analyzer                                   | Daily                             | NO <sub>2</sub> -> NO converter<br>efficiency                           | > 90%                                           |
| Differential Pressure<br>Gauges (except for<br>manometers) | Semi-Annually                     | Correction factor based on<br>5-point comparison to<br>standard         | ± 5%                                            |
| Differential Pressure<br>Gauges (except for<br>manometers) | Bi-Monthly                        | 3-point comparison to<br>standard, no correction<br>factor              | ± 5%                                            |
| Barometer                                                  | Semi-Annually                     | Adjusted to mercury-in-<br>glass or National Weather<br>Service Station | ± 0.1 inches Hg                                 |
| Dry Gas Meter                                              | Semi-Annually                     | Calibration check at 4 flow<br>rates using a NIST<br>traceable standard | ± 2%                                            |
| Dry Gas Meter                                              | Bi-Monthly                        | Calibration check at 2 flow<br>rates using a NIST<br>traceable standard | ± 2% of semi-annual factor                      |
| Dry Gas Meter Orifice                                      | Annually                          | 4-point calibration for $\Delta H@$                                     |                                                 |
| Temperature Sensors                                        | Semi-Annually                     | 3-point calibration vs.<br>NIST traceable standard                      | ± 1.5%                                          |

TABLE 2MAJOR SAMPLING EQUIPMENT CALIBRATION REQUIREMENTS

Note: Calibration requirements that meet applicable regulatory agency requirements are used.



## Appendix D.2 STAC Certification







## Appendix D.3 Individual QI Certificates



| CERTIFICATE OF COMPLETION<br>Matt McCune | This document certifies that this individual has passed a comprehensive examination and is now a Qualified<br>Individual (QJ) as defined in Section 8.3 of ASTM D7036-04 for the following method(s):<br>Source Evaluation Society Group 1: <i>EPA Manual Gas Volume and Flow Measurements and Isokinetic</i><br><i>Particulate Sampling Methods</i> |                                 | DATE OF<br>ISSUE: 9/19/18 | DATE OF<br>EXPIRATION: 9/19/23<br>NTROSE<br>RONMENTAL |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|---------------------------|-------------------------------------------------------|
| CERTIFICATE                              | This document certifies that this individual has p<br>Individual (QJ) as defined in Section 8.5<br>Source Evaluation Society Group 1: EPA Mani<br>Particulate                                                                                                                                                                                        | Certificate Number: 002-2018-50 | Like Standel              | Tate Strickler, Accreditation Director                |







| CERTIFICATE OF COMPLETION<br>Batt McCune<br>This document certifies that this individual has passed a comprehensive examination and is now a<br>Qualified Individual (QI) as defined in Section 8.3 of ASTM D7036-04 for the following method(s):<br>BAQMD Method ST-1B<br>Certificate Number: <u>002-2022-62</u> | Image: Contract in the image |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|



# THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

| Name:   | Mr. Matt McCune          |
|---------|--------------------------|
| Title:  | Regional Vice President  |
| Region: | West                     |
| Email:  | MMccune@montrose-env.com |
| Phone:  | (714) 279-6777           |



**HIGH ACCURACY METER TEST** 

| 1                                                           | : JULTIPLIER:<br>NOMINAL ANALOG: 2-20 mA<br>MULTIPLIER:<br>STD. WATTS:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 13                                     |           | WATTS DISPLAY    |                             | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.01/950 | 0996.0 | 0.598.0 | 0493.0 | 1 249.0 | 2 119.3 | 0.0    | 4         |   |   |   | -          |   | 110 10.00     | 02001/11             |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------|------------------|-----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------|---------|--------|---------|---------|--------|-----------|---|---|---|------------|---|---------------|----------------------|
| LS.                                                         | ** ** MONINA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00                                     |           | -                | %E Display                  | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V196.0   | 997.0  | 578.0   | 28.0   | 349.    | 1124    | 0.00   |           | _ |   |   | -          |   | 10            | A.                   |
|                                                             | WORK ORDER #:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TEST<br>IE:<br>AY 0.0                  |           | 11               | TRUE %E                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |         |        |         |         |        |           |   |   |   |            |   | Data          | רמור                 |
| ION<br>METE                                                 | WORK G<br>WORK G | END OF TEST<br>TIME:<br>WATT DISPLAY   |           | ANALOG OUTPUT    | td. IND.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00       | 30     | 9       | 6      | A       | /*      | 0      |           | - |   |   | _          |   | Acres and and | (-Cary               |
| STAT<br>UR N                                                | CE 11/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | WA<br>WATT-HO                          |           | ANAL             | STD std.                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6 20.    | 111    | 9 11.9  | 60.66  | N       | 15.6    | 2 4.00 |           | _ | - |   | -          |   | Colonnac      | Gerlon, Con          |
| DUC NC                                                      | (CLOSS)<br>(CLOSS)<br>VOLTS: VOLTS:<br>PULSE/HOUR:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                      |           |                  | WE UT MA                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 19.96    | 17.00  | 11.9    | 10.6   | 5.1     | 2.6     | 9.02   |           | + | - | + | _          |   |               | U VUV                |
| RATI                                                        | PULS<br>STD. Ke:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                        | A         |                  | TRUE %E                     | EFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |        |         |        |         |         |        |           |   |   |   | _          |   | 0             |                      |
| NIC                                                         | CIRCUIT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                        | TEST DATA | UTPUT            | IND %E                      | AS FOUND / AS LEFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |        |         |        |         |         |        |           |   |   |   | _          |   |               | 5410                 |
| BEACH GENERATING STATION<br>ELECTRONIC WATT-HOUR METER TEST | CIRCUIT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4)<br>A                                | TES       | DIGITAL OUTPUT   | #2 Ave.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N        |        |         | 1      |         |         |        |           |   |   |   | -          | 0 | 1             | - 211-               |
|                                                             | MODEL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | m<br>12                                |           |                  | Standard Count<br>#1 Run #2 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Minde    | 11     | 11      | 1      | 11      | 11      | 11     | $\square$ |   |   |   | H          |   | 100           | ()-434-066           |
| ORMOND<br>HIGH ACCURACY                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .00                                    |           | 1                | Run #1                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1.0      | 44     | 11      | 11     | 11      | 11      | 11     |           |   | - |   | 440.       |   | Cinnad.       | 805)                 |
| ORM                                                         | Single Phase<br>Poly Phase<br>ELEMENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | r of test<br>Time:<br>splay            |           | ern -            | ount % E                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |         |        |         |         |        |           |   |   | _ | Tes.       |   | Cinr          | Celli                |
| AC                                                          | 03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | START OF TEST<br>TIME:<br>WATT DISPLAY |           |                  | RO Count                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |         |        |         |         | _      |           |   |   |   | - 1/2      |   |               | 4                    |
| Ö                                                           | SE: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | WATT-HC                                |           | NGS              | coil Run<br>Pulses          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | _      |         | _      | _       |         | _      |           | - | - |   | Escho      |   | leitm         | 805) 986-7294        |
|                                                             | NSGS<br>NSE<br>PHASE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                      |           | NOMINAL SETTINGS | TIM Coll                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0        | 0      | 0       | 0      | 0       | 0       | 0      |           | - | - |   | - K        |   | lim Samuel    | 805                  |
|                                                             | 0 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |           | NOWIN            | р.н.<br>19                  | and the second se | 1        | 1      | 10/     | 1.     | 1       | 1'      | 0 10   |           | _ |   |   | TES.       |   | ch.           | ormation:            |
| 2                                                           | LOCATION:<br>MANUFACTURER:<br>WATTS: 324<br>P.TRATIO:<br>STD. FLE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |           |                  | olts Sec.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5.0      | 4.16   | 100     | 2:083  | 1.042   | 0.50    | 0.00   |           | - | - |   | COMMENTS:  |   | Test Tech-    | Contact Information: |
|                                                             | MANUFACT<br>WATTS: UNATTS: STD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |           |                  | Sec. Volts                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 115      | 1/2    | 118     | 115    | 115     | 115     | 110    |           |   |   |   | COMIN      |   |               | 0                    |
|                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                        |           |                  |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          |        |         |        |         |         |        |           |   |   |   | <i>a</i> . |   |               |                      |

|   | 1                                                                           | STALEDENET<br>NOMINAL ANALOG: 4-20 mA<br>MULTIPLIER:<br>STD. WATTS: |                                                          |                                         | WATTS DISPLAY    | tay STD. IND. %E TRUE %E        | -                  | 21 57,26  | 84 47,80  | 8.70 28.69 | 91 23.91  | 76 11.96  | 15.75    | 2000      | · · | 9 |  |   |            |   | 111/2023                           |
|---|-----------------------------------------------------------------------------|---------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------|------------------|---------------------------------|--------------------|-----------|-----------|------------|-----------|-----------|----------|-----------|-----|---|--|---|------------|---|------------------------------------|
|   | Г<br>Ц                                                                      | RDER#<br>ERIAL#                                                     | 0.02<br>05399                                            |                                         | Carton a         | TRUE %E Display                 |                    | 53        | 3.74      | 28.        | N.        | 11.9.     | 5:5      | 0.02      |     |   |  | - |            |   | Date:                              |
|   | ORMOND BEACH GENERATING STATION<br>HIGH ACCURACY ELECTRONIC WATT-HOUR METER | WORK O<br>WIN S<br>STD. MA                                          | END OF TEST<br>TIME:<br>WATT DISPLAY<br>WATT-HOUR COUNT: |                                         | ANALOG OUTPUT    | STD std. IND.<br>.mA % E        |                    | 0.0       | 36        | 8.03       | 69        | .36       | 62       | 00        |     |   |  |   |            |   | Isamuel@ercom                      |
|   | BEACH GENERATING STATION                                                    | U.L.SEMOUR: 5                                                       | W<br>H-TTAW                                              |                                         | ANI              | UT                              |                    | 30.0 20   | 17.36 11. | 12.03 12.  | 10.6910.  | V         | 5.62 5.6 | 4.02 4.00 |     |   |  |   |            |   | Samuel                             |
|   | ERATIN<br>WATT.                                                             | NIT / AULS<br>PULS<br>STD. Ke:                                      |                                                          | TTA                                     |                  | ND TRUE %E                      | LEFT               |           |           |            |           |           |          |           |     |   |  |   |            |   |                                    |
| ł | H GENIC                                                                     | circuit:                                                            |                                                          | TEST DATA                               | DIGITAL OUTPUT   | Ave                             | AS FOUND / AS LEFT | u.a       |           |            |           |           |          |           | -   |   |  |   | -          | 0 | 577-5 du                           |
|   | ELECT                                                                       | MODEL:                                                              | 1010                                                     |                                         | DIG              | Standard Count<br>Run #1 Run #2 |                    | > Aluluta | 11        | 11         | 11        | 11        | 11       | 11        |     |   |  |   | TT         |   | 5) 431-0552                        |
|   | ORMOND                                                                      | le Phase<br>Ny Phase<br>EMENT:                                      | 0. 02<br>6539                                            |                                         | STD & IT         | % E Run                         |                    | 1.0       | 11        | 11         | 11 .      | 1         | 11       | 11        |     |   |  |   | S AD       |   | Signed: 000                        |
|   | ACCI                                                                        | 1810 S                                                              | START OF TEST<br>TIME:<br>WATT DISPLAY                   |                                         |                  | RO Count                        |                    |           |           |            |           |           |          |           |     |   |  |   | - Alte     | 2 |                                    |
|   | ÖI                                                                          | PHASE: C.T. RATIO:                                                  | WA<br>WATT-HC                                            |                                         | ETTINGS          | TM Coil Pulses                  |                    |           |           |            |           |           |          |           |     |   |  |   | <br>Equip. |   | Jim Samuel<br>805) 986-7294        |
|   |                                                                             | 089<br>St                                                           |                                                          | C I C I C I C I C I C I C I C I C I C I | NOMINAL SETTINGS | Ъ.<br>Ч.                        |                    | 1.0       | 1.0       | 1          |           | 1         | 1.0      | 1.0       |     |   |  |   | EST &      | Î |                                    |
|   | 5                                                                           | LOCATION:<br>MANUFACTURER:<br>WATTS: 32<br>P.T RATIO:<br>STD. ELE.: |                                                          |                                         |                  | Sec. Volts Amps                 |                    | 15 5.0    | 115 4.167 | 115 2.5    | 115 2.083 | 115 1.042 | 115 0.50 | 115 0.00  |     |   |  |   | COMMENTS:  |   | Test Tech:<br>Contact Information: |

| 1                                                      | WLEDE / AB<br>ML ANALOG: 4-20 mA<br>MULTIPLIER:<br>STD. WATTS:                                                     |           | WATTS DISPLAY    |                | Watts ND. %E IRUE %E |               | 0.00    | 10.0    | 198 0      | 24.0      | 19.0    | 0.00      | 2 |  |  |          |      |   | 1/2023                             |  |
|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-----------|------------------|----------------|----------------------|---------------|---------|---------|------------|-----------|---------|-----------|---|--|--|----------|------|---|------------------------------------|--|
| TEST                                                   | SIMO                                                                                                               |           |                  | 1              | Watts                | 101           | 0000    | 5000    | 298.0      | 249.0     | 19.5    | 0.00      |   |  |  |          |      |   | 1/2/                               |  |
|                                                        | WORK ORDER #<br>WORK ORDER #<br>SERIAL #<br>NOMIN<br>Bease Kei<br>STD. mA:<br>END OF TEST<br>TIME:<br>WATT DISPLAY |           | ANALOG OUTPUT    | . IND. TBUE VE | %Е                   | J             | 2.16    |         |            |           |         |           |   |  |  |          |      |   | Can Date:                          |  |
| BEACH GENERATING STATION<br>ELECTRONIC WATT-HOUR METER | R: 2000                                                                                                            |           | ANALO            | UT STD std.    |                      | 19 01 00 0    | 101 101 | 1       | 0.66 10.66 | 7.34 7.34 | -61 Sob | 2.02 4.00 |   |  |  | _        | 5767 |   | jsamuel@m.com<br>Gabu!. com        |  |
| RATING                                                 | CGROSS<br>26206<br>VOLTE<br>PULSE/HOU<br>STD, Ke:                                                                  | A         |                  | TRUE %F        |                      |               |         |         | 1          |           | 0       | 14        |   |  |  |          |      |   |                                    |  |
| GENEI<br>ONIC V                                        | CIRCUIT:                                                                                                           | TEST DATA | DIGITAL OUTPUT   | QNI            | AVE. %E              | LOUND / AS LE |         |         |            |           |         |           |   |  |  | -        |      | 0 | 7-5410                             |  |
| <b>JEACH</b><br>LECTR                                  | MODEL:                                                                                                             | TE        | DIGITAI          | Standard Count | Run #2 P             | Malart        | 11      | 11      | 11         | 11        | 11      | 11        |   |  |  | T        |      |   | 431-0582 57                        |  |
|                                                        | 23                                                                                                                 |           |                  |                | Run #1               | 1.0           | 11      | 11      | 11         | //        | 11      | 11        |   |  |  | 4407     |      |   | 805)                               |  |
| ORMOND<br>HIGH ACCURACY                                |                                                                                                                    |           |                  | RO Count % E   | _                    |               |         |         |            |           |         |           |   |  |  | leres    | a    |   | Signed<br>Cell:>                   |  |
| HOH A                                                  | STAN<br>STAN                                                                                                       |           | SS               | Run            | Pulses               |               |         |         |            |           |         |           |   |  |  | 110-4    |      |   | 1 Samuel<br>805) 986-7294          |  |
|                                                        | DBGS<br>SEL<br>PHASE:<br>WA                                                                                        |           | NOMINAL SETTINGS | P.F. TM Coil   | -                    | 10%           | 0       | :0      | 10         | 0.        | 0:      | 0.        |   |  |  | The      |      |   | hil                                |  |
| 241                                                    |                                                                                                                    |           | NON .            | Sec.           | -                    | 5.0 %         | 1       | 2.50 1. | 2,083 1.   | 1.042 1.  | 0.50 1. | 0.00 1    |   |  |  | ITS: NES |      |   | Test Tech:<br>Contact Information: |  |
|                                                        | LOCATION:<br>MANUFACTURER:<br>WATTS:                                                                               |           |                  | Sec. Volts     |                      | 115           | 115     | 115     | 115        | 115       | 115     | 115       |   |  |  | COMMENTS |      |   | Cont                               |  |

| ION<br>METER TEST                                                                | WORK ORDER #:<br>WORK ORDER #:<br>S: NS WAC<br>S: NS WAC<br>STD. mA:<br>STD. mA:<br>STD. WATTS:<br>WATT DISPLAY<br>WATT-HOUR COUNT:<br>S. Z. Z. Z. |           | ANALOG OUTPUT WATTS DISPLAY | H. IND. TRUE %E Display STD. IND. %E TRUE %E Watts |                    | 24 57.2057.30       | 27,8527,30     |                                          | 23.92 23. |                                        |          | 0.05 0.00 | e |  |  |                      |         | and the second se | he can               |
|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------|----------------------------------------------------|--------------------|---------------------|----------------|------------------------------------------|-----------|----------------------------------------|----------|-----------|---|--|--|----------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| ORMOND BEACH GENERATING STATION<br>HIGH ACCURACY ELECTRONIC WATT-HOUR METER TEST | DEL: WITE: WITE: TOTAL, TOTAL, TOTAL, DEL: VOLTS: VOLTS: NO.: STD. Ke: NO.: STD. Ke: NAT WAT-HOU                                                   | TEST DATA |                             | Standard Count IND<br>TRUE %E UT STD stdA<br>A     | AS FOUND / AS LEFT | Marita 20, 20 20, 2 | 11 17.36 17.36 | N                                        | 0         | N                                      | 5        | 1. 4.00   |   |  |  | TOIL                 |         | iconal iconal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | GENON                |
| ORMOND BE<br>HIGH ACCURACY ELE                                                   | Single Phase<br>Poly Phase<br>Poly Phase<br>Poly Phase<br>Mucrosoft<br>START OF TEST<br>TIME:<br>WATT DISPLAY                                      |           | NOMINAL SETTINGS            | P.F. TM Coil Pulses RO Count % E Run #             |                    |                     |                | 1/ · · · · · · · · · · · · · · · · · · · |           | // // // // // // // // // // // // // | 011      |           |   |  |  | EST EQUIP - ARTES 44 | in<br>G | tim Samuel Simod Simod                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 805) 986-7294        |
|                                                                                  | LOCATION:<br>MANUFACTURER:<br>WATTS: C                                                                                                             |           |                             | Sec. Volts Amps                                    | N AN               | 115 3.0             | 115 4.161      | 115 2.00                                 | 115 1000  | 115 0.50                               | 115 0 20 | 2000      |   |  |  | COMMENTS:            |         | Test Tech:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Contact Information: |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VALZAZ 189<br>MALANALOG: 4 Zb mA<br>MULTIPLIER:<br>STD, WATTS:     | X                                                        |           | WATTS DISPLAY    | STD.<br>Watts IND.%E TRUE%E |                    | 12.00   | 7.75    | 5.34     | 7,87      | 4.95   | 7.18   | 0.00     |   | 8 |  |           | ******* | 7/2023                             |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------|-----------|------------------|-----------------------------|--------------------|---------|---------|----------|-----------|--------|--------|----------|---|---|--|-----------|---------|------------------------------------|--|
| in the second se | 1) ONINO                                                           | 0.03                                                     |           |                  | Display<br>Watts            |                    | 71.30   | 59.80 5 | 35.383   | 29.90 2   | 12.95% | 7.18   | 0.03     |   |   |  |           |         | 121                                |  |
| A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ERIAL #                                                            |                                                          |           | UT               | TRUE %E                     |                    |         |         |          |           |        |        | _        |   |   |  |           |         | Date:                              |  |
| XTION<br>X MET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | WORK 0<br>1004/27/1/1/2<br>11/57/4/С<br>5710. mA:                  | END OF TEST<br>TIME:<br>WATT DISPLAY<br>WATT-HOUR COUNT: |           | ANALOG OUTPUT    | STD std. IND.<br>.mA %E     |                    | 20.00   | 1.30    | 1.98     | 2.65      | 1.34   | 10:01  | 600      |   |   |  | _         |         | <u>isamuel@rn.com</u>              |  |
| IG ST/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ALK.<br>VOLTS:<br>EMOUR:                                           | WATT                                                     |           | 4                | UT<br>MA                    |                    | 19.95 2 | 1230 1  | 11.98 11 | 10.65 1   | 7.34 7 | 5-61 3 | 4.024    |   |   |  | _         | æ       | isamuel (0                         |  |
| RATIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SCLUNE<br>PULS<br>STD. Ke:                                         |                                                          | LA        |                  | TRUE %E                     | EFT                |         |         |          |           |        |        | _        |   |   |  |           |         | 02                                 |  |
| ORMOND BEACH GENERATING STATION<br>CURACY ELECTRONIC WATT-HOUR METER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CIRCUIT:                                                           |                                                          | TEST DATA | DIGITAL OUTPUT   | Ave.                        | AS FOUND / AS LEFT |         |         | _        |           |        |        | _        |   |   |  | -         |         | Concel                             |  |
| LECTR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MODEL:<br>STD. SER. NO.:                                           | J.                                                       | L         | DIGITI           | Standard Count<br>1 Run #2  | AS                 | Multite | 11      | //       | 11        | 11     | 11     | "        |   |   |  | 24        |         | 2000 C                             |  |
| ORMOND B<br>HIGH ACCURACY EI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    | .03                                                      |           |                  | Run #                       |                    | 1.0     | 11      | 11       | 11        | 11     | 11     | 11       |   |   |  | 5 44.     |         | Signed: 4 m                        |  |
| ORM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Single Phase<br>Poly Phase<br>eleMENT:                             | START OF TEST<br>TIME:<br>TT DISPLAY                     |           |                  | RO Count % E                |                    |         |         |          |           |        |        |          |   |   |  | ARTE      |         | Sign                               |  |
| GHA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RATIO                                                              | START OF TE<br>TIME:<br>WATT DISPLAY<br>WATT-HOUR COUNT: |           |                  | Run<br>Pulses               |                    |         |         |          |           |        |        |          |   |   |  | 110 -     |         | 1 Samuel<br>805) 986-7294          |  |
| L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | PHAS                                                               | MA                                                       |           | NOWINAL SETTINGS | . TW Coil                   |                    | 0       | -       |          | 0         | 0      | 0      |          |   |   |  | 7600      | )       | Jim Samuel<br>805) 986             |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ACTURER: 04<br>St. 221<br>P.T. RATIO: 26<br>STD. ELE.: 26          |                                                          |           | VIMON .          | Sec. P.F.                   |                    | 5.0 1.0 | N       | 1        | 1.083 1.0 |        | 1      | 0100 110 |   |   |  | 1881      |         | Test Tech:<br>Contact Information: |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LOCATION:<br>MANUFACTURER:<br>WATTS: 22<br>P.T.RATIO:<br>STD. ELE: |                                                          |           |                  | Sec. Volts                  |                    | 115     | 115 4   | 115 2    | 115 2.    | 115 1. |        | 110 0    | - |   |  | COMMENTS: |         | Tesi<br>Contact                    |  |
| Ψ<br>-<br>-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                    |                                                          |           |                  |                             |                    |         |         |          |           |        |        |          |   |   |  | -         |         |                                    |  |

**COLD START-UP LOG** 

### **ORMOND BEACH POWER, LLC ORMOND BEACH GENERATING STATION COLD START-UP TRACKING**

January 2023

through December 2023

| QTR. | MONTH            | UNIT #1 | UNIT #2 | NAB | SAB |
|------|------------------|---------|---------|-----|-----|
|      | January          | 1       | 0       | 2   | 2   |
| 1ST  | February         | 0       | 1       | 1   | 1   |
|      | March            | 0       | 0       | 0   | 0   |
|      | April            | 1       | 0       | 5   | 5   |
| 2ND  | Мау              | 0       | 3       | 3   | 3   |
|      | June             | 1       | 0       | 3   | 3   |
|      | July             | 1       | 5       | 11  | 5   |
| 3RD  | August           | 7       | 7       | 11  | 15  |
|      | September        | 0       | 0       | 0   | 0   |
|      | October          | 1       | 2       | 7   | 4   |
| 4TH  | November         | 0       | 0       | 0   | 0   |
|      | December         | 2       | 0       | 1   | 1   |
| YTD  | REPORTING TOTAL: | 14      | 18      | 44  | 39  |

Note: The start-up #s above must be verified with the VCAPCD Air Quality Specialist

Cold Start = First 20 hrs runtime (Units 1&2) or >550°; 4 hrs runtime (N-Aux & S-Aux) no temp.

## EMERGENCY GENERATOR ANNUAL SERVICE

#### LEDDY POWER SYSTEMS, INC. SERVICE REPORT

| Servic              | e Date       |            |         | C      | ustor  | ner ID               | C         | ontact Name      | / Phon   | e No.    |      |
|---------------------|--------------|------------|---------|--------|--------|----------------------|-----------|------------------|----------|----------|------|
| 10/3/               | /2023        |            |         | Ger    | nOn F  | loldings             |           | John / 805-      | 985-730  | 09       |      |
| Service T           | ech ID(s)    |            | Re      | eferei | nce /  | Invoice No.          |           | Equipment        | Locatio  | on       |      |
| 1020/               | /1011        |            |         |        | 27     | 35                   | 6635      | Edison Dr., O    | xnard, ( | CA 930   | 03   |
| Equipment Ma        | ke / Mode    | l No.      | Seri    | al No  | •      | Spec No.             | Eng. H    | ours (Start)     | Eng. H   | lours (  | End) |
| CUMMINS             | 6/400DFCE    |            | H970    | 6462   | 32     | 89568B               |           | 156.1            |          | 157.5    |      |
| Engine Make         | / Model N    | lo.        | Seri    | al No  | •      | Spec No.             | Fu        | el Type          | Fu       | el Leve  | el 🛛 |
| CUMMINS/            | NTA855-G     | 5          | 118     | 56002  | 1      | 41111                | 0         | DIESEL           |          | FULL     |      |
| KW Rating           | RPM R        | ating      | HZ F    | Rating | 3      | Voltage Rating       | Арј       | olication        | DEF I    | Level (1 | 74F) |
| 400                 | 180          | 00         |         | 60     |        | 277/480              | ST        | ANDBY            |          | N/A      |      |
| Reason for Se       | rvice        | COOLAN     | IT SERV | ICE A  | ND B   | LOCK HEATER REP      | LACEME    | NT.              |          |          |      |
|                     |              |            |         | Multi  | i-Poir | nt Inspection        |           |                  |          |          |      |
| Х                   | No Action    | Required   | W       | Wa     | rning  | / Action Required    | N         | Not Applic       | able     |          |      |
|                     | Gene         | ral        |         |        |        |                      | Cool      | ing System       |          |          |      |
| Inspect outside of  | the equipr   | ment and a | area    |        | W      | Inspect coolant le   | evel      |                  |          |          | Х    |
| Inspect enclosure   | and access   | doors      |         |        | Х      | Inspect radiator a   | and expa  | insion tank      |          |          | Х    |
| Inspect seismic an  | choring      |            |         |        | Х      | Inspect radiator f   | an and f  | an clutch        |          |          | Х    |
| Inspect engine blo  | ock and cyli | nder head  |         |        | Х      | Inspect hoses        |           |                  |          |          | Х    |
| Inspect engine mo   | ounts        |            |         |        | Х      | Inspect block hea    | iter(s)   |                  |          |          | Х    |
| Inspect AC genera   | tor and mo   | ounting    |         |        | Х      | Inspect coolant p    | ump(s)    |                  |          |          | Х    |
|                     | Instrume     | ntation    |         |        |        | Inspect raw wate     | r pump(   | s)               |          |          | Ν    |
| Inspect controls a  | nd instrum   | entation   |         |        | Х      | Inspect belt(s) an   | d pulley  | (s)              |          |          | Х    |
| Inspect for active  | alarms and   | fault cod  | es      |        | Х      | Inspect heat exch    | nanger(s  | ), cooler(s), zi | nc anoc  | le(s)    | Ν    |
| Inspect operating   | parameter    | s while ru | nning   |        | Х      |                      | Lubric    | ation System     |          |          |      |
| Inspect remote an   | nunciator(   | s)         |         |        | Х      | Inspect oil level a  | nd cond   | ition            |          |          | Х    |
|                     | Electr       | ical       |         |        |        | Inspect oil PSI      |           |                  |          |          | Х    |
| Inspect wiring, co  | nnections,   | and condu  | uit     |        | Х      | Inspect oil lines/ł  | noses fo  | r leaks and da   | mages    |          | Х    |
| Inspect batteries   |              |            |         |        | Х      | Inspect oil filter(s | ;)        |                  |          |          | Х    |
| Inspect battery ch  |              |            |         |        | Х      |                      |           | lation / Exha    | ust Syst | tem      |      |
| Inspect alternator  | (s)          |            |         |        | Х      | Inspect air filter(s | s) and pi | ping             |          |          | Х    |
| Inspect belt(s) and |              |            |         |        | Х      | Inspect crankcase    | e ventila | tion             |          |          | Х    |
| Inspect engine sta  |              |            |         |        | Х      | Inspect air to air   |           |                  |          |          | Ν    |
| Inspect spark ignit | -            | -          | nly)    |        | Ν      | Inspect air ventila  |           |                  | and cor  | ntrols   | Х    |
|                     | Fuel Sys     | stem       |         |        | ٦      | Inspect exhaust r    | nanifold  | and piping       |          |          | Х    |
| Inspect fuel level  |              |            |         |        | Х      | Inspect turbocha     | - · ·     |                  |          |          | Х    |
| Inspect fuel tank   |              |            |         |        | Х      | Inspect muffler(s    |           |                  |          |          | Х    |
| Inspect fuel pump   | (s)          |            |         |        | Х      | Inspect DEF level    |           |                  |          |          | Ν    |
| Inspect fuel PSI(s) |              |            |         |        | Х      | Inspect dosage va    |           |                  | )        |          | Ν    |
| Inspect fuel lines, |              |            |         |        | Х      | Inspect SCR catal    | •         |                  |          |          | Ν    |
| Inspect regulator(  | s) and shut  | off(s) (NG |         |        | Ν      | Inspect diesel par   | rticulate | filter           |          |          | Ν    |
|                     |              |            |         | Inspe  | ection | n Comments           |           |                  |          |          |      |

**Detailed Service Summary** 

#### LEDDY POWER SYSTEMS, INC. SERVICE REPORT

Performed multipoint inspection, and test ran unit. Drained coolant. Removed and replaced block heater. Installed new hoses for block heater. Removed and replaced thermostat. Installed new hoses with clamps on upper and lower coolant tubes. Removed and replaced coolant filter. Filled unit with 14 gallons of coolant. Test ran unit and recorded measurements.

Recommendations/Actions Required:

1. Recommend moving all the trash cans that are stored next to the generator, so they do not impede access and airflow to the genset.

Please, refer to Leddy Power Systems, Inc. Terms and Conditions of Sale and Service.

CARB APPROVED DIESEL FUEL USE

Leddy Power Systems, Inc. 530 Los Angeles Ave., Suite 115-145 Moorpark, CA 93021 US +1 8055524221 info@leddypower.com

# INVOICE

### BILL TO Todd Kinsey GenOn Holdings, Inc. Ormond Beach Generating Facility 6635 Edison Drive Oxnard, CA 93003

SHIP TO Todd Kinsey GenOn Holdings, Inc. Ormond Beach Generating Facility 6635 Edison Drive Oxnard, CA 93003

# **LEDDY POWER**

INVOICE # 2614 DATE 06/10/2023 DUE DATE 06/10/2023 TERMS Due on Receipt

|                                                             | QTY         | RATE | AMOUNT |  |
|-------------------------------------------------------------|-------------|------|--------|--|
| FUEL:DIESEL<br>OHW DIESEL                                   | 33          | 7.89 | 260.37 |  |
| FEE:ENVIRONMENTAL/HAZMAT FEE<br>ENVIRONMENTAL/HAZMAT FEE 3% |             | 7.81 | 7.81   |  |
| Delivery & dispensed on 06-07-2023                          | SUBTOTAL    |      | 268.18 |  |
|                                                             | TAX         |      | 0.00   |  |
| Customer PO 4503738892-1                                    | TOTAL       |      | 268.18 |  |
|                                                             | PAYMENT     |      | 268.18 |  |
|                                                             | BALANCE DUE |      | \$0.00 |  |



GENON HOLDINGS, INC.

ACCOUNT NUMBER: 2240

SOLD TO:

Corporate Office P.O. Box 1048 Fresno, CA 93714 (559) 233-5171 www.silvasoil.com PLEASE RETURN REMITTANCE TO ADDRESS ABOVE NUMBER: 131780

INVOICE

08-02-23 DATE:

SHIP TO:

JAX Blue DEF

"DO NOT MAIL" ORMOND BEACH 1360 POST OAK BLVD ST #2000 HOUSTON, TX 77056

NRG CALIFORNIA, SOUTH LP 2240 GENON - ORMOND BEACH STATION 6635 S. EDISON OXNARD, CA 93 93033

| STAT          | EMENTS A            | T THE BOTTO                               | MARE    |                       | T HEREOF. |                  | PURCH       | ASE ORDER        | NUMB   | ER45    | 03739107-1                  |                |
|---------------|---------------------|-------------------------------------------|---------|-----------------------|-----------|------------------|-------------|------------------|--------|---------|-----------------------------|----------------|
| LIVERED       | ) BY (SIGNATUR      | E IN FULL)                                | RE<br>X | CEIVED IN GOOD C      | RDER      |                  | NET         | 45               | 1      | his inv | oice amount due on:         | 09-17-23       |
| O. OF<br>KG S | BULK OR<br>PKG SIZE |                                           | PRODU   | CT DELIVERED          |           | OR               | DERED       | DELIVERE         | D      | XES     | PRICES                      | AMOUNT         |
|               |                     | NA1993, 1                                 |         |                       |           | <b>I</b> I -     |             |                  |        |         |                             | 600 10         |
| 2             |                     | CARB (RE<br>DYED DIE<br>PENALTY<br>FEDERA | SEL F   | JEL, NON<br>AXABLE U  | TAXABLE   | USE              | 110<br>ONLY | 110              |        | T       | 6.35900                     | 699.49<br>0.11 |
| 8             | EACH                | DRUM17H<br>1A2/X400                       |         |                       | WASTE D   | RM               | 8           | 1                | в      | Т       | 69.95000                    | 559.60         |
| OR            | EMERGEN             | CY RESPO                                  | NSE C.  | ALL 1-55              | 9-341-6   | 948              |             |                  |        |         |                             |                |
| g ai          | R 78005             | 744                                       |         |                       |           | JUSI             | N 80        | 5-561            | -878   | 6       |                             |                |
|               |                     |                                           |         |                       | 5 2128    | 27 1             | 7. (        | .250%            | 51     | 76      |                             |                |
| CAL           | ESMAN -             |                                           | SALE    | S TAX:                | 5.312%    | 3/.1             |             |                  | 51.    | /0      | SALE\$MULTI                 | 88.93          |
|               |                     | 2                                         |         | PLACA                 |           |                  | YES         | (STA) STATE OF   | NOD    |         | TAX 20.00                   | 40.00          |
| DRUMS         | DELIVERED           |                                           |         | DRUMS RETU            |           |                  | ODDECT      | Carlon Dia di Ba | MS NET | •       |                             | 1,388.13       |
|               |                     | BAKERSFI<br>661-589-5                     | ELD     | FRESNO<br>559-233-517 | KIN       | GSBUF<br>-897-51 | RG          | OXNA<br>805-486  |        | •       | SANTA MARIA<br>805-925-7676 |                |

Normal terms are net cash - No Discount. Invoices are due and payable according to terms as stated on the face of this invoice.

If invoice is not paid as agreed, interest will be charged at the rate of 1.5% per month on any unpaid balance until unpaid balance is paid in full. A handling charge of \$20 will be assessed on all returned checks.

In the event of any dispute arising under or in connection with this sale, the prevailing part in such dispute shall be entitled to be reimbursed for all costs, fees, and expenses incurred in connection with prosecuting or defending such claim, including reasonable attorney's fees. Purchaser agrees that venue for any action arising under or in connection with shall be instated to be reimbursed for all costs, fees, and expenses incurred in connection with prosecuting or defending such claim, including reasonable attorney's fees. Purchaser agrees that venue for any action arising under or in connection with shall be in State or Federal Courts located in Fresno County, California and waives the right to have any such action heard in any other court. RETURNABLE DRUMS: In accordance with the Seller's current container policy, certain containers (including iron or steel barrels and drums) remain the property of the Seller. Container deposits paid by the customer will be refunded by Seller upon prompt return of the container in good condition.

Purchaser acknowledges that fuel may expand or contract during transport and that product measurement shall be based upon calibrated product delivery into Seller's truck as shown by Seller's supplier.

PURCHASER SHALL IDEMNIFY AND HOLD HARMLESS SELLER FROM AND AGAINST ANY AND ALL LIABILITIES, CLAIMS, CAUSES OF ACTION, LOSSES, FINES PENALTIES, ATTORNEYS, FEES, COSTS AND EXPENSES WHETHER CONTINGENT, ACCRUED, ASSOLUTE OR OTHERWISE (CLAIMS') ARISING OUT OF RELATING TO THE SALE OF PRODUCT HEREUNDER ARISING FROM ANY CAUSE OTHER THAN THE GROSS NEGLIGENCE OR INTENTIONAL MISCONDUCT OF SELLER, INCLUDING, WITHOUT LIMITATION, CLAIMS OF ACTUAL OR ALLEGED CONTAMINATION OR POLLUTION FROM ANY TOXIC OR HAZARDOUS MATERIAL OR SUBSTANCE WHICH IS CLASSIFIED OR REGULATED AS TOXIC OR HAZARDOUS TO HEALTH OR THE ENVIRONMENT BY ANY GOVERNMENTAL AUTHORITY.

IN NO EVENT SHALL SELLER BE LIABLE TO PURCHASER FOR ANY PROSPECTIVE OR SPECULATIVE PROFITS OR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, WHETHER BASED UPON CONTRACT, TORT OR NEGLIGENCE, OR IN ANY OTHER MANNER ARISING OUT OF OR RELATED TO THE SALE OF PRODUCT HEREUNDER.

This is to certify that the articles listed above are properly classified, described, packaged, marked and labeled, and are in proper condition for transportation, according to the applicable regulations of the Department of Transportation. Purchaser shall pay all applicable taxes. Applicable taxes which are payable by purchaser include all local, state and federal taxes (including but not ilmited to sales, use, value added, occupation, gross receipts, registration, ad valorem, excise, environmental and documentary taxes, including any interest charge or pentally that may result therefrom) and duty, fee, governmental and duty, fee, governmental and duty fee guitations, knowledge, and belief, are applicable to this sale. Any tax or fee subsequently determined to be applicable to this sale and not included on this invoice will be billed to the purchaser at a later date.

TAX LEGEND:

Blank - Not subject to tax

T. - Subject to tax - amount appears below X. - Exempt from tax





Corporate Office P.O. Box 1048 Fresno, CA 93714 (559) 233-5171 www.silvasoil.com PLEASE RETURN REMITTANCE TO ADDRESS ABOVE NUMBER: 128512-A

INVOICE

03-22-23 DATE:

GENON HOLDINGS, INC. SOLD TO:

ACCOUNT NUMBER: 2240

NRG CALIFORNIA, SOUTH LP SHIP TO:

"DO NOT MAIL" ORMOND BEACH 1360 POST OAK BLVD ST #2000 HOUSTON, TX 77056

GENON - ORMOND BEACH STATION 6635 S. EDISON OXNARD, CA 93033

| STATEME          | NTS AT THE BOTTOM AR            | RE MADE A PART HEREOF.                           | PURCHA      | ASE ORDER NU         | MBER45(   | 3739107-1                   |                |
|------------------|---------------------------------|--------------------------------------------------|-------------|----------------------|-----------|-----------------------------|----------------|
| DELIVERED BY (SI | GNATURE IN FULL)                | RECEIVED IN GOOD ORDER                           |             |                      | This invo | ice amount due on:          | 05-07-23       |
| X                |                                 | x                                                | NET         | 45                   |           |                             | 00 07 10       |
|                  | K OR<br>SIZE PRO                | DUCT DELIVERED ORI                               | DERED       | DELIVERED            | TAXES     | PRICES                      | AMOUNT         |
| 2 DI             | RUM CARB (RED) U<br>DYED DIESEL | FUEL, NONTAXABLE USE<br>TAXABLE USE.             | 110<br>ONLY | , 110<br>, 110       | т         | 5.74900<br>0.00100          | 632.39<br>0.11 |
| FOR EMEI         | RGENCY RESPONSE                 | CALL 1-559-341-6948                              |             |                      |           |                             |                |
| SG AR 78         | 8005744                         | JUST                                             | IN 80       | 5-986-7              | 216       |                             |                |
| SALESM           | AN - 80                         | PLACARD                                          | YES         |                      |           | SALES<br>TAX 5.312          | 33.60          |
| DRUMS DELI       |                                 | DRUMS RETURNED                                   |             | DRUMS                | NET       | 2 20.00                     | 40.00          |
|                  | ERRORS IN PRICE                 | , EXTENSION AND ADDITION SUBJECT TO C            | ORRECTIO    | N.                   |           | TOTAL ->                    | 706.10         |
|                  | BAKERSFIELD<br>661-589-5620     | • FRESNO • KINGSBUR<br>559-233-5171 • 559-897-51 |             | OXNARD<br>805-486-45 |           | SANTA MARIA<br>805-925-7676 |                |

Normal terms are net cash - No Discount. Invoices are due and payable according to terms as stated on the face of this invoice.

If invoice is not paid as agreed, interest will be charged at the rate of 1.5% per month on any unpaid balance until unpaid balance is paid in full. A handling charge of \$20 will be assessed on all returned checks.

In the event of any dispute arising under or in connection with this sale, the prevailing party in such dispute shall be entitled to be reimbursed for all costs, fees, and expenses incurred in connection with prosecuting or defending such claim, including reasonable attorney's fees. Purchaser agrees that venue for any action arising under or in connection herewith shall be in State or Federal Courts located in Fresno County, California and waives the right to have any such action heard in any other court. RETURNABLE DRUMS: In accordance with the Seller's current container policy, certain containers (including iron or steel barrels and drums) remain the property of the Seller. Container deposits paid by the customer will be refunded by Seller upon

prompt return of the container in good condition. Purchaser acknowledges that fuel may expand or contract during transport and that product measurement shall be based upon calibrated product delivery into Seller's truck as shown by Seller's supplier

Purchaser acknowledges that fuel may expand or contract during transport and that product measurement shall be based upon calibrated product delivery into Seler's trutch as shown by Seler's supplier. PURCHASER SHALL IDEMNIFY AND HOLD HARMLESS SELLER FROM AND AGAINST ANY AND ALL LIABILITIES, CLAIMS, CAUSES OF ACTION, LOSSES, FINES PENALTIES, ATTORNEYS, FEES, COSTS AND EXPENSES WHETHER CONTINGENT, ACCRUED, ABSOLUTE OR OTHERWISE ("CLAIMS") ARISING OUT OF OR RELATING TO THE SALE OF PRODUCT HEREUNDER ARISING FROM ANY CAUSE OTHER THAN THE GROSS NEGLIGENCE OR INTENTIONAL MISCONDUCT OF SELLER, INCLUDING, WITHOUT LIMITATION, CLAIMS OF ACTUAL OR ALLEGED CONTAMINATION OR POLLUTION FROM ANY TOXIC OR HAZARDOUS MATERIAL OR SUBSTANCE WHICH IS CLASSIFIED OR REGULATED AS TOXIC OR HAZARDOUS TO HEALTH OR THE ENVIRONMENT BY ANY GOVERNMENTAL AUTHORITY. CE OR INTENTIONAL

IN NO EVENT SHALL SELLER BE LIABLE TO PURCHASER FOR ANY PROSPECTIVE OR SPECULATIVE PROFITS OR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, WHETHER BASED UPON CONTRACT, TORT OR NEGLIGENCE, OR IN ANY OTHER MANNER ARISING OUT OF OR RELATED TO THE SALE OF PRODUCT HEREUNDER.

This is to certify that the articles listed above are properly classified, described, packaged, marked and labeled, and are in proper condition for transportation, according to the applicable regulations of the Department of Transportation Purchaser shall pay and the development of the opport of the opport of the opport of the opport and the opport and the opport and the opport and the opport of the opport and the opportant opport and the opport and th

#### TAX LEGEND:

Blank - Not subject to tax

T. - Subject to tax - amount appears below
 X. - Exempt from tax





Corporate Office P.O. Box 1048 Fresno, CA 93714 (559) 233-5171 www.silvasoil.com PLEASE RETURN REMITTANCE TO ADDRESS ABOVE NUMBER: 128143

INVOICE

03-02-23 DATE

GENON HOLDINGS, INC.

ACCOUNT NUMBER: 2240

SOLD TO:

"DO NOT MAIL" ORMOND BEACH 1360 POST OAK BLVD ST #2000 HOUSTON, TX 77056

NRG CALIFORNIA, SOUTH LP SHIP TO:

> GENON - ORMOND BEACH STATION 6635 S. EDISON OXNARD, CA 93033

| STATEMENT                     | S AT THE BOTTOM AF            | RE MADE A PART HEREOF.                           | PURCH    | ASE ORDER NUM         | MBER45(               | 3738183-01                  | -              |
|-------------------------------|-------------------------------|--------------------------------------------------|----------|-----------------------|-----------------------|-----------------------------|----------------|
| DELIVERED BY (SIGNA           | TURE IN FULL)                 | RECEIVED IN GOOD ORDER                           |          |                       | This invo             | ice amount due on:          | 04-17-23       |
| x                             |                               | x                                                | NET      | 45                    | and the second second |                             |                |
| NO OF BULK O<br>PKG'S PKG SIZ |                               | DDUCT DELIVERED OR                               | DERED    |                       | TAXES                 | PRICES                      | AMOUNT         |
| 2 DRU                         | M CARB (RED) I<br>DYED DIESEL | FUEL, NONTAXABLE USE<br>TAXABLE USE.             | 110      | , 110<br>, 110        | т                     | 5.99900<br>0.00100          | 659.89<br>0.11 |
| FOR EMERG                     | ENCY RESPONSE                 | CALL 1-559-341-6948                              |          |                       |                       |                             |                |
| SG AR 780                     | 05744                         | JUST                                             | 'IN 80   | 5-986-72              | 216                   |                             |                |
| SALESMAN                      | - 80                          | PLACARD                                          | YES      | NO NO                 |                       | SALES<br>TAX 5.312          | 35.06          |
| DRUMS DELIVER                 |                               |                                                  |          | DRUMS N               |                       | 2 20.00                     | 40.00          |
|                               | ERRORS IN PRIC                | E, EXTENSION AND ADDITION SUBJECT TO C           | ORRECTIC | DN.                   |                       | TOTAL ->                    | 735.06         |
|                               | BAKERSFIELD<br>661-589-5620   | • FRESNO • KINGSBUF<br>559-233-5171 • 559-897-51 |          | OXNARD<br>805-486-458 | 1 •                   | SANTA MARIA<br>805-925-7676 |                |

Normal terms are net cash - No Discount. Invoices are due and payable according to terms as stated on the face of this invoice.

If invoice is not paid as agreed, interest will be charged at the rate of 1.5% per month on any unpaid balance until unpaid balance is paid in full. A handling charge of \$20 will be assessed on all returned checks.

In the event of any dispute arising under or in connection with this sale, the prevailing party in such dispute shall be entitled to be reimbursed for all costs, fees, and expenses incurred in connection with prosecuting or defending such claim, including reasonable attorney's fees. Purchaser agrees that venue for any action arising under or in connection herewith shall be in State or Federal Courts located in Fresno County, California and waives the right to have any such action herewith shall be in State or Federal Courts located in Fresno County, California and waives the right to have any such action heard in any other court.

RETURNABLE DRUMS: In accordance with the Seller's current container policy, certain containers (including iron or steel barrels and drums) remain the property of the Seller. Container deposits paid by the customer will be refunded by Seller upon prompt return of the container in good condition. Purchaser acknowledges that fuel may expand or contract during transport and that product measurement shall be based upon calibrated product delivery into Seller's truck as shown by Seller's supplier

Purchaser acknowledges that rule may expand or contract during transport and that product measurement shall be based upon calibrated product delivery into Selier's support. PURCHASER SHALL IDEMNIFY AND HOLD HARMLESS SELLER FROM AND AGAINST ANY AND ALL LIABILITIES, CLAIMS, CAUSES OF ACTION, LOSSES, FINES PENALTIES, ATTORNEYS, FEES, COSTS AND EXPENSES WHETHER CONTINGENT, ACCRUED, ABSOLUTE OR OTHERWISE (CLAIMS) AND AND ALL LIABILITIES, CLAIMS, CAUSES OF ACTION, LOSSES, FINES PENALTIES, ATTORNEYS, FEES, COSTS AND EXPENSES WHETHER CONTINGENT, ACCRUED, ABSOLUTE OR OTHERWISE (CLAIMS) ANY GOR RELATING TO THE SALE OF PRODUCT HEREUNDER ARISING FROM ANY CAUSE OTHER THAN THE GROSS NEGLIGENCE OR INTENTIONAL MISCONDUCT OF SELLER, INCLUDING, WITHOUT LIMITATION, CLAIMS OF ACTUAL OR ALLEGED CONTAMINATION OR POLLUTION FROM ANY TOXIC OR HAZARDOUS MATERIAL OR SUBSTANCE WHICH IS CLASSIFIED OR REGULATED AS TOXIC OR HAZARDOUS TO HEALTH OR THE ENVIRONMENT BY ANY GOVERNMENTAL AUTHORITY.

IN NO EVENT SHALL SELLER BE LIABLE TO PURCHASER FOR ANY PROSPECTIVE OR SPECULATIVE PROFITS OR SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, WHETHER BASED UPON CONTRACT, TORT OR NEGLIGENCE, OR IN ANY OTHER MANNER ARISING OUT OF OR RELATED TO THE SALE OF PRODUCT HEREUNDER.

This is to certify that the articles listed above are properly classified, described, packaged, marked and labeled, and are in proper condition for transportation, according to the applicable regulations of the Department of Transportation. Purchaser shall pay all applicable taxes. Applicable taxes which are payable by purchaser include all local, state and federal taxes (including but not limited to sales, use, value added, occupation, gross receipts, registration, ad valorem, excise, environmental and documentary taxes, including any interest charge or pentalty that may result therefrom) and duty, fee, governmental charge or assessment levied on the sale of product hereunder. Purchaser shall furnish Selier with satisfactory tax exemption certificates prior to purchase if an exemption is claimed. Selier has included cortain federal, state, local taxes, and fees on this invoice that to the best of Selier's information, knowledge, and belief, are applicable to this sale. Any tax or fee subsequently determined to be applicable to this sale and not included on this invoice will be billed to the purchaser at a later date.

TAX LEGEND:

Blank - Not subject to tax

T. - Subject to tax - amount appears below
 X. - Exempt from tax

## EMERGENCY GENERATOR RUN-TIME REPORT

### RICE/NESHAP ZZZZ Sec h ANNUAL REPORT FORM Reporting Period: January 1, 2023 through December 31, 2023 Report Due Date: March 31, 2024

You are required to comply with the National Emission Standards for Hazardous Air Pollutants for Stationary Reciprocating Internal Combustion Engines (RICE NESHAP). This includes requirements to comply with 40 CFR Part 63, Subpart ZZZZ, Section 63.6650(h): Stationary Reciprocating Internal Combustion Engines. <u>Please Note:</u> Your APCD Permit to Operate requires the holder to furnish the information required by the RICE NESHAP regulation upon request. Failure to do so may result in enforcement action (including monetary penalties) or suspension of the APCD Permit to Operate.

| -                                          |                                                                                                                | 6                                                                     |                  |                                  | re                     | rmit N           | 0. 00    | 100:      | 5               | 1     |      |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------|----------------------------------|------------------------|------------------|----------|-----------|-----------------|-------|------|
| Facilit                                    | y name and a                                                                                                   | ddress where t                                                        | the engine is    | s locate                         | d                      | Reporting Period |          |           |                 |       |      |
| Name:                                      | Ormond Bea                                                                                                     | ch Generating                                                         | g Station        |                                  |                        | St               | art Date | Janu      | Jary            | 3, 2  | 023  |
| Address:                                   | 6635 South                                                                                                     | Edison Drive                                                          |                  |                                  |                        | E                | nd Date  | Janu      | January 2, 2024 |       |      |
| City:                                      | Oxnard                                                                                                         |                                                                       |                  |                                  |                        | Rep              | ort Date | Feb       | ruary           | / 1,  | 2024 |
|                                            |                                                                                                                | 4                                                                     | Engine           | Informa                          | tion                   |                  |          |           |                 |       |      |
| Horsepower                                 | Engi                                                                                                           | ne Model Num                                                          | ber              |                                  | Engine S               | erial Numbe      | r        |           | Mode            | el Ye | ear  |
| 605                                        |                                                                                                                | NTA855-G5                                                             |                  |                                  | 11                     | 856001           |          |           | 19              | 997   | 1.2  |
|                                            |                                                                                                                |                                                                       |                  |                                  |                        |                  |          |           |                 |       |      |
|                                            |                                                                                                                |                                                                       |                  |                                  |                        |                  |          |           |                 |       |      |
| En                                         | gine Location                                                                                                  | Latitude                                                              | 34.              | 1 3 4                            | 22                     | Longitude        | 1 1      | 9.1       | 3               | 8     | 3 0  |
| Date-1                                     | ime-Hours of                                                                                                   | Engine Operat                                                         | tion             | En                               | tity Requ              | esting Engin     | e Opera  | tion a    | nd R            | eas   | on   |
| Date                                       | Start Time                                                                                                     | End Time                                                              | #Hours           |                                  | Entit                  | у                |          | Re        | easor           | ۱     |      |
|                                            |                                                                                                                |                                                                       |                  |                                  |                        |                  |          |           |                 |       |      |
|                                            |                                                                                                                |                                                                       | (see attachment) |                                  |                        |                  |          |           |                 |       |      |
|                                            |                                                                                                                |                                                                       |                  |                                  |                        |                  |          |           |                 | _     |      |
|                                            |                                                                                                                |                                                                       |                  |                                  |                        |                  |          |           |                 |       |      |
| Please attach                              | additional page                                                                                                | es, if necessary                                                      |                  |                                  |                        |                  |          |           |                 |       |      |
|                                            | Contractor and a second se | rs the engine is                                                      |                  | v obligat                        | ed to ope              | rate per year:   |          |           | 0               | 1.5   |      |
|                                            |                                                                                                                | the fuel requirem                                                     |                  |                                  |                        |                  | N        | lo        | X               |       |      |
|                                            |                                                                                                                | ration, cause of<br>es, if necessary                                  |                  | ind the c                        | orrective a            | action taken.    |          |           |                 |       |      |
| Sig                                        | nature of perso                                                                                                | on supplying t                                                        | he informat      | ion: "/ c                        | ertify that            | the above inf    | ormatior | is con    | rect.'          | "     |      |
| Signature:                                 | A.C.                                                                                                           |                                                                       | Sig              | gn Here 🖉                        | Date: Fe               | bruary 6, 2      | 2024     |           |                 | 3.5   |      |
| Print Name: T                              | homas DiC                                                                                                      | iolli                                                                 |                  | Phone #:                         | (805) 986              | -7241            | •        |           | Y.              |       |      |
| Title: Plant N                             | Manager                                                                                                        |                                                                       |                  | Email: Thomas.DiCiolli@genon.com |                        |                  |          |           |                 |       |      |
| Submi                                      | t electronic repor                                                                                             | is Data R                                                             | eporting In      | terface (CEDR                    | ) at <u>wwv</u>        | v.epa.g          | ov/c     | <u>dx</u> |                 |       |      |
| Send this writt                            | en report to:                                                                                                  |                                                                       |                  |                                  | For questions contact: |                  |          |           |                 |       |      |
| Mr. Ne<br>neil@y<br>Ventu<br>4567<br>Ventu |                                                                                                                | Neil: (805) 303-3827<br><u>neil@vcapcd.org</u><br>Fax: (805) 456-7797 |                  |                                  |                        |                  |          |           |                 |       |      |

#### ORMOND BEACH MONTHLY EMERGENCY GENERATOR ENGINE RUN-TIME RECORDS

| FIRST OF | EMER. GE | NERATOR | RUNNING  | OPERATIONAL    |
|----------|----------|---------|----------|----------------|
| MONTH    | METER    | RUNTIME | 12-MONTH | REASON         |
| Jan 2023 | 150.5    | 2.7     | 8.8      | Maintenance    |
| Feb 2023 | 153.2    | 0.0     | 8.3      | No operation   |
| Mar 2023 | 153.2    | 0.0     | 7.8      | No operation   |
| Apr 2023 | 153.2    | 0.3     | 8        | Load Test      |
| May 2023 | 153.5    | 0.5     | 8.5      | Load Test      |
| Jun 2023 | 154.0    | 1.3     | 7.6      | Load Test      |
| Jul 2023 | 155.3    | 0.0     | 7.1      | No operation   |
| Aug 2023 | 155.3    | 0.3     | 6.3      | Load Test      |
| Sep 2023 | 155.6    | 0.5     | 6.5      | Load Test      |
| Oct 2023 | 156.1    | 2.4     | 8.4      | Annual Service |
| Nov 2023 | 158.5    | 0.1     | 8.1      | Load Test      |
| Dec 2023 | 158.6    | 0.0     | 8.1      | No operation   |
| Jan 2024 | 158.6    | -158.6  |          |                |

### EMERGENCY DIESEL ENGINE 2023 ANNUAL REPORT FORM Reporting Period: January 1 through December 31, 2023 Due Date: See Notice to Supply Information (NTSI) Issued During Inspection

Your APCD Permit to Operate requires your facility to submit reports of the annual hours of operation and/or maintenance and testing, and emergency use for each diesel emergency engine. If the annual operating hours, excluding emergency operation, exceed the specified annual permit limit, please include an explanation. <u>Please Note:</u> California Health and Safety Code 42304 requires the holder of an APCD Permit to Operate to furnish the information requested by the APCD within a reasonable time or the APCD may suspend the Permit to Operate.

| PERMIT NUME                                                                                                                                                  | <b>BER:</b> 0065                                                                                                                                                           |               |         |            |                             |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------|------------|-----------------------------|--|--|--|--|--|
| Facility Name:                                                                                                                                               | Ormond Beach Power                                                                                                                                                         | r, LLC        |         | Contact:   | Roger Kahle                 |  |  |  |  |  |
| Facility Address:                                                                                                                                            | 6635 Edison Drive                                                                                                                                                          |               |         | Title:     | Environmental Specialist    |  |  |  |  |  |
| Facility City:                                                                                                                                               | Oxnard                                                                                                                                                                     |               |         | Phone:     | (805) 341-6167              |  |  |  |  |  |
| ENGINE DETAILS                                                                                                                                               |                                                                                                                                                                            |               |         |            |                             |  |  |  |  |  |
| Engine BHp Rating:605<br>Engine Description (Manufacturer, Model, Serial Number, Cummings<br>etc.): Model No. NTA855-G5<br>S/N: 11856001<br>Mftg. Year: 1997 |                                                                                                                                                                            |               |         |            |                             |  |  |  |  |  |
| R                                                                                                                                                            | EPORTING REQUIREMENT                                                                                                                                                       | <b>IS FOR</b> | R CAI   | LENDAR     | YEAR 2023                   |  |  |  |  |  |
|                                                                                                                                                              | Date of Reading                                                                                                                                                            |               |         |            | Meter Reading               |  |  |  |  |  |
| First of 2023:                                                                                                                                               | January 3, 2023                                                                                                                                                            | F             | 2023:   | 150.5      |                             |  |  |  |  |  |
| End of 2023:                                                                                                                                                 | January 2, 2024                                                                                                                                                            | E             | nd of   | 2023:      | 158.6                       |  |  |  |  |  |
|                                                                                                                                                              | Total annual hours for: M                                                                                                                                                  | laintena      | ince &  | & Testing: | 8.1                         |  |  |  |  |  |
|                                                                                                                                                              | Но                                                                                                                                                                         | urs of E      | merg    | ency use:  | 0                           |  |  |  |  |  |
|                                                                                                                                                              | Tota                                                                                                                                                                       | l Hours       | ofo     | peration:  | 8.1                         |  |  |  |  |  |
| Has the engine li explain here or <b>a</b>                                                                                                                   | sted above exceeded the perm<br>ttach additional pages:                                                                                                                    | iit limit fo  | or ma   | intenance  | and testing? If yes, please |  |  |  |  |  |
| No The engine listed herein has not exceeded the permit limit.                                                                                               |                                                                                                                                                                            |               |         |            |                             |  |  |  |  |  |
| Signature of person supplying the information: "I certify that the above information is correct."                                                            |                                                                                                                                                                            |               |         |            |                             |  |  |  |  |  |
| Signature:                                                                                                                                                   | La                                                                                                                                                                         | Date          | e: 2-9- | 2024       |                             |  |  |  |  |  |
| Print Name: The                                                                                                                                              | omas A. Di Clolli                                                                                                                                                          |               | Title   | Plant      | Manager                     |  |  |  |  |  |
| Phone #: (805)                                                                                                                                               |                                                                                                                                                                            |               | Ema     | ail: thoma | as.diciolli@genon.com       |  |  |  |  |  |
| Ventura Cour<br>4567 Telepho                                                                                                                                 | SEND REPORT TO:<br>Inspector Name: Steve Bova<br>Ventura County Air Pollution Control District<br>4567 Telephone Road, 2nd Floor, Ventura,CA 93003 or<br>FAX: 805/456-7797 |               |         |            |                             |  |  |  |  |  |

Emergency Engine Annual Reporting Form 2023

January 26, 2024

### ORMOND BEACH MONTHLY EMERGENCY GENERATOR ENGINE RUN-TIME RECORDS

| FIRST OF | EMER. GE | NERATOR | RUNNING  | OPERATIONAL    |
|----------|----------|---------|----------|----------------|
| MONTH    | METER    | RUNTIME | 12-MONTH | REASON         |
| Jan 2023 | 150.5    | 2.7     | 8.8      | Maintenance    |
| Feb 2023 | 153.2    | 0.0     | 8.3      | No operation   |
| Mar 2023 | 153.2    | 0.0     | 7.8      | No operation   |
| Apr 2023 | 153.2    | 0.3     | 8        | Load Test      |
| May 2023 | 153.5    | 0.5     | 8.5      | Load Test      |
| Jun 2023 | 154.0    | 1.3     | 7.6      | Load Test      |
| Jul 2023 | 155.3    | 0.0     | 7.1      | No operation   |
| Aug 2023 | 155.3    | 0.3     | 6.3      | Load Test      |
| Sep 2023 | 155.6    | 0.5     | 6.5      | Load Test      |
| Oct 2023 | 156.1    | 2.4     | 8.4      | Annual Service |
| Nov 2023 | 158.5    | 0.1     | 8.1      | Load Test      |
| Dec 2023 | 158.6    | 0.0     | 8.1      | No operation   |
| Jan 2024 | 158.6    | -158.6  |          |                |

## CUMULATIVE EMMISSIONS OPERATING HOURS & FUEL USE

### **Cumulative Emissions**

#### Plant: ORB Cumulative Emissions for: 2023

|           |                  | AUX-N              |                   | AUX-S            |                    |                   |  |  |  |  |
|-----------|------------------|--------------------|-------------------|------------------|--------------------|-------------------|--|--|--|--|
| -         | GASFLOW<br>KSCFH | UNITOPHR<br>OpTime | UNITOPHR<br>OpHrs | GASFLOW<br>KSCFH | UNITOPHR<br>OpTime | UNITOPHR<br>OpHrs |  |  |  |  |
| January   | 2,003.3          | 29.9               | 31                | 1,794.8          | 23.9               | 26                |  |  |  |  |
| February  | 1,443.2          | 24.6               | 26                | 1,293.2          | 20.3               | 21                |  |  |  |  |
| March     | 0.0              | 0.0                | 0                 | 0.0              | 0.0                | 0                 |  |  |  |  |
| April     | 2,573.7          | 38.6               | 42                | 1,544.1          | 25.5               | 28                |  |  |  |  |
| May       | 3,040.7          | 55.9               | 58                | 2,331.3          | 35.0               | 39                |  |  |  |  |
| June      | 2,354.0          | 27.4               | 30                | 2,319.1          | 26.3               | 29                |  |  |  |  |
| July      | 8,514.1          | 111.1              | 119               | 3,897.9          | 55.7               | 60                |  |  |  |  |
| August    | 28,521.8         | 276.9              | 288               | 27,965.6         | 284.1              | 296               |  |  |  |  |
| September | 0.0              | 0.0                | 0                 | 0.0              | 0.0                | 0                 |  |  |  |  |
| October   | 4,928.0          | 69.5               | 78                | 3,787.2          | 46.7               | 51                |  |  |  |  |
| November  | 0.0              | 0.0                | 0                 | 0.0              | 0.0                | 0                 |  |  |  |  |
| December  | 2,938.4          | 26.5               | 28                | 3,017.0          | 28.5               | 29                |  |  |  |  |
| L         | 1                |                    |                   |                  |                    |                   |  |  |  |  |
| Quarter 1 | 3,446.6          | 54.4               | 57                | 3,087.9          | 44.2               | 47                |  |  |  |  |
| Quarter 2 | 7,968.4          | 121.9              | 130               | 6,194.5          | 86.7               | 96                |  |  |  |  |
| Quarter 3 | 37,035.8         | 388.0              | 407               | 31,863.5         | 339.8              | 356               |  |  |  |  |
| Quarter 4 | 7,866.4          | 96.0               | 106               | 6,804.2          | 75.2               | 80                |  |  |  |  |
| YTD       | 56,317.2         | 660.3              | 700               | 47,950.1         | 545.9              | 579               |  |  |  |  |

### **Cumulative Emissions**

#### Plant: ORB Cumulative Emissions for: 2023

|           |                  | ORB1               |                   | ORB2             |                    |                   |  |  |  |  |
|-----------|------------------|--------------------|-------------------|------------------|--------------------|-------------------|--|--|--|--|
| -         | GASFLOW<br>HSCFH | UNITOPHR<br>OpTime | UNITOPHR<br>OpHrs | GASFLOW<br>HSCFH | UNITOPHR<br>OpTime | UNITOPHR<br>OpHrs |  |  |  |  |
| January   | 79,807.2         | 10.6               | 12                | 130,503.9        | 14.1               | 15                |  |  |  |  |
| February  | 0.0              | 0.0                | 0                 | 39,355.4         | 8.9                | 10                |  |  |  |  |
| March     | 0.0              | 0.0                | 0                 | 0.0              | 0.0                | 0                 |  |  |  |  |
| April     | 772,095.4        | 40.5               | 41                | 0.0              | 0.0                | 0                 |  |  |  |  |
| Мау       | 0.0              | 0.0                | 0                 | 861,650.5        | 46.7               | 49                |  |  |  |  |
| June      | 1,505,092.3      | 75.6               | 76                | 0.0              | 0.0                | 0                 |  |  |  |  |
| July      | 66,362.7         | 8.9                | 10                | 9,059,508.5      | 374.9              | 379               |  |  |  |  |
| August    | 5,118,471.0      | 229.3              | 236               | 7,973,841.5      | 341.3              | 349               |  |  |  |  |
| September | 0.0              | 0.0                | 0                 | 0.0              | 0.0                | 0                 |  |  |  |  |
| October   | 928,298.5        | 46.2               | 47                | 2,686,498.6      | 134.8              | 136               |  |  |  |  |
| November  | 0.0              | 0.0                | 0                 | 0.0              | 0.0                | 0                 |  |  |  |  |
| December  | 56,269.4         | 13.1               | 15                | 0.0              | 0.0                | 0                 |  |  |  |  |
| L         |                  |                    |                   |                  |                    |                   |  |  |  |  |
| Quarter 1 | 79,807.2         | 10.6               | 12                | 169,859.4        | 23.0               | 25                |  |  |  |  |
| Quarter 2 | 2,277,187.7      | 116.0              | 117               | 861,650.5        | 46.7               | 49                |  |  |  |  |
| Quarter 3 | 5,184,833.7      | 238.2              | 246               | 17,033,350.0     | 716.2              | 728               |  |  |  |  |
| Quarter 4 | 984,567.9        | 59.3               | 62                | 2,686,498.6      | 134.8              | 136               |  |  |  |  |
| YTD       | 8,526,396.5      | 424.1              | 437               | 20,751,358.5     | 920.7              | 938               |  |  |  |  |

**SOLVENT & AEROSOL USE LOG** 

### 2023 AEROSAL SPRAY CAN INVENTORY/USAGE-ORMOND BEACH



|                              | January | February | March | April | May | June | July | August | September | October | November | December |
|------------------------------|---------|----------|-------|-------|-----|------|------|--------|-----------|---------|----------|----------|
| 1. Rust Inhibitor            |         |          |       | ·     |     |      |      |        |           |         |          |          |
| Starting Inventory           | 9       | 9        | 9     | 9     | 9   | 9    | 9    | 9      | 9         | 9       | 9        | 9        |
| Purchases Added              |         |          |       |       |     |      |      |        |           |         |          |          |
| Total                        | 9       | 9        | 9     | 9     | 9   | 9    | 9    | 9      | 9         | 9       | 9        | 9        |
| Monthly Usage                |         |          |       |       |     |      |      |        |           |         |          |          |
| 2. Outdoor Metal Protectant  |         |          |       |       |     |      |      |        |           |         |          |          |
| Starting Inventory           | 2       | 2        | 2     | 2     | 2   | 2    | 2    | 2      | 2         | 2       | 2        | 2        |
| Purchases Added              |         |          |       |       |     |      |      |        |           |         |          |          |
| Total                        | 2       | 2        | 2     | 2     | 2   | 2    | 2    | 2      | 2         | 2       | 2        | 2        |
| Monthly Usage                |         |          |       |       |     |      |      |        |           |         |          |          |
| 3. AERO kroil -130Z/160Z     |         |          |       |       |     |      |      |        |           |         |          |          |
| Starting Inventory           | 11      | 12       | 5     | 14    | 21  | 17   | 11   | 1      | 13        | 12      | 8        | 21       |
| Purchases Added              | 12      | 36       | 24    | 12    |     | 12   | 12   | 12     | 8         | 24      | 21       |          |
| Total                        | 12      | 12       | 14    | 21    | 17  | 11   |      | 13     | 12        | 8       | 21       | 7        |
| Monthly Usage                | 13      | 31       | 15    | 5     | 4   | 18   | 22   | 19     | 21        | 28      | 8        | 11       |
| 4. True Tap                  |         |          |       |       |     |      |      |        |           |         |          |          |
| Starting Inventory           | 22      | 22       | 22    | 22    | 22  | 22   | 22   | 22     | 22        | 22      | 22       | 22       |
| Purchases Added              |         |          |       |       |     |      |      |        |           |         |          |          |
| Total                        | 22      | 22       | 22    | 22    | 22  | 22   | 22   | 22     | 22        | 22      | 22       | 22       |
| Monthly Usage                |         |          |       |       |     |      |      |        |           |         |          |          |
| 5. 2-26 Precision Lubricant  |         |          |       |       |     |      |      |        |           |         |          |          |
| Starting Inventory           | 10      | 10       | 10    | 10    | 10  | 10   | 10   | 6      | 6         | 6       | 6        | 6        |
| Purchases Added              |         |          |       |       |     |      |      |        |           |         |          |          |
| Total                        | 10      | 10       | 10    | 10    | 10  | 10   | 6    | 6      | 6         | 6       | 6        | 6        |
| Monthly Usage                |         |          |       |       |     |      | 4    |        |           |         |          |          |
| <u>6. WD-40</u>              |         |          |       |       |     |      |      |        |           |         |          |          |
| Starting Inventory           | 10      | 18       | 10    | 12    | 12  | 9    | 20   | 15     | 15        | 15      | 15       | 14       |
| Purchases Added              | 12      | 3        | 13    |       |     | 12   |      |        |           |         |          |          |
| Total                        | 18      | 11       | 12    | 12    | 9   | 20   | 15   | 15     | 15        | 15      | 14       | 13       |
| Monthly Usage                | 4       | 10       | 11    |       | 3   | 1    | 5    |        |           | 5       | 1        | 1        |
| 7. Silicone Lubricant 10 oz. |         |          |       |       |     |      |      |        |           |         |          |          |
| Starting Inventory           | 12      | 12       | 12    | 12    | 12  | 12   | 12   | 12     | 12        | 12      | 12       | 12       |
| Purchases Added              |         |          |       |       |     |      |      |        |           |         |          |          |
| Total                        | 12      | 12       | 12    | 12    | 12  | 12   | 12   | 12     | 12        | 12      | 12       | 12       |
| Monthly Usage                |         |          |       |       |     |      |      |        |           |         |          |          |

| 8. Belt Dressing            |    |    |    |    |    |    |    |    |    |    |    |    |
|-----------------------------|----|----|----|----|----|----|----|----|----|----|----|----|
| Starting Inventory          | 17 | 16 | 14 | 14 | 13 | 13 | 13 | 24 | 24 | 24 | 24 | 23 |
| Purchases Added             |    |    |    |    |    |    | 12 |    |    |    |    |    |
| Total                       | 16 | 14 | 14 | 13 | 13 | 13 | 1  | 24 | 24 | 24 | 24 | 23 |
| Monthly Usage               | 1  | 2  | 14 | 1  |    |    |    |    |    |    | 1  |    |
| 10. Greaseless Lubricant    |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory          | 3  | 3  | 11 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 9  |
| Purchases Added             |    | 9  |    |    |    |    |    |    |    |    |    |    |
| Total                       | 3  | 11 | 11 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 9  | 9  |
| Monthly Usage               |    | 1  | 1  |    |    |    |    |    |    |    | 1  |    |
| 11. Chain & Cable Lubricant |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory          | 13 | 13 | 13 | 9  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  |
| Purchases Added             |    |    |    |    |    |    |    |    |    |    |    |    |
| Total                       | 13 | 13 | 9  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  |
| Monthly Usage               |    |    | 4  | 1  |    |    |    |    |    |    |    |    |
| 12. Dry Graphite            |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory          | 13 | 13 | 13 | 13 | 13 | 9  | 6  | 17 | 17 | 17 | 16 | 16 |
| Purchases Added             |    |    |    |    |    |    | 12 |    |    |    |    |    |
| Total                       | 13 | 13 | 13 | 13 | 9  | 6  | 17 | 17 | 17 | 16 | 16 | 16 |
| Monthly Usage               |    |    |    |    | 4  | 3  | 1  |    |    | 1  |    |    |
| 13. Wasp & Hornet Killer    |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory          | 7  | 7  | 7  | 7  | 7  | 7  | 7  | 7  | 3  | 3  | 3  | 3  |
| Purchases Added             |    |    |    |    |    |    |    |    |    |    |    |    |
| Total                       | 7  | 7  | 7  | 7  | 7  | 7  | 7  | 3  | 3  | 3  | 3  | 3  |
| Monthly Usage               |    |    |    |    |    |    |    | 4  |    |    |    |    |
| 14. Paint Stripper          |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory          | 8  | 8  | 8  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  |
| Purchases Added             |    |    |    |    |    |    |    |    |    |    |    |    |
| Total                       | 8  | 8  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  |
| Monthly Usage               |    |    | 3  |    |    |    |    |    |    |    |    |    |
| 15. Cold Galvanizing Spray  |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory          | 5  | 1  | 13 | 10 | 10 | 18 | 18 | 14 | 10 | 18 | 15 | 20 |
| Purchases Added             |    | 15 |    |    | 9  |    |    |    | 11 |    | 6  |    |
| Total                       | 3  | 13 | 10 | 10 | 18 | 18 | 14 | 10 | 18 | 15 | 20 | 18 |
| Monthly Usage               | 2  | 2  | 3  |    | 1  |    | 4  | 4  | 3  | 3  | 1  | 2  |
| 16. Spot Check Penetrant    |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory          | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  |
| Purchases Added             |    |    |    |    |    |    |    |    |    |    |    |    |
| Total                       | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  |
| Monthly Usage               |    |    |    |    |    |    |    |    |    |    |    |    |

| 17. Developer                     |     |    |    |    |    |    |    |    |    |    |    |    |
|-----------------------------------|-----|----|----|----|----|----|----|----|----|----|----|----|
| Starting Inventory                | 22  | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
| Purchases Added                   |     |    |    |    |    |    |    |    |    |    |    |    |
| Total                             | 22  | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 | 22 |
| Monthly Usage                     |     |    |    |    |    |    |    |    |    |    |    |    |
| 18. RTV Silicone                  |     |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory                | 8   | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  |
| Purchases Added                   |     |    |    |    |    |    |    |    |    |    |    |    |
| Total                             | 8   | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  | 8  |
| Monthly Usage                     |     |    |    |    |    |    |    |    |    |    |    |    |
| 19. CRC Food Grade Silicone 3.3 c | )Z. |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory                | 23  | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 |
| Purchases Added                   |     |    |    |    |    |    |    |    |    |    |    |    |
| Total                             | 23  | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 | 23 |
| Monthly Usage                     |     |    |    |    |    |    |    |    |    |    |    |    |
| 20. Jump Start                    |     |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory                | 20  | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| Purchases Added                   |     |    |    |    |    |    |    |    |    |    |    |    |
| Total                             | 20  | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 | 20 |
| Monthly Usage                     |     |    |    |    |    |    |    |    |    |    |    |    |
| 21. Crystal Clear                 |     |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory                | 15  | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
| Purchases Added                   |     |    |    |    |    |    |    |    |    |    |    |    |
| Total                             | 15  | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 |
| Monthly Usage                     |     |    |    |    |    |    |    |    |    |    |    |    |
| 22. Red Insulating Varnish        |     |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory                | 9   | 9  | 9  | 7  | 7  | 7  | 7  | 7  | 7  | 7  | 7  | 7  |
| Purchases Added                   |     |    |    |    |    |    |    |    |    |    |    |    |
| Total                             | 9   | 9  | 7  | 7  | 7  | 7  | 7  | 7  | 7  | 7  | 7  | 7  |
| Monthly Usage                     |     |    | 2  |    |    |    |    |    |    |    |    |    |
| 23. Red Paint                     |     |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory                | 8   | 8  | 7  | 5  | 5  | 5  | 5  | 5  | 11 | 10 | 8  | 8  |
| Purchases Added                   |     |    |    |    |    |    |    | 9  | 1  |    |    |    |
| Total                             | 8   | 7  | 5  | 5  | 5  | 5  | 5  | 11 | 10 | 8  | 8  | 8  |
| Monthly Usage                     |     | 1  | 2  |    |    |    |    | 3  | 2  | 2  |    |    |
| 24. Royal Blue Paint              |     |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory                | 3   | 9  | 8  | 5  | 5  | 11 | 10 | 10 | 10 | 10 | 10 | 10 |
| Purchases Added                   | 6   |    |    |    | 12 |    |    |    |    |    |    |    |
| Total                             | 9   |    | 5  | 5  | 11 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
| Monthly Usage                     |     | 1  | 3  |    | 6  | 1  |    |    |    |    |    |    |

| 25. Gray Primer              |    |    |    |    |    |    |    |    |    |    |    |    |
|------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|
| Starting Inventory           | 2  | 8  | 8  | 5  | 5  | 13 | 12 | 12 | 12 | 20 | 18 | 17 |
| Purchases Added              | 6  |    |    |    | 12 |    |    |    | 18 |    |    |    |
| Total                        | 8  |    | 5  | 5  | 13 | 12 | 12 | 12 | 20 | 18 | 17 | 15 |
| Monthly Usage                |    |    | 3  |    | 4  | 1  | 0  |    | 10 |    | 1  | 2  |
| 26. White Paint              |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory           | 9  | 9  | 9  | 9  | 9  | 9  | 4  | 4  | 4  | 4  | 4  | 4  |
| Purchases Added              |    |    |    |    |    |    |    |    |    |    |    |    |
| Total                        | 9  | 9  | 9  | 9  | 9  | 4  | 4  | 4  | 4  | 4  | 4  | 4  |
| Monthly Usage                |    |    |    |    |    | 5  |    |    |    |    |    |    |
| 27. Semi-Gloss/Flat Black    |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory           | 5  | 5  | 12 | 10 | 10 | 10 | 16 | 16 | 13 | 11 | 10 | 10 |
| Purchases Added              |    | 12 |    |    |    | 7  |    |    |    |    |    |    |
| Total                        | 5  | 12 | 10 | 10 | 10 | 16 | 16 | 13 | 11 | 10 | 10 | 10 |
| Monthly Usage                |    | 5  | 2  |    |    | 1  |    | 3  | 2  | 1  | 10 |    |
| 28. Gloss Black              |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory           | 8  | 8  | 4  | 4  | 4  | 4  | 4  | 4  | 8  | 8  | 8  | 8  |
| Purchases Added              |    |    |    |    |    |    |    | 6  |    |    |    |    |
| Total                        | 8  | 4  | 4  | 4  | 4  | 4  | 4  | 8  | 8  | 8  | 8  | 8  |
| Monthly Usage                |    | 4  |    |    |    |    |    | 2  |    |    |    |    |
| 29. High Heat Aluminum Paint |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory           | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 8  |
| Purchases Added              |    |    |    |    |    |    |    |    |    |    |    |    |
| Total                        | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 8  | 8  |
| Monthly Usage                |    |    |    |    |    |    |    |    |    |    | 2  |    |
| 30. FLEX SEAL                |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory           | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 8  | 8  |
| Purchases Added              |    |    |    |    |    |    |    |    |    |    |    |    |
| Total                        | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 8  | 8  |
| Monthly Usage                |    |    |    |    |    |    |    |    |    | 4  |    |    |
| 31. Dykem Aerosol Remover    |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory           | 6  | 6  | 6  | 6  | 6  | 6  | 6  | 6  | 6  | 6  | 6  | 6  |
| Purchases Added              |    |    |    |    |    |    |    |    |    |    |    |    |
| Total                        | 6  | 6  | 6  | 6  | 6  | 6  | 6  | 6  | 6  | 6  | 6  | 6  |
| Monthly Usage                |    |    |    |    |    |    |    |    |    |    |    |    |
| 32. White Lithium            |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory           | 5  | 5  | 5  | 5  | 5  | 5  | 7  | 7  | 7  | 7  | 7  | 7  |
| Purchases Added              |    |    |    |    |    | 14 |    |    |    |    |    |    |
| Total                        | 5  | 5  | 5  | 5  | 5  |    | 7  | 7  | 7  | 7  | 7  | 7  |
| Monthly Usage                |    |    |    |    |    | 12 |    |    |    |    |    |    |

| 33. Glass Cleaner             |    |    |    |    |    |    |    |    |    |    |    |    |
|-------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|
| Starting Inventory            | 6  | 18 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 7  | 7  | 7  |
| Purchases Added               | 12 |    |    |    |    |    |    |    | 13 | ,  | ,  | ,  |
| Total                         | 18 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 15 | 7  | 7  | 7  |
| Monthly Usage                 |    | 2  |    |    | -  |    |    |    | 6  |    |    |    |
| 34. Yellow/White Marker Paint |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory            | 12 | 12 | 7  | 7  | 7  | 7  | 7  | 7  | 3  | 3  | 3  | 3  |
| Purchases Added               |    |    |    |    |    |    |    |    |    |    |    |    |
| Total                         | 12 | 7  | 7  | 7  | 7  | 7  | 7  | 3  | 3  | 3  | 3  | 3  |
| Monthly Usage                 |    | 5  |    |    |    |    |    | 4  |    |    |    |    |
| 35. High Heat Black Paint     |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory            | 7  | 7  | 7  | 7  | 7  | 7  | 7  | 7  | 7  | 7  | 7  | 7  |
| Purchases Added               |    |    |    |    |    |    |    |    |    |    |    |    |
| Total                         | 7  | 7  | 7  | 7  | 7  | 7  | 7  | 7  | 7  | 7  | 7  | 7  |
| Monthly Usage                 |    |    |    |    |    |    |    |    |    |    |    |    |
| 36. Gray(Stainless)Paint      |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory            | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  |
| Purchases Added               |    |    |    |    |    |    |    |    |    |    |    |    |
| Total                         | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  | 4  |
| Monthly Usage                 |    |    |    |    |    |    |    |    |    |    |    |    |
| 38. Contact Cleaner           |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory            | 6  | 15 | 4  | 13 | 10 | 9  | 11 | 14 | 14 | 8  | 14 | 17 |
| Purchases Added               | 12 |    | 35 |    | 14 | 8  | 12 |    |    | 17 | 12 |    |
| Total                         | 15 | 11 | 13 | 10 | 9  | 11 | 14 | 14 | 8  | 20 | 17 | 9  |
| Monthly Usage                 | 3  | 4  | 26 | 3  | 15 | 6  | 8  | 14 | 6  | 11 | 9  | 8  |
| 39. Fluid Film/Linebacker     |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory            | 16 | 14 | 12 | 7  | 5  | 5  | 12 | 12 | 1  | 7  | 11 | 11 |
| Purchases Added               |    | 3  |    |    |    | 16 |    | 12 | 12 | 15 |    |    |
| Total                         | 14 |    | 7  | 5  | 5  | 12 | 12 | 1  | 7  | 22 | 11 | 11 |
| Monthly Usage                 | 2  | 12 | 5  | 2  |    | 9  |    | 11 | 6  | 11 |    |    |
| 40. Polyurethane Foam Sealant |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory            | 12 | 12 | 12 | 9  | 9  | 9  | 9  | 9  | 9  | 9  | 9  | 9  |
| Purchases Added               |    |    |    |    |    |    |    |    |    |    |    |    |
| Total                         | 12 | 12 |    | 9  | 9  | 9  | 9  | 9  | 9  | 9  | 9  | 9  |
| Monthly Usage                 |    |    | 3  |    |    |    |    |    |    |    |    |    |
| 41. Spray Adhesive            |    |    |    |    |    |    |    |    |    |    |    |    |
| Starting Inventory            | 36 | 36 | 36 | 26 | 24 |    | 32 | 32 | 32 | 32 | 32 | 32 |
| Purchases Added               |    |    |    |    |    | 10 |    |    |    |    |    |    |
| Total                         | 36 | 36 |    |    |    |    | 32 | 32 | 32 | 32 | 32 | 32 |
| Monthly Usage                 |    |    | 10 | 2  |    | 2  |    |    |    |    |    |    |

**VISUAL EMISSIONS REPORT** 



December 11, 2023

Mr. Roger Kahle Ormond Beach Power, LLC 6635 S. Edison Drive Oxnard, California 93033

#### Subject: Ormond Beach Unit 1, Auxiliary Boiler North, Auxiliary Boiler South, and Emergency Standby Engine Visual Emissions Report - 2023 Report Number: W002AS-031700-RT-5315

Dear Roger,

Montrose Air Quality Services, LLC (MAQS) performed visual emission opacity observations for Ormond Beach Generating Station Four Sources: Unit 1, Auxiliary Boiler North, Auxiliary Boiler South, and Emergency Standby Engine on October 19, 2023. Surya Adhikari, a CARB certified visible emission evaluator (most recent re-certification performed 8/3/2023), performed the tests.

The results of the tests show that no visible emissions were observed during the tests for Unit 1, Auxiliary Boiler North, and Auxiliary Boiler South. However, visible emissions were observed for Emergency standby engine during the monitoring periods. The maximum opacity was observed at 5% for the Emergency standby engine which is less than the 20% opacity limit stipulated in Ventura County Air Pollution Control District (VCAPCD) Rule 50. The raw data sheets are provided as an attachment.

Please give me a call if you have any questions or comments regarding this report at (714) 279-6777.

Sincerely,

Surya Adhikari Senior Reporting QC Specialist Montrose Air Quality Services, LLC

SA/rcr Attachments

Global Headquarters 5120 Northshore Drive North Little Rock, AR 72118 T: 501.900.6400

www.montrose-env.com

# ATTACHMENTS

FIGURE 9-1. RECORD OF VISUAL DETERMINATION OF OPACITY

| Company: ormond Beach power, LLC            |                     |
|---------------------------------------------|---------------------|
| Location: Unit 1                            | Steamy phence       |
| Test No.: 1-2-3- VEE                        | 0 2 2               |
| Date: 10/19/2023                            |                     |
| Type Facility: Natural gas utility Boiler   | A B I               |
| Control Device: <u>scn</u>                  | Ø N                 |
| Hours of Observation: 1225 - 1243           | -0-                 |
| Observer: Sunya Adhikan'                    | KEY                 |
| Observer Certification Date: 8/3/1023       | X = Observer        |
| Point of Emissions: Stack                   | – 🔶 – = Sun         |
| Observer Affiliation: Montrose Environmente | WD = Wind Direction |
| Height of Discharge Point: ~ 2501           | O = Stack           |

| CLOCK TIME                                           | Initial       | Final         |
|------------------------------------------------------|---------------|---------------|
| Distance to Discharge                                | ~ 8001        | -8001         |
| Direction from Discharge                             | M             | N             |
| Height of Observation Point                          | Ground        | Ground        |
| BACKGROUND DESCRIPTION                               |               |               |
| WEATHER CONDITIONS                                   | Clear         | Clear "       |
| Wind Direction                                       | WQ*           | WHAN WS       |
| Wind Speed                                           | 10            | 10            |
| Ambient Temperature                                  | 69            | 69            |
| SKY CONDITIONS (clear, over-<br>cast, % clouds, etc. | Clear         | Clear         |
| PLUME DESCRIPTION                                    |               |               |
| Color                                                | Steam         | Steam         |
| Distance Visible                                     | Steam<br>Mile | Steam<br>Mile |
| OTHER INFORMATION                                    |               |               |

### SUMMARY OF AVERAGE OPACITY

| Time          | Op                                        | Opacity                                                                                 |  |  |
|---------------|-------------------------------------------|-----------------------------------------------------------------------------------------|--|--|
| Start - End   | Sum                                       | Average                                                                                 |  |  |
| 1225-1231     | er                                        | Ø                                                                                       |  |  |
| 1731-1237     | :0-                                       | 0-                                                                                      |  |  |
| 12 37 - 12 42 | .et                                       | e                                                                                       |  |  |
|               | Start - End<br>1225 - 1231<br>1231 - 1237 | Start - End         Sum           1225 - 1231         &           1231 - 1237         & |  |  |

Readings ranged from  $\underline{\mathscr{O}}$  to  $\underline{\mathscr{O}}$ % opacity. The source  $\sqrt[mas]$  was not in compliance with  $\underline{2}$ , at the time the evaluation was made.

MONTROSE

Date of last revision 2/14/2017

Page \_\_\_\_\_ of \_\_\_\_\_ DS834040 Master Document Storage\Forms\Datasheets\Field Datasheets 10/19

SA-

W002AS-029325-RT-5315

|    |         |          |      | Figure 9-2. Observation record. |                       |      |                           | ord.           | MONTROSE                    |                               |  |
|----|---------|----------|------|---------------------------------|-----------------------|------|---------------------------|----------------|-----------------------------|-------------------------------|--|
|    |         |          |      |                                 |                       |      | Page <u>2</u> of <u>2</u> |                |                             | T AR CONTRESSENTED            |  |
|    | Compa   | iny _    | Orm  | ond                             | B                     | each | Obser                     | rver <u>Sc</u> | inga                        | Adhikari                      |  |
|    | Locatic | n        | Un   | 171                             |                       |      | Type fac                  | cility         | Utili                       | Adhikari<br>ty Boiler         |  |
|    | Test N  | umbe     | r 1- | - 2-                            | 3-                    | VEË  | Point of                  | f emissions _  | Ste                         | uk                            |  |
|    |         |          |      | SECO                            | ONDS STEAM PLUME (che |      |                           |                | eck if applicable) Comments |                               |  |
|    | HR. N   | IIN.     | 0    | 15                              | 30                    | 45   | ATTACHED                  | DETACH         | HED                         |                               |  |
|    |         | 0        |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 1        |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 2        |      |                                 | -                     |      |                           |                |                             |                               |  |
|    |         | 4        |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 5        |      |                                 |                       |      |                           |                |                             |                               |  |
| 1  |         | 6        |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 7        |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 8<br>9   |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 10       |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 11       |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 12       |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 13       |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 14<br>15 |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 16       |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 17       |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 18       |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 19       |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 20       |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 21<br>22 |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 23       |      |                                 |                       |      |                           |                |                             | 1                             |  |
|    |         | 24       |      |                                 |                       | (-   |                           |                |                             | Allert al                     |  |
|    | 12      | 25       | et   | 2                               | Ð                     | U    | A Hacked                  | -              |                             | Thick Attached<br>Strem plane |  |
|    | 12      | 26<br>27 | 0    | 6                               | 00                    | 6    | protoched                 |                |                             |                               |  |
|    | X       | 28       | e    | 6                               | 0                     | 6    | Astrend                   |                |                             | comingled with                |  |
| R  | TIV     | 29       | Ð    | or                              | G                     | t    | Artenched                 |                |                             | unit 2                        |  |
| 10 | VIL     | 30       | O    | o                               | -0-                   | 5    | Attached                  |                |                             |                               |  |
|    | IR      | 31       | 6    | 0-                              | .0-                   | 0    | . ×<br>×                  |                |                             |                               |  |
|    | 12      | 32<br>33 | er   | t                               | 00                    | 4    | ¥.                        |                |                             |                               |  |
|    | In      | 34       | e    | 0                               | - 0-                  | to   | ix.                       |                |                             |                               |  |
|    | Tiz     | 35       | é    | 4                               | P                     | 6    | X                         |                |                             |                               |  |
| 1  | 12      | 36       | 0    | 0                               | 4-                    | 5    |                           |                |                             |                               |  |
|    | 12      | 37       | .6   | 2                               | 5                     | 0    | ×                         |                |                             |                               |  |
|    | 1       | 38<br>39 | 6    | 0                               | 000                   | 0    | ×                         |                |                             |                               |  |
| 1  | K in    | 40       | er   | F                               | G                     | H    | ~                         |                |                             |                               |  |
| /  | 12      | 41       | 6    | or                              | ot                    | 4    | ×                         |                |                             |                               |  |
|    | 12      | 42       | Ø    | 0                               | -6-                   | ø    | X                         |                |                             |                               |  |
|    |         | 43<br>44 |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 44       |      |                                 |                       |      |                           |                | _                           |                               |  |
|    |         | 46       |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 47       |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 48       |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 49<br>50 |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 50<br>51 |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 52       |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 53       |      | _                               |                       |      |                           |                |                             |                               |  |
|    |         | 54       |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 55       |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 56<br>57 |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 58       |      |                                 |                       |      |                           |                |                             |                               |  |
|    |         | 59       |      |                                 |                       |      |                           |                |                             |                               |  |

Date of last revision 2/14/2017

.

# FIGURE 9-1. RECORD OF VISUAL DETERMINATION OF OPACITY

| Company: Ormond Beach power, LLC             |                     |
|----------------------------------------------|---------------------|
| Location: Aux Boiler - North                 |                     |
| Test No.: 1,2,3 - VEE                        |                     |
| Date: 10/19/2023                             | r / /               |
| Type Facility: Natural gas utility Boiler    | R N                 |
| Control Device: Low More Burner              | 4                   |
| Hours of Observation: 1139 - 1200            | -7                  |
| Observer: Sunya Adhikan                      | KEY                 |
| Observer Certification Date: 8/3/2023        | X = Observer        |
| Point of Emissions: Stack                    | – 🔶 – = Sun         |
| Observer Affiliation: Montrosc Environmental | WD = Wind Direction |
| Height of Discharge Point: ~ gol             | O = Stack           |

| CLOCK TIME                                           | Initial       | Final         |          |
|------------------------------------------------------|---------------|---------------|----------|
| Distance to Discharge                                | 220'          | 2221          |          |
| Direction from Discharge                             | N             | 2             |          |
| Height of Observation Point                          | ground        | ground        |          |
| BACKGROUND DESCRIPTION                               |               |               |          |
| WEATHER CONDITIONS                                   | Clear         | clear<br>WAJS | (-1).    |
| Wind Direction                                       | Wass 10/19 SA | w nds         | 10/19 59 |
| Wind Speed                                           | ц             | <u> </u>      |          |
| Ambient Temperature                                  | 69            | 69 8          | na holig |
| SKY CONDITIONS (clear, over-<br>cast, % clouds, etc. | clear         | Clear         |          |
| PLUME DESCRIPTION                                    | Done 8A 101   | 5             |          |
| Color                                                | none          | None          |          |
| Distance Visible                                     | nine          | Nime          |          |
| OTHER INFORMATION                                    |               |               |          |

# SUMMARY OF AVERAGE OPACITY

| Set Number | Time        | Opacity               |         |  |
|------------|-------------|-----------------------|---------|--|
|            | Start - End | Sum                   | Average |  |
|            | 1139-1145   | Ð                     | 4       |  |
| )          | 1145-1151   | $\boldsymbol{\omega}$ | Ð       |  |
| 2          | 1154-1200   | Ð                     | 0       |  |

Readings ranged from  $\underline{-}$  to  $\underline{-}$ % opacity. The source was/was not in compliance with  $\underline{-}$  at the time the evaluation was made.

MONTROSE MULTIN SERVICES

Date of last revision 2/14/2017

W002AS-029325-RT-5315

Page \_\_\_\_\_ of \_\_\_\_\_ DS834040 Master Document Storage\Forms\Datasheets\Field Datasheets

|        |        |           |              | I                         | Figure | 9-2. Ot | oservation reco | ora.        | là            | MONTROSE              |  |  |
|--------|--------|-----------|--------------|---------------------------|--------|---------|-----------------|-------------|---------------|-----------------------|--|--|
|        |        |           |              | Page <u>2</u> of <u>2</u> |        |         |                 |             |               | AIR QUALIFY SERVICES  |  |  |
|        | Comp   | any _     | Orm          | ond                       | B      | each    | Obser           | ver         | Surya         | Adhikari              |  |  |
|        | Locati | ion       | Aux          | Bo                        | ler-   | - NG    | Type fac        | ility       | Utili         | Adhikari<br>ty Boiler |  |  |
|        | Test I | lumbe     | er _ \-      | - 2-                      | 3      | VE      | E Point of      | ' emissio   | ns <u>St</u>  | alk                   |  |  |
|        |        |           |              | SECO                      |        |         |                 | ME (check i | f applicable) | Comments              |  |  |
|        | HR.    | MIN.      | 0            | 15                        | 30     | 45      | ATTACHED        | DE          | TACHED        |                       |  |  |
|        |        | 0         |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 2         |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 3         |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 5         |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 6         |              |                           |        |         |                 |             |               |                       |  |  |
|        | _      | 7 8       |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 9         |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 10        |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 11<br>12  |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 12        |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 14        |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 15<br>16  |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 17        |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 18        |              |                           |        |         |                 |             |               |                       |  |  |
| 0      |        | 19<br>20  |              |                           |        |         |                 |             |               |                       |  |  |
| t: 1   |        | 21        |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 22        |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 23<br>24  |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 25        |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 26        |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 27<br>28  |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 29        |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 30        |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 31<br>32  |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 33        |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 34        |              |                           |        |         |                 |             |               |                       |  |  |
|        |        | 35<br>36  |              |                           | _      |         |                 |             |               |                       |  |  |
|        |        | 37        |              |                           |        |         |                 |             |               |                       |  |  |
|        | . 1.1  | 38        | 4            | 6                         | ø      | T       |                 |             |               |                       |  |  |
| 1      |        | 39<br>40  | .4           | 6                         | 4      | 6       |                 |             |               |                       |  |  |
| /      | -(1    | 41        | to           | -                         | 6      | 4       |                 |             |               |                       |  |  |
| 2.1    | 11     | 42<br>43  | Cu-          | 4                         | 0      | 5       |                 |             |               |                       |  |  |
| FIN    | 11     | 43<br>44· | 194-<br>194- | 6                         | 0      | 2       |                 | _           |               |                       |  |  |
| 1      | PUL    | 45        | -0-          | 0                         | t      | t       |                 |             |               |                       |  |  |
|        | 1      | 46        | 5            | T                         |        | 5       |                 |             |               |                       |  |  |
|        | 11     | 48        | 2            | er                        | .0     | 6       |                 |             |               |                       |  |  |
| Ry     | ~1     | 49        | -            | ÷                         | e      | 5       |                 |             |               |                       |  |  |
| $\sim$ | it     | 50<br>51  | 4            | 0                         | cr     | 10      |                 |             |               |                       |  |  |
|        | .1     | 52        | -            |                           |        |         | Rest R          | mon         | Break         |                       |  |  |
|        | LI I   | 53        |              |                           | R      | 0       |                 |             |               |                       |  |  |
| /      |        | 54<br>55  | 0            | 0                         | er     | e       |                 |             |               |                       |  |  |
|        | e      | 56        | 10           | 6                         | G      | 5       |                 |             |               |                       |  |  |
| 0      | - 4    | 57<br>58  | 2            | 8                         | et i   | e       |                 |             |               |                       |  |  |
| K-2    |        | 59        | ø            | Ø                         | or     | 5       |                 |             |               |                       |  |  |
| )      | -1     |           |              |                           |        |         |                 |             |               |                       |  |  |

Figure 9-2. Observation record.

Date of last revision 2/14/2017

.

# FIGURE 9-1. RECORD OF VISUAL DETERMINATION OF OPACITY

| Company: ormond Beach power, LLC            |                     |
|---------------------------------------------|---------------------|
| Location: Aux Builer - South                |                     |
| Test No.: 1, 2, 3 - VEE                     | wp o                |
| Date: 10/19/2023                            |                     |
| Type Facility: Natural gas utility Boiler   |                     |
| Control Device: Low My burner               | Ś Ś                 |
| Hours of Observation: 1120 - 1138           | -9-                 |
| Observer: Sunya Adhikan                     | KEY                 |
| Observer Certification Date: 8/3/1023       | X = Observer        |
| Point of Emissions: Stack                   |                     |
| Observer Affiliation: Montrosc Environmente | WD = Wind Direction |
| Height of Discharge Point: &O'              | O = Stack           |
|                                             |                     |

| CLOCK TIME                                           | Initial | Final           |
|------------------------------------------------------|---------|-----------------|
| Distance to Discharge                                | ~ 2001  | -2001           |
| Direction from Discharge                             | М       | NJ .            |
| Height of Observation Point                          | ground  | ground          |
| BACKGROUND DESCRIPTION                               |         |                 |
| WEATHER CONDITIONS                                   | Clear   | Clear<br>WHS SA |
| Wind Direction                                       | WNZZ    | WHS NO          |
| Wind Speed                                           | 11      | 11              |
| Ambient Temperature                                  | 69      | 69              |
| SKY CONDITIONS (clear, over-<br>cast, % clouds, etc. | C(ear   | Clear           |
| PLUME DESCRIPTION                                    |         |                 |
| Color                                                | none    | none            |
| Distance Visible                                     | none    | hone            |
| OTHER INFORMATION                                    |         |                 |

#### SUMMARY OF AVERAGE OPACITY

| Time        | Opacity |         |  |  |
|-------------|---------|---------|--|--|
| Start - End | Sum     | Average |  |  |
| 1120-1126   | Ð       | Ð       |  |  |
| 112 (-117)  | Ø       | Ð       |  |  |
| 1122 - 1128 | -O-     | 0       |  |  |
|             |         |         |  |  |

Readings ranged from \_\_\_\_\_ to \_\_\_\_\_% opacity. The source v(as/was not in compliance with 202 at the time the evaluation was made.

Date of last revision 2/14/2017

Page \_\_\_\_\_ of \_\_\_\_\_ DS834040 Master Document Storage\Forms\Datasheets\Field Datasheets ٢

W002AS-029325-RT-5315

Figure 9-2. Observation record.

AIR QUALITY SERVICES

|        |        |           |     |            |     |         | Page <u>2</u> of <u>2</u> | 2              |      | I AIR QUALITY SERVICES |
|--------|--------|-----------|-----|------------|-----|---------|---------------------------|----------------|------|------------------------|
|        | Comp   | any _(    | Orm | ond        | B   | ead     | n Obse                    | erver <u>S</u> | irya | Adhikari<br>Y Boiler   |
|        |        |           |     |            |     |         |                           |                |      |                        |
|        | Test N | lumbe     | r   |            |     | VE      | E Point o                 | of emissions _ |      | Comments               |
|        | HR.    | AUNT T    | 0   | SECO<br>15 | 30  | 45      | ATTACHED                  |                |      | Comments               |
|        | HR.    | MIN.<br>0 | 0   | 15         |     | 45      | ATTACKED                  |                |      |                        |
|        |        | 1         |     |            |     |         |                           |                |      |                        |
|        |        | 2         |     |            |     |         |                           |                |      |                        |
|        |        | 3         |     |            |     |         |                           |                |      |                        |
|        |        | 4         |     |            |     |         |                           |                |      |                        |
|        |        | 5         |     |            |     |         |                           |                |      |                        |
|        |        | 6         |     |            |     |         |                           |                |      |                        |
|        |        | 7         |     |            |     |         |                           |                |      |                        |
|        |        | 8         |     |            |     |         |                           |                |      |                        |
|        |        | 9         |     |            |     |         |                           |                |      |                        |
|        | -      | 10        |     |            |     |         |                           |                |      |                        |
|        |        | 11        |     |            |     |         |                           |                |      |                        |
|        |        | 12        |     |            |     |         |                           |                |      |                        |
|        |        | 13<br>14  |     |            |     |         |                           |                |      |                        |
|        |        | 15        |     |            |     |         |                           |                |      |                        |
|        |        | 16        |     |            |     |         |                           |                |      |                        |
|        |        | 17        |     |            |     |         |                           |                |      |                        |
|        |        | 18        |     |            |     |         |                           |                |      |                        |
|        |        | 19        |     |            |     |         |                           |                |      |                        |
|        | 11     | 20        | Ø   | 0          | 0   | G       |                           |                |      |                        |
| /      | 11     | 21        | G   | a          | 0   | A       |                           |                |      |                        |
| RI     | 11     | 22        | ē   | a          | a   |         |                           |                |      |                        |
|        | 11     | 23        | 3   | e          | G   |         |                           |                |      |                        |
|        | 11     | 24        | 6   | C2         | 0   | 0       |                           |                |      |                        |
|        | 14     | 25        | 0   | G          | 0-  | er      |                           |                |      |                        |
|        | -11    | 26        | 0   | 3          | 07  | .U<br>L |                           |                |      |                        |
| Ry     | 11     | 27<br>28  | 0   | 0          | 0   | U       |                           |                |      |                        |
| -L     |        | 29        | 6   | G          | ist | so      |                           |                |      |                        |
|        | 111    | 30        | Ci- | e          | a   | G       |                           |                |      |                        |
|        | 1.1    | 31        | 4   | 12         | 4   | 4       |                           |                |      |                        |
|        | + 11   | 32        | et  | -et        | er  | 60      |                           |                |      |                        |
|        | 11     | 33        | 6   | Q          | Gr  | ¥       |                           |                |      |                        |
| 0      | 11     | 34        | et  | G.         | 4   | 0       |                           |                |      |                        |
| KA     | 11     | 35        | 4   | 0          | e-  | 0       |                           |                |      |                        |
|        | 11     | 36        | ø   | Ø          | 5   | 0       |                           |                |      |                        |
| $\sim$ | - EF   | 37        | 0   | P.         | Ð   |         |                           |                |      |                        |
|        | -11    | 38<br>39  | Ø   | G          | 6   | .O      |                           |                |      |                        |
|        |        | 39<br>40  |     |            |     |         |                           |                |      |                        |
|        |        | 41        |     |            |     |         |                           |                |      |                        |
|        |        | 42        |     |            |     |         |                           |                |      |                        |
|        |        | 43        |     |            |     |         |                           |                |      |                        |
|        |        | 44        |     |            |     |         |                           |                |      |                        |
|        | -      | 45        |     |            |     |         |                           |                |      |                        |
|        |        | 46        |     |            | _   |         |                           |                |      |                        |
|        |        | 47        |     | -          |     |         |                           |                |      |                        |
|        |        | 48        |     |            |     |         |                           |                |      |                        |
|        |        | 49<br>50  |     | -          |     |         |                           |                |      |                        |
|        |        | 50        |     |            |     |         |                           |                |      |                        |
|        |        | 52        |     |            |     |         |                           |                |      |                        |
|        | 1      | 53        |     |            |     |         |                           |                |      |                        |
|        |        | 54        |     |            |     |         |                           |                |      |                        |
|        |        | 55        |     |            |     |         |                           |                |      |                        |
|        |        | 56        |     |            |     |         |                           |                |      |                        |
|        |        | 57        |     |            |     |         |                           |                |      |                        |
|        |        | 58        |     |            |     |         |                           |                |      |                        |
|        |        | 59        |     |            |     | 1       |                           | 1              |      |                        |

Date of last revision 2/14/2017

DS834041 Master Document Storage\Forms\Datasheets\Field Datasheets

.

# FIGURE 9-1. RECORD OF VISUAL DETERMINATION OF OPACITY

| Company: Ormond Beach power, LLC           | WD                  |
|--------------------------------------------|---------------------|
| Location: <u>Emergency engine</u>          |                     |
| Test No.: 1-2-3 - VEE                      | U                   |
| Date: 10/19/2023                           | TA D                |
| Type Facility: Natural gas utility Boiler  | N                   |
| Control Device:                            |                     |
| Hours of Observation: 1025 - 1043          | -9-9-               |
| Observer: Sunya Adhikan'                   | KEY                 |
| Observer Certification Date: 8/3/2023      | X = Observer        |
| Point of Emissions: Stack                  |                     |
| Observer Affiliation: Montrok Environmente | WD = Wind Direction |
| Height of Discharge Point: 🤝 201           | O = Stack           |
|                                            |                     |

| CLOCK TIME                                           | Initial | Final  |
|------------------------------------------------------|---------|--------|
| Distance to Discharge                                | ~ 601   | ~601   |
| Direction from Discharge                             | 1x)     | W      |
| Height of Observation Point                          | ground  | ground |
| BACKGROUND DESCRIPTION                               |         |        |
| WEATHER CONDITIONS                                   | Clear   | Clear  |
| Wind Direction                                       | VON     | NCV    |
| Wind Speed                                           | 7       | 7      |
| Ambient Temperature                                  | 67      | 68     |
| SKY CONDITIONS (clear, over-<br>cast, % clouds, etc. | Clear   | Clear  |
| PLUME DESCRIPTION                                    |         |        |
| Color                                                | none    | qreis  |
| Distance Visible                                     | none    | ~ 5'   |
| OTHER INFORMATION                                    |         |        |

#### SUMMARY OF AVERAGE OPACITY

| Set Number | Time        | Opacity |         |  |  |
|------------|-------------|---------|---------|--|--|
|            | Start - End | Sum     | Average |  |  |
| 1          | 1025-1031   | 0       | Ø       |  |  |
| 2          | 1031-1037   | 5A 557  | 2.3%.   |  |  |
| 3          | 1037 - 1043 | 80%     | 3.3 %   |  |  |

Readings ranged from \_\_\_\_\_ to \_\_\_\_% opacity. The source was/was not in compliance with 20/\_\_\_ at the time the evaluation was made.

MONTROSE

Date of last revision 2/14/2017

Page \_\_\_\_\_ of \_\_\_\_\_ DS834040 Master Document Storage\Forms\Datasheets\Field Datasheets

W002AS-029325-RT-5315

| Figure | 9-2. | Observation | record |
|--------|------|-------------|--------|
|--------|------|-------------|--------|

Page <u>2</u> of <u>2</u>

AIR QUALITY SERVICES

|         | Comp   | any _    | Orn         | on d | ß    | ead      | D Obse    | rver         | Surya         | Adhika             | ri     |
|---------|--------|----------|-------------|------|------|----------|-----------|--------------|---------------|--------------------|--------|
|         | Locati | on       | EM          | ozen | JE   | ngihe    | Type fac  | cility       | Utili         | Adhika<br>ty Boile | r      |
|         | Test N | lumbe    | er <u> </u> | - 2- | 3    | VE       | Point o   | f emissio    | nsSta         | alK                |        |
|         |        |          |             |      | ONDS |          | STEAM PLU | IME (check i | f applicable) | Comments           |        |
|         | HR.    | MIN.     | 0           | 15   | 30   | 45       | ATTACHED  | DE           | TACHED        |                    |        |
|         |        | 0        |             |      | ·    |          |           |              |               |                    |        |
|         |        | 1        |             |      | -    |          |           |              |               |                    |        |
|         |        | 3        |             |      |      |          |           |              |               |                    |        |
|         |        | 4        |             |      |      |          |           |              |               |                    |        |
|         |        | 5        |             |      |      |          |           |              |               |                    |        |
|         |        | 6        |             |      |      |          |           |              |               |                    |        |
|         |        | 7        |             |      |      |          |           |              |               |                    |        |
|         |        | 8        |             |      |      |          |           |              |               |                    |        |
|         |        | 9<br>10  |             |      |      |          |           |              |               |                    |        |
|         |        | 11       |             |      |      |          |           |              |               |                    |        |
|         |        | 12       |             |      |      |          |           |              |               |                    |        |
|         |        | 13       |             |      |      |          |           |              |               |                    |        |
|         |        | 14       |             |      |      |          |           |              |               |                    |        |
|         |        | 15       |             |      |      |          |           |              |               |                    |        |
|         |        | 16       |             |      |      |          |           |              |               |                    |        |
|         |        | 17<br>18 |             | _    |      |          |           |              |               |                    |        |
|         |        | 18       |             |      |      |          |           |              |               |                    |        |
|         |        | 20       |             |      |      |          |           |              |               |                    |        |
|         |        | 21       |             |      |      |          |           |              |               |                    |        |
|         |        | 22       |             |      |      |          |           |              |               |                    |        |
|         |        | 23       |             |      |      |          |           |              |               |                    |        |
|         |        | 24       | -           | ~    | 10   | <i>.</i> |           |              |               |                    |        |
|         | 10     | 25<br>26 | 8           | 0    | 0    | G<br>G   |           |              |               |                    |        |
| 1       | 10     | 27       | Ø           | 6    |      | 6        |           |              |               |                    |        |
| /       | 10     | 28       | er          | a    |      | 0        |           |              |               |                    |        |
| $P_{1}$ | 10     | 29       | 0           | Gr   |      | 0        |           |              |               |                    |        |
|         | 210    | 30       | E           | 0    | A    | Gr .     |           |              |               | gray               | Clames |
|         | 10     | 31       | e           | e    | 0    | 5        |           |              |               | 3343               | JAUSE  |
| /       | 10     | 32<br>33 | 0           | 5    | 0    | 0        |           |              |               |                    |        |
| 0       | 10     | 34       | E           | é    | t    | 5        |           |              |               |                    |        |
| 122     | 10     | 35       | 2           | 5    | 12   | 5        |           |              |               |                    |        |
|         | 10     |          | And         | 50   | 5    | 5555     |           |              |               |                    |        |
|         | 10     |          | Ø           | 555  | 5    | 5        |           |              |               |                    |        |
| 0/      | 10     | 38       | 5           | 2    | 5    | 5        |           |              |               |                    |        |
| 12      | 10     | 39<br>40 | 5           | 5    |      | 5        |           |              |               |                    |        |
| 2/      | 13     | 41       | 3           |      | 5    | 5        |           |              |               |                    |        |
|         | 10     | 42       | é           | 5    | 5    | et       |           |              |               |                    |        |
|         | -      | 43       |             |      | -    |          |           |              |               |                    |        |
|         |        | 44       |             |      |      | -        |           |              |               |                    |        |
|         | -      | 45<br>46 |             |      |      |          |           |              |               |                    |        |
|         |        | 40       |             |      |      |          |           |              |               |                    |        |
|         |        | 48       |             |      |      |          |           |              |               |                    |        |
|         | _      | 49       |             |      |      |          |           |              |               |                    |        |
|         |        | 50       |             | -    | -    |          |           |              |               |                    |        |
|         |        | 51<br>52 |             |      | -    |          |           |              |               |                    |        |
|         |        | 53       |             |      |      |          |           |              |               |                    |        |
|         |        | 54       |             |      |      |          |           |              |               |                    |        |
|         |        | 55       |             |      |      |          |           |              |               |                    |        |
|         |        | 56       |             |      |      |          |           |              |               |                    |        |
|         |        | 57<br>58 |             |      | -    |          |           |              |               |                    |        |
|         |        | 59       |             |      | 1    |          |           |              |               |                    |        |
|         | 1      |          | -           |      | -    | -        |           |              |               |                    |        |

.



Air Quality Training Program

Awards This Certificate To

# Surya Adhikari

For Completion Of

MM106 - Visible Emissions Evaluation: Day Certification

In Long Beach

б

Thursday, August 3, 2023

This certificate expires six months after the evaluation completion date.

Heather Quiros, Acting Chief

# THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

| Name:   | Mr. Matt McCune          |
|---------|--------------------------|
| Title:  | Regional Vice President  |
| Region: | West                     |
| Email:  | MMccune@montrose-env.com |
| Phone:  | (714) 279-6777           |



June 7, 2023

Mr. Roger Kahle Ormond Beach Power, LLC 6635 S. Edison Drive Oxnard, California 93033

#### Subject: Ormond Beach Unit 2 Visual Emissions Report - 2023 Report Number: W002AS-026975-RT-4718

Dear Roger,

Montrose Air Quality Services, LLC (MAQS) performed visual emission opacity observations for Ormond Beach Unit 2 on May 23, 2023. Matt McCune, a CARB certified visible emission evaluator (most recent re-certification performed 2/9/2023), performed the tests.

The results of the tests show that no visible emissions were observed during the test. The raw data sheets are provided as an attachment.

Please give me a call if you have any questions or comments regarding this report at (714) 279-6777.

Sincerely,

Matthew R. McCune, P.E. Regional Vice President Montrose Air Quality Services, LLC

MRM/rcr Attachments

www.montrose-env.com

# ATTACHMENTS

# FIGURE 9-1. RECORD OF VISUAL DETERMINATION OF OPACITY

| Company: Orman Barch                          |        |                |
|-----------------------------------------------|--------|----------------|
| Location: UNT Z                               |        | - SPAAM Prome  |
| Test No.: 1- 2- 3- VEE-2                      | 0      | >              |
| Date: 5-23-23                                 | تى     | R              |
| Type Facility: N. GAS STILLT BIET             |        |                |
| Control Device: <u>ScR</u>                    | +      | A,             |
| Hours of Observation: 1421 -1439              | ¢      | IN             |
| Observer: MAT MC.                             |        | KEY            |
| Observer Certification Date: 2-9-23           | X = OI | oserver        |
| Point of Emissions: Stack                     |        | Sun            |
| Observer Affiliation: Monitors                | WD =   | Wind Direction |
| Height of Discharge Point: $\sim 250^{\circ}$ | 0 = St | ack            |
|                                               |        |                |

| CLOCK TIME                                           | Initial    | Final  |
|------------------------------------------------------|------------|--------|
| Distance to Discharge                                | ~ 800'     | - 300' |
| Direction from Discharge                             | NW         | با رئ  |
| Height of Observation Point                          | Grand      | Ground |
| BACKGROUND DESCRIPTION                               | Cloudy     | claidy |
| WEATHER CONDITIONS                                   | ,          |        |
| Wind Direction                                       | SW         | 50     |
| Wind Speed                                           | 7          | 7      |
| Ambient Temperature                                  | 62         | 62     |
| SKY CONDITIONS (clear, over-<br>cast, % clouds, etc. | Cloudy     | Clady  |
| PLUME DESCRIPTION                                    |            |        |
| Color                                                | STERM/ANDE | Sidam  |
| Distance Visible                                     | MILE       | NILE   |
| OTHER INFORMATION                                    |            |        |

SUMMARY OF AVERAGE OPACITY

| Set Number | Time        | Op  | acity   |
|------------|-------------|-----|---------|
|            | Start - End | Sum | Average |
| 4          | 1121-27     | ¢   | ¢       |
| 2          | 1427-33     | 6   | ¢       |
| 3          | 1433-39     | ¢   | ¢       |

Readings ranged from  $\phi$  to  $\phi$  opacity. The source was/was not in compliance with \_\_\_\_\_ at the time the evaluation was made.

Date of last revision 2/14/2017 W002AS-026975-RT-4718

and a Pagel  $\mathcal{P}$  of  $\mathcal{V}$ DS834040 Master Document Storage\Forms\Datasheets\Field Datasheets 3 of 6

|     |                 |      |                |                    |                 | Figure     |                                         | bservation reco<br>Page <u>2</u> of <u>2</u> | ord.                                 | AN WORLDS                 | <b>.</b>    |
|-----|-----------------|------|----------------|--------------------|-----------------|------------|-----------------------------------------|----------------------------------------------|--------------------------------------|---------------------------|-------------|
|     |                 | Com  | pany           | Olt                | 1000            | B          |                                         |                                              | ver M. Mc                            | Cuniz                     |             |
|     |                 | Loca | tion           | Un II              | 2               |            |                                         | Type faci                                    | lity User                            | CUNT<br>YBOLLETL<br>STACK |             |
|     |                 | Test | Numb           | er                 | ,2,             | 3          |                                         | Point of                                     | emissions                            | STACK                     |             |
|     |                 | HR.  | MIN.           | 0                  |                 | ONDS<br>30 | 45                                      | STEAM PLU                                    | ME (check if applicable)<br>DETACHED |                           |             |
| 8   |                 |      | 0 1 2          |                    |                 |            |                                         |                                              |                                      |                           |             |
|     |                 |      | 3<br>4<br>5    |                    |                 |            |                                         |                                              |                                      |                           |             |
|     |                 |      | 6<br>7         |                    |                 |            |                                         |                                              |                                      |                           |             |
|     |                 |      | 8<br>9<br>10   |                    |                 |            |                                         |                                              |                                      |                           |             |
|     |                 |      | 11<br>12       |                    |                 |            |                                         |                                              |                                      |                           |             |
|     |                 |      | 13<br>14<br>15 |                    |                 |            |                                         |                                              |                                      |                           |             |
|     |                 |      | 16<br>17<br>18 |                    |                 |            |                                         |                                              |                                      |                           |             |
|     | ,               |      | 19<br>20       |                    |                 |            |                                         |                                              |                                      |                           |             |
| RI  |                 | 14   | 21<br>22<br>23 | 6.6                | COLOCO COCK ALL | 400        | 0.00                                    | ×××                                          |                                      | THEF, ATTACHED S          | TOUR Partie |
| •   | $\overline{\ }$ | 14   | 24<br>25<br>26 | 44                 | 4               | 00000      | 0.000                                   | ×<br>×                                       |                                      |                           |             |
| ~~  | /               | 14   | 27<br>28       | 000000 0 4000 × 40 | 900             | 00000      | 9                                       | *<br>*                                       |                                      |                           |             |
| 100 | 1               | 13   | 29<br>30<br>31 | 0.04               | J.O.            | 996        | 0-00                                    | ××××                                         |                                      |                           |             |
|     |                 | 19   | 32<br>33<br>34 | De la              | -               | 1000 (CL)  | 00000                                   | ×<br>×<br>×                                  |                                      |                           |             |
| 0,3 | K               | 14   | 35<br>36<br>37 | 600                | Ģ               | DO.        | all | ××                                           |                                      |                           |             |
| P . | $\checkmark$    | 14   | 37<br>38<br>39 | æ                  | Ŷ               | đ.         | Ģ                                       | к<br>Х                                       |                                      | 4                         |             |
|     |                 |      | 40<br>41<br>42 |                    |                 |            |                                         |                                              |                                      |                           |             |
|     |                 |      | 43<br>44       |                    |                 |            |                                         |                                              |                                      |                           |             |
|     |                 |      | 45<br>46<br>47 |                    |                 |            |                                         |                                              |                                      |                           |             |
|     |                 |      | 48<br>49<br>50 |                    |                 |            |                                         |                                              |                                      |                           |             |
|     |                 |      | 51<br>52       |                    |                 |            |                                         |                                              |                                      |                           |             |
|     |                 |      | 53<br>54<br>55 |                    |                 |            |                                         |                                              |                                      |                           |             |
|     |                 |      | 56<br>57<br>58 |                    |                 |            |                                         |                                              |                                      |                           |             |
|     |                 |      | 59             |                    |                 |            |                                         |                                              |                                      |                           |             |

Date of last revision 2/14/2017 W002AS-026975-RT-4718



Air Quality Training Program

Awards This Certificate To

# Matt McCune

For Completion Of

# MM106 - Visible Emissions Evaluation: Day Certification

In Long Beach

б

Thursday, February 9, 2023

This certificate expires six months after the evaluation completion date.

Dr. Todd P. Sax, Chief Enforcement Division

# THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

| Name:   | Mr. Matt McCune          |
|---------|--------------------------|
| Title:  | Regional Vice President  |
| Region: | West                     |
| Email:  | MMccune@montrose-env.com |
| Phone:  | (714) 279-6777           |

**ANNUAL GAS CERTIFCATION** 



Report Date: November 7, 2023 Laboratory Number: 232500 Project Name: N/A Purchase Order No: 2023 PO 4503739006 Sampled by: Roger Kahle

Enclosed are the analysis results for samples received October 18, 2023 with the Chain of Custody document. The samples were received in good condition, at 22.3°C, and they were identified and assigned the laboratory ID numbers listed below.

SAMPLE DESCRIPTION

CAS LAB NUMBER ID

OB-NAT GAS-231018-01-Sulfur

232500-01

By my signature below, I certify that the results contained in this laboratory report comply with applicable standards for certification by the California Department of Public Health's Environmental Laboratories Accreditation Program (ELAP), both technically and for completeness, and that, based on my inquiry of the person or persons directly responsible for performing the analyses, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete.

Anahit Aivazyan, MS. Technical Manager

If you have any further questions or concerns, please contact me at your convenience. This report consists of 8 pages excluding the cover letter and the Chain of Custody.

This report shall not be reproduced except in full without the written approval of CAS. The test results reported represent only the item being tested and may not represent the entire material from which the sample was taken.



CLIENT: CAPCO AnaPROJECT NAME: Annual NaturePROJECT NO.: 232500AAC PROJECT NO.: 232145REPORT DATE: 11/03/2023

CAPCO Analytical Services, Inc.
Annual Natural Gas
232500
232145
11/03/2023

On October 18, 2023, Atmospheric Analysis & Consulting, Inc. received one (1) Tedlar Bag for BTU analysis by ASTM D-3588/5504. Upon receipt, the sample was assigned a unique Laboratory ID number as follows:

| · · · ·                     | · .          |
|-----------------------------|--------------|
| Client ID                   | Lab No.      |
| 232500-01-OB Nat Gas 231018 | 232145-50262 |

This analysis is performed in accordance with AAC's Quality Manual. Test results apply to the sample(s) as received. For detailed information pertaining to specific EPA, NCASI, ASTM and SCAQMD accreditations (Methods & Analytes), please visit our website at www.aaclab.com.

I certify that this data is technically accurate, complete, and in compliance with the terms and conditions of the contract. No problems were encountered during receiving, preparation, and/or analysis of this sample. The Technical Director or his/her designee, as verified by the following signature, has authorized release of the data.

If you have any questions or require further explanation of data results, please contact the undersigned.

ucha P Cechnical

This report consists of 8 pages.

Page 1



#### Laboratory Analysis Report ASTM-D3588 (BTU and F-Factor)

#### CLIENT : CAPCO Analytical Services, Inc. PROJECT NO. : 232145

#### SAMPLING DATE : 10/18/2023 ANALYSIS DATE : 10/19/2023

|                   | Client ID:                   |
|-------------------|------------------------------|
|                   | AAC ID:                      |
|                   |                              |
|                   | Component                    |
|                   | H <sub>2</sub>               |
|                   | O <sub>2</sub>               |
| SES               | N <sub>2</sub>               |
| GA                | СО                           |
| Ē                 | CO <sub>2</sub>              |
| FIXED GASES       | CH <sub>4</sub>              |
|                   | He .                         |
|                   | Ar                           |
| NS                | . C <sub>2</sub> (as Ethane) |
| <b>B</b> <u>Ö</u> | C <sub>3</sub> (as Propane)  |
| AR                | C4 (as Butane)               |
| l õ               | C <sub>5</sub> (as Pentane)  |
| HYDROCARBONS      | C <sub>6</sub> (as Hexane)   |
| E                 | C <sub>6+</sub> (as Hexane)  |
| TRS               | Total Reduced Sulfur         |
| H2O               | Moisture content             |

|   | 232500-01-OB Nat Gas 231018 |            |          |              |  |  |  |  |  |
|---|-----------------------------|------------|----------|--------------|--|--|--|--|--|
|   | 232145-50262                |            |          |              |  |  |  |  |  |
|   | Mole %                      | Mole % SRL | Weight % | Weight % SRL |  |  |  |  |  |
|   | < 1.00                      | 1.00       | < 0.001  | 0.001        |  |  |  |  |  |
|   | 0.785                       | 0.100      | 1.44     | 0.002        |  |  |  |  |  |
|   | 3.76                        | 0.100      | 6.05     | 0.001        |  |  |  |  |  |
|   | < 0.100                     | 0.100      | < 0.001  | 0.001        |  |  |  |  |  |
|   | 0.828                       | 0.100      | 2.09     | 0.002        |  |  |  |  |  |
|   | 90.8                        | 0.100      | 83,7     | 0.001        |  |  |  |  |  |
|   | NM                          | NM         | NM       | NM           |  |  |  |  |  |
|   | < 0.100                     | 0.100      | < 0.002  | 0.002        |  |  |  |  |  |
|   | 3.56                        | 0.100      | 6.14     | 0.002        |  |  |  |  |  |
|   | 0.181                       | 0.00005    | 0.457    | 0.0001       |  |  |  |  |  |
| - | 0.0313                      | 0.00005    | 0.104    | 0.0002       |  |  |  |  |  |
|   | 0.00797                     | 0.00005    | 0.0330   | 0.0002       |  |  |  |  |  |
|   | 0.00262                     | 0.00005    | 0.0130   | 0.0002       |  |  |  |  |  |
|   | 0.00263                     | 0.00005    | 0.0130   | 0.0002       |  |  |  |  |  |
|   | 0.000163                    | 0.0000010  | 0.000319 | 0.000002     |  |  |  |  |  |
|   | NM                          | NM         | NM       | NM           |  |  |  |  |  |

All results have been normalized to 100% on a dry basis.

| •                   | 1            | Fuel Gas Specifications |       |
|---------------------|--------------|-------------------------|-------|
| Atomic Breakdown -  | (scf/lb) / % | HHV Btu/lb              | 21490 |
| Carbon (C)          | 68.6         | LHV Btu/lb              | 19369 |
| Hydrogen (H)        | 22.4         | HHV Btu/dscf            | 987   |
| Oxygen (O)          | 2.96         | LHV Btu/dscf            | 889   |
| Nitrogen (N)        | 6.05         | F-Factor                | 8650  |
| Helium (He)         | 0.00         | Relative Density        | 0.602 |
| Argon (Ar)          | 0.00         | C2-C6+ Weight %         | 0.00  |
| Sulfur (S)          | 0.00         | MW lb/lb-mole           | 17.4  |
| Motor Octane Number | 131          | Methane Number          | 93.4  |
|                     |              | Wobbe Number            | 1272  |



# LABORATORY ANALYSIS REPORT

CLIENT : CAPCO Analytical Services, Inc. PROJECT NO. : 232145 MATRIX : AIR UNITS : ppmV

#### SAMPLING DATE : 10/18/2023 ANALYSIS DATE : 10/19/2023

|                                 | · · · · · · · · · · · · · · · · · · · |  |  |
|---------------------------------|---------------------------------------|--|--|
| Client ID                       | 232500-01-OB Nat                      |  |  |
| AAC ID                          | Gas 231018<br>232145-50262            |  |  |
| Analyte                         | Result                                |  |  |
|                                 |                                       |  |  |
| Hydrogen Sulfide                | 0.226                                 |  |  |
| COS/SO2                         | 0.160                                 |  |  |
| Methyl Mercaptan                | < 0.050                               |  |  |
| Ethyl Mercaptan                 | < 0.050                               |  |  |
| Dimethyl Sulfide                | < 0.050                               |  |  |
| Carbon Disulfide                | < 0.050                               |  |  |
| Isopropyl Mercaptan             | < 0.050                               |  |  |
| tert-Butyl Mercaptan            | 0.944                                 |  |  |
| n-Propyl Mercaptan              | < 0.050                               |  |  |
| Methylethylsulfide              | < 0.050                               |  |  |
| sec-Butyl Mercaptan / Thiophene | < 0.050                               |  |  |
| iso-Butyl Mercaptan             | < 0.050                               |  |  |
| Diethyl Sulfide                 | < 0.050<br>< 0.050                    |  |  |
| n-Butyl Mercaptan               |                                       |  |  |
| Dimethyl Disulfide              | < 0.050                               |  |  |
| 2-Methylthiophene               | < 0.050                               |  |  |
| 3-Methylthiophene               | 0.404                                 |  |  |
| Tetrahydrothiophene             | < 0.050                               |  |  |
| Bromothiophene                  | < 0.050                               |  |  |
| Thiophenol                      | < 0.050                               |  |  |
| Diethyl Disulfide               | < 0.050                               |  |  |
| Total Unidentified Sulfur       | < 0.050                               |  |  |
| Total Reduced Sulfurs           | 1.57                                  |  |  |

# Total Reduced Sulfur Compounds Analysis by ASTM D-5504

All unidentified compound's concentrations expressed in terms of H<sub>2</sub>S (TRS does not include COS and SO<sub>2</sub>) Sample Reporting Limit (SRL) is equal to Reporting Limit x Canister Dil. Fac. x Analysis Dil. Fac.

Page 3



# LABORATORY ANALYSIS REPORT

CLIENT : CAPCO Analytical Services, Inc. PROJECT NO. : 232145 MATRIX : AIR UNITS : grains/100 dscf

#### SAMPLING DATE : 10/18/2023 ANALYSIS DATE : 10/19/2023

Total Reduced Sulfur Compounds Analysis by ASTM D-5504

| Client ID                       | 232500-01-OB Nat |
|---------------------------------|------------------|
| Chent ID                        | Gas 231018       |
| AAC ID                          | 232145-50262     |
| Analyte                         | Result           |
| Hydrogen Sulfide                | 0.01377          |
| COS / SO2                       | 0.00975          |
| Methyl Mercaptan                | < 0.00305        |
| Ethyl Mercaptan                 | < 0.00305        |
| Dimethyl Sulfide                | < 0.00305        |
| Carbon Disulfide                | < 0.00305        |
| Isopropyl Mercaptan             | < 0.00305        |
| tert-Butył Mercaptan            | 0.05750          |
| n-Propyl Mercaptan              | < 0.00305        |
| Methylethylsulfide              | < 0.00305        |
| sec-Butyl Mercaptan / Thiophene | < 0.00305        |
| iso-Butyl Mercaptan             | < 0.00305        |
| Diethyl Sulfide                 | < 0.00305        |
| n-Butyl Mercaptan               | < 0.00305        |
| Dimethyl Disulfide              | < 0.00305        |
| 2-Methylthiophene               | < 0.00305        |
| 3-Methylthiophene               | 0.02461          |
| Tetrahydrothiophene             | < 0.00305        |
| Bromothiophene                  | < 0.00305        |
| Thiophenol                      | < 0.00305        |
| Diethyl Disulfide               | < 0.00305        |
| Total Unidentified Sulfur       | < 0.00305        |
| Total Reduced Sulfurs           | 0.09587          |

All unidentified compound's concentrations expressed in terms of H<sub>2</sub>S (TRS does not include COS and SO<sub>2</sub>) Sample Reporting Limit (SRL) is equal to Reporting Limit x Canister Dil. Fac. x Analysis Dil. Fac.



# Quality Control/Quality Assurance Report

| Date Analyzed<br>Analyst<br>Units | : 10/19/2023<br>: NR/RW<br>: % | · · ·               |                |                |                 |                 | : TCD #1<br>: 09/26/23<br>: 0.1% |
|-----------------------------------|--------------------------------|---------------------|----------------|----------------|-----------------|-----------------|----------------------------------|
| I - Opening Conti                 | nuing Calibration V            | Verification - BTU/ | ASTM D-1945    |                |                 | ·               |                                  |
| AAC ID                            | Analyte                        | <b>II</b> ,         |                | N2             | CII₄            | CO              | CO2                              |
|                                   | Spike Conc                     | 10.0                | 10.2           | 20.2           | 10.0            | 10.0            | 10.0                             |
| CCV                               | Result                         | 9.8                 | 10.0           | 22.1           | 10.0            | 9.0             | . 9.8                            |
|                                   | % Rec *                        | 98.3                | 98.0           | 109.4          | 100.2           | 90.6            | 97.9                             |
| II - Method Blank                 | - BTU/ASTM D-1                 | 945                 |                |                |                 | •               | •                                |
| AAC ID                            | Analyte                        | $\mathbf{H}_2$      | O <sub>2</sub> | N <sub>2</sub> | CH4             | CO              | CO2                              |
| МВ                                | Concentration                  | ND                  | ND             | ND ·           | ND              | ND              | ND                               |
| III - Laboratory (                | Control Spike & Du             | nlicate - BTU/AST   | M.D-1945       |                |                 | · · ·           |                                  |
| AAC ID                            | Analyte                        | EL,                 | O <sub>2</sub> | N <sub>2</sub> | CH <sub>4</sub> | CO              | CO <sub>2</sub>                  |
|                                   | Sample Conc                    | 0.0                 | 0.0            | 0.0            | 0.0             | 0.0             | 0.0                              |
|                                   | Spike Conc                     | 10.0                | 10.2           | 20.2           | 10.0            | 10.0            | 10.0                             |
|                                   | LCS Result                     | 9.9                 | 10.0           | 20.9           | 10.2            | 9.2             | 10.0                             |
| Lab Control<br>Standards          | LCSD Result                    | 9,8                 | 10.2           | 22.1           | 10.0            | 9.0             | 9,9                              |
| Standards                         | LCS % Rec *                    | 99.6                | 98.4           | 103.2          | 101.6           | 91.9            | 99.4                             |
|                                   | LCSD % Rec *                   | 98.0                | 100.6          | 109.1          | 100.3           | 90.6            | 98.4                             |
|                                   | % RPD ***                      | 1.7                 | 2.3 .          | 5.6            | 1.3             | 1.4             | 1.0                              |
| IV -Sample & Sar                  | nple Duplicate - BI            | U/ASTM D-1945       | •              | •              |                 |                 |                                  |
| AAC ID                            | Analyte                        | H <sub>2</sub>      | O <sub>j</sub> | N <sub>2</sub> | CH4             | CO              | CO2                              |
|                                   | Sample                         | 0.0                 | 9.9            | 46,5           | 0.0             | 0.0             | 0.9                              |
|                                   | Sample Dup                     | 0.0                 | 9,9            | 46,2           | 0.0             | 0.0             | 0.8                              |
| 232055-49775                      | Mean                           | 0.0                 | 9,9            | 46,3           | 0,0             | 0.0             | 0.8                              |
|                                   | % RPD ***                      | 0.0                 | 0,5            | 0.5 ·          | . 0.0           | 0.0             | 1.5                              |
| V - Matrix Spike d                | & Duplicate- BTU/A             | ASTM D-1945         |                |                |                 |                 |                                  |
| AAC ID                            | Analyte                        | H <sub>2</sub>      | N2             | CH4            | CO              | CO <sub>2</sub> |                                  |
|                                   | Sample Conc                    | 0.0                 | 23.2           | 0.0            | 0.0             | 0.4             |                                  |
|                                   | Spike Conc                     | 10.0                | 10.0           | .10.0          | 10.0            | 10.0            |                                  |
|                                   | MS Result                      | 9.7                 | 35.0           | 9.9            | 8.9             | 10.1            |                                  |
| 232055-49775                      | MSD Result                     | 9.9                 | 35.0           | 10.2           | 9.1             | 10.4            |                                  |
|                                   | MS % Rec **                    | 97.7                | 118.6          | 99.1           | 89.5            | · 96.8          |                                  |
|                                   | MSD % Rec **                   | 99,5                | 118.4          | 101.5          | 91.6            | 99.2            |                                  |

#### VI - Closing Continuing Calibration Verification - BTU/ASTM D-1945

1.8

% RPD \*\*\*

| AAC ID Analyte | 1 - 1 - 1 - 1 - 1 - 1 <b>H</b> - 1 - 1 - 1 - 1 - 1 - 1 | •••••••••••••••••••••••••••••••••••••• | N     | CH.   |      |       |
|----------------|--------------------------------------------------------|----------------------------------------|-------|-------|------|-------|
| Spike Conc     | 10.0                                                   | 10.2                                   | 20.2  | 10.0  | 10.0 | 10.0  |
| CCV Result     | 10.2                                                   | 10.0                                   | 22.6  | 10.4  | 9.4  | 10.3  |
| % Rec *        |                                                        | 98.2                                   | 111.8 | 104.1 | 94.0 | 102.5 |

2.4

2.3

2.5

0.2

\* Must be 85-115%

\*\* Must be 75-125%

\*\*\* Must be < 25%

ND = Not Detected

<RL = less than Reporting Limit

2225 Sperry Ave., Ventura, CA 93003



#### Quality Control/Quality Assurance Report

| Analyst                                                                                                                                                                                                                                                                                                                                                                                                                 | : 10/19/2023<br>: NR/RW<br>: ppmv | . ·<br>·          |          |         |        |         | : FID #3<br>: 01/16/23<br>: 0.5 ppmv |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------|----------|---------|--------|---------|--------------------------------------|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                   | 4        |         | ·      |         | <del></del>                          |  |
| AAC ID                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyte                           | Methane           | Ethane   | Propane | Butane | Pentane | Hexane                               |  |
| Analyst<br>Units<br>(- Opening Cont<br>AAC: ID<br>CCV<br>I - Method Blan<br>AAC: ID<br>MB<br>II - Laboratory (<br>AAC: ID<br>Lab: Control<br>Standards<br>V - Sample & Sa<br>AAC: ID<br>231409-46863                                                                                                                                                                                                                    | Spike Conc                        | 99.7              | 98.2     | 100.0   | · 99.6 | 99.9    | 100.1                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                         | Result                            | 103.4             | 105.6    | 103.9   | 104.5  | 104.7   | 105.8                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                         | % Rec *                           | 103.7             | 107.5    | 104.0   | 104.9  | 104.8   | 105.8                                |  |
| l - Method Blank                                                                                                                                                                                                                                                                                                                                                                                                        | - BTU/ASTM D-1                    | 945               |          |         |        |         |                                      |  |
| AAC ID                                                                                                                                                                                                                                                                                                                                                                                                                  | Analyte                           | Methane           | Ethane   | Propane | Butane | Pentane | Hexane                               |  |
| Analyst<br>Units<br>L- Opening Cont<br>AAC ID<br>CCV<br>II - Method Blan<br>AAC ID<br>MB<br>III - Laboratory<br>AAC ID<br>Lab Control<br>Standards<br>V - Sample & Sa<br>AAC ID<br>231409-46863<br>V - Matrix Spike<br>AAC ID                                                                                                                                                                                           | Concentration                     | ND                | · ND     | ND      | ND     | ND      | ND                                   |  |
| II - Laboratory (                                                                                                                                                                                                                                                                                                                                                                                                       | Control Spike & Du                | nlicate - BTU/AST | M D-1945 | •       | ۰.     |         |                                      |  |
| Analyst<br>Units<br>I - Opening Contii<br>AAC: ID<br>CCV<br>II - Method Blank<br>AAC: ID<br>MB<br>III - Laboratory C<br>AAC: ID<br>Lab Control<br>Standards<br>IV - Sample & San<br>AAC: ID<br>231409-46863<br>V - Matrix Spike &<br>AAC: ID                                                                                                                                                                            | Analyte                           | Methane           | Ethane   | Propane | Butane | Penfane | Hexane                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample Conc                       | 0.0               | 0.0      | 0.0     | 0.0    | 0.0     | 0.0                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                         | Spike Conc                        | 99.7              | 98.2     | 100.0   | 99.6   | 99.9    | 100.1                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                         | LCS Result                        | 94.3              | 96.6     | 95.1    | 95.4   | 94.1    | 94.6                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                         | LCSD Result                       | . 95.8            | 98.0     | 96.7    | 98.2   | 98,1    | 99.6                                 |  |
| Standards                                                                                                                                                                                                                                                                                                                                                                                                               | LCS % Rec *                       | 94.6              | 98.3     | 95.1    | 95.8   | 94.2    | 94.6                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                         | LCSD % Rec *                      | 96.1              | 99.8     | 96.7    | 98,6   | 98.2    | . 99,5                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                         | % RPD ***                         | 1.5               | 1.5      | 1.7     | 2.9    | 4.2     | 5.1                                  |  |
| V - Sample & Sa                                                                                                                                                                                                                                                                                                                                                                                                         | mple Duplicate - BT               | U/ASTM D-1945     | •        |         | ·      |         | • •                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                         | Analyte                           | Methane           | Ethane   | Propane | Butane | Pentane | Hexane                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample                            | 1.5               | 0,0      | 0.0     | 0.0    | 0.0     | 0.0                                  |  |
| Analyst       : N         Units       : p)         I- Opening Continuing         AAC:ID         CCV         II- Method Blank - BT         AAC:ID         II- Method Blank - BT         AAC:ID         III - Laboratory Control         Standards         Lab Control         Standards         IV - Sample & Sample         AAC:ID         231409-46863         Standards         Y - Matrix Spike & Dup         AAC:ID | Sample Dup                        | 1.6               | 0.0      | Ó.O     | 0.0    | 0.0     | 0.0                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                         | Mean                              | 1.6               | 0.0      | 0.0     | 0.0    | 0.0     | 0.0                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                         | % RPD ***                         | 3.0               | 0.0      | 0.0     | 0.0    | 0.0     | 0.0                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                         | & Dunlicate - BTII/               | ASTM D-1945       |          |         |        |         |                                      |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                         | Analyte                           | Methane           | Ethane   | Propane | Butane | Pentane | Hexane                               |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample Conc                       | 0.8               | 0.0      | 0.0     | 0.0    | 0.0     | 0.0                                  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                         | Spike Conc                        | 49.8              | 49.1     | 50.0    | 49.8   | 49.9    | 50.0                                 |  |
| Units <u> I - Opening Conti</u> <u> AAC ID</u> <u> CCV</u> <u> I - Method Blank</u> <u> AAC ID</u> <u> MB</u> <u> II - Laboratory C</u> <u> AAC ID</u> <u> Lab Control</u> <u> Standards</u> <u> V - Sample &amp; San</u> <u> AAC ID</u> <u> 231409-46863</u> <u> V - Matrix Spike d</u> <u> AAC ID</u>                                                                                                                 | MS Result                         | 48.9              | 48.4     | 46.9    | 47.1   | 46.7    | 47.6                                 |  |
| - Opening Conti<br>AAC: ID<br>CCV<br>- Method Blank<br>AAC: ID<br>MB<br>II - Laboratory C<br>AAC: ID<br>Lab: Control<br>Standards<br>V - Sample & Sar<br>AAC: ID<br>231409-46863<br>- Matrix Spike &<br>AAC: ID                                                                                                                                                                                                         | MSD Result                        | 52.6              | 52.5     | 51.2    | 51.8   | 51.8    | 52.4                                 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                 |                   |          |         |        |         |                                      |  |

VI - Closing Continuing Calibration Verification - BTU/ASTM D-1945

96.5

104.1

7.6

MS % Rec \*\*

MSD %: Rec \*\*

% RPD \*\*\*

| AAC ID Analyte |       | Ethane | Deandna' | Butane | Doverana | Hexane |
|----------------|-------|--------|----------|--------|----------|--------|
| Spike Conc     | 99.7  | 98.2   | 100.0    | 99.6   | · 99.9   | 100.1  |
| CCV Result     | 104.4 | 107.5  | 104.5    | 106.2  | 107.3    | 111.9  |
| % Rec *        | 104.8 | 109.4  | 104.6    | 106,7  | 107.4    | 111.8  |

93.9

102.5

8.7

94.7

104.1

9.5

93.5

103.8

10,4

98.6

106.8

8.0

\* Must be 85-115%

\*\* Must be 75-125%

\*\*\* Must be < 25%

ND = Not Detected

<RL = less than Reporting Limit

95.2

104.7

9.5



# Quality Control/Quality Assurance Report ASTM D-5504

#### Date Analyzed: 10/19/2023 Analyst: CM/KM Units: ppmV

Instrument ID : SCD-BTU Calb. Date: : 6/13/23

**Opening Calibration Verification Standard** 

| 9)           |                                                                                                                                                                  |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Resp. (area) | Result                                                                                                                                                           | . % Rec *                                                                                                                   | % RPD ****                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 835          | 0.480                                                                                                                                                            | 96.1                                                                                                                        | 1.1                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 870          | 0.501                                                                                                                                                            | 100.2                                                                                                                       | 3.1                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 826          | 0.475                                                                                                                                                            | 95.1                                                                                                                        | 2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9)           | · · ·                                                                                                                                                            |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Resp. (area) | Result                                                                                                                                                           | % Rec *                                                                                                                     | % RPD ****                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 891          | 0.541                                                                                                                                                            | 98.9                                                                                                                        | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 906          | 0.550                                                                                                                                                            | 100.5                                                                                                                       | 1.6                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 878          | 0.533                                                                                                                                                            | 97.4                                                                                                                        | 1.5                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9)           |                                                                                                                                                                  |                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Resp. (area) | Result                                                                                                                                                           | % Rec *                                                                                                                     | % RPD ****                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 855          | 0.471                                                                                                                                                            | 98.4                                                                                                                        | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| .832         | 0.459                                                                                                                                                            | 95.8                                                                                                                        | 2.5                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | 0.481                                                                                                                                                            | 100.4                                                                                                                       | 2.3                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|              | Resp. (area)         835         870         826         97         Resp. (area)         891         906         878         97         Resp. (area)         855 | Resp. (area)         Result           835         0.480           870         0.501           826         0.475           9 | Resp. (area)         Result         % Rec *           835         0.480         96.1           870         0.501         100.2           826         0.475         95.1           %         Resp. (area)         Result         % Rec *           891         0.541         98.9           906         0.550         100.5           878         0.533         97.4           %         Res *         855           832         0.459         95.8 |

#### wheel Blank

| Method Diank     |                              |  |
|------------------|------------------------------|--|
| Analyte          | Result                       |  |
| H <sub>2</sub> S | <pql< td=""><td></td></pql<> |  |
| MeSH             | <pql< td=""><td></td></pql<> |  |
| DMS              | <pql< td=""><td></td></pql<> |  |

| Duplicate Analysi | S                                                                         | •                                             | Sample ID | 231187-45761 |
|-------------------|---------------------------------------------------------------------------|-----------------------------------------------|-----------|--------------|
| Analyte           | Sample<br>Result                                                          | Duplicate<br>Result                           | Mean      | % RPD ***    |
| H <sub>2</sub> S  | <pql< td=""><td><pql< td=""><td>0.000</td><td>0.0</td></pql<></td></pql<> | <pql< td=""><td>0.000</td><td>0.0</td></pql<> | 0.000     | 0.0          |
| MeSH              | <pql< td=""><td><pql< td=""><td>0.000</td><td>0.0</td></pql<></td></pql<> | <pql< td=""><td>0.000</td><td>0.0</td></pql<> | 0.000     | 0.0          |
| DMS               | <pql< td=""><td><pql< td=""><td>0.000</td><td>0.0</td></pql<></td></pql<> | <pql< td=""><td>0.000</td><td>0.0</td></pql<> | 0.000     | 0.0          |

| Matrix Spike & L | Duplicate                                                                                              |                | Sample ID    | x2            | -              |                 | · · ·     |
|------------------|--------------------------------------------------------------------------------------------------------|----------------|--------------|---------------|----------------|-----------------|-----------|
| Analyte          | Sample<br>Conc.                                                                                        | Spike<br>Added | MS<br>Result | MSD<br>Result | MS<br>% Rec ** | MSD<br>% Rec ** | % RPD *** |
| H <sub>2</sub> S | <pol< td=""><td>0.250</td><td>0.266</td><td>0.259</td><td>106.5</td><td>103.7</td><td>2.7</td></pol<>  | 0.250          | 0.266        | 0.259         | 106.5          | 103.7           | 2.7       |
| MeSH             | <pol< td=""><td>0.274</td><td>0.294</td><td>0.289</td><td>107.4</td><td>105.6</td><td>1.7</td></pol<>  | 0.274          | 0.294        | 0.289         | 107.4          | 105.6           | 1.7       |
| DMS              | <pql< td=""><td>0.240</td><td>0.240</td><td>0.237</td><td>· 100.2</td><td>99.0</td><td>1.3</td></pql<> | 0.240          | 0.240        | 0.237         | · 100.2        | 99.0            | 1.3       |

#### **Closing Calibration Verification Standard**

| Analyte          | Std. Conc. | Result | % Rec ** |
|------------------|------------|--------|----------|
| H <sub>2</sub> S | 0.500      | 0.480  | 96.0     |
| MeSH             | 0.548      | 0.529  | 96.6     |
| DMS              | 0.479      | 0.455  | 95.0     |

\* Must be 95-105%, \*\* Must be 90-110%, \*\*\* Must be < 10%, \*\*\*\* Must be < 5% RPD from Mean result. PQL 50.0 ppbl/ MDL 1.1 ppbV

#### 2225 Sperry Ave., Ventura, CA 93003

Page 7

. . . . .

|                                      |                |                  |          |                |           |         | TIME    | DATE / TIME                           |           |            |      | RECEIVED BY           | DATE / TIME                                     | DAILE           |                     |                 | <b>NELING</b> |
|--------------------------------------|----------------|------------------|----------|----------------|-----------|---------|---------|---------------------------------------|-----------|------------|------|-----------------------|-------------------------------------------------|-----------------|---------------------|-----------------|---------------|
| ample                                | Air/Gas Sample |                  |          |                |           |         |         |                                       |           |            |      |                       |                                                 |                 |                     |                 |               |
| nts:                                 | Comments:      |                  |          |                |           |         |         |                                       |           |            |      |                       |                                                 |                 |                     |                 |               |
| HW: Hazerdous Waste                  |                | S: Soil          | ŝ        |                |           |         | / TIME  | DATE /                                |           |            |      | RECEIVED BY           | DATE / TIME                                     | DATE            |                     | Relinquished by | RELINQU       |
| SW: Surface Water<br>WW: Waste Water | Vater<br>Vater | GW: Ground Water | Gro      | GW:            | 24        | (25.35) | 52/23   | 181/21                                |           | Z          | wa   | EMARGTUS CHOS         | 119/23 1030                                     | 10/14           |                     | ,Ø              | X             |
| ypes:                                | Sample Types:  |                  |          |                | <u>لا</u> |         | TIME    | DATE / TIME                           |           |            |      | RECEIVED BY           | DATE / TIME                                     |                 |                     |                 |               |
|                                      |                | ┝                | -        |                |           |         | ┢       | _                                     |           | -          | Γ    |                       |                                                 |                 |                     |                 |               |
|                                      |                |                  | -        | 1              |           |         | +       |                                       |           | +          |      |                       |                                                 |                 |                     |                 |               |
|                                      |                |                  |          |                | -         | 1       |         | <u> </u>                              |           | +          |      |                       |                                                 |                 |                     |                 |               |
|                                      |                | +                | +        |                | 1.        |         |         |                                       |           | _          |      |                       |                                                 |                 |                     |                 |               |
|                                      |                |                  | <u> </u> |                |           |         | 1       |                                       |           |            |      |                       |                                                 |                 |                     |                 |               |
|                                      |                | <u> </u>         | <u> </u> |                |           |         |         |                                       |           |            |      |                       |                                                 |                 |                     |                 |               |
|                                      |                |                  |          |                |           |         |         |                                       |           |            |      |                       |                                                 |                 |                     |                 |               |
|                                      |                |                  |          |                |           |         |         |                                       |           |            |      |                       |                                                 |                 |                     |                 |               |
|                                      |                |                  |          |                |           |         |         |                                       |           |            |      | 162                   | کې                                              |                 |                     |                 |               |
|                                      |                |                  |          |                |           |         |         |                                       | ×         | ×          | -    | Nat Gas 231018        | 232500-01-OB Nat Gas                            | Gas             | 9:10 AM             | 10/18/23        |               |
| Standard                             |                |                  |          |                |           |         |         |                                       | Total Rec | Nat ga     | # OF | SAMPLE IDENTIFICATION |                                                 | SMPL<br>TYPE    | TIME<br>SAMPLED     | DATE<br>SAMPLED | íD#           |
| Three Day                            |                |                  |          |                |           |         |         |                                       |           | s analy    | 1    |                       | SAMPLER<br>Roger Kahle                          |                 |                     | Rosa Hernandez  | Rosa H        |
|                                      |                |                  |          |                |           |         |         |                                       |           | viss (     |      |                       | PO #                                            |                 | j                   |                 |               |
| 🗆 Two Day                            |                |                  |          |                |           |         |         | · · · · · · · · · · · · · · · · · · · |           | ASTN       |      |                       | EMAIL:                                          |                 |                     |                 |               |
| One Day                              |                |                  |          |                |           |         |         |                                       |           | <br>  B194 |      |                       | PHONE:                                          |                 |                     |                 | Address       |
| ☐ Same Day                           |                |                  |          |                |           |         |         |                                       |           | 5 &D3      |      |                       |                                                 |                 |                     |                 |               |
|                                      |                |                  |          |                |           |         |         |                                       |           | 588)       |      | Gas                   | Annual Natural Gas                              |                 |                     |                 |               |
| <b>Turn Around Time</b>              |                |                  | TED      | YSES REQUESTED | S REC     | LYSE    | ANAL    |                                       |           | -          |      |                       | PROJECT:                                        |                 |                     | NAME:           | CLIENT NAME:  |
|                                      | _              |                  |          | ŏ              | 232500    | 2       |         |                                       |           |            |      |                       | Tel 805 644 1095 ✦<br>website: www.capcoenv.com | 05 644<br>NWW.c | Tel 8<br>website: \ |                 |               |
| Page 1 of 1                          |                |                  |          |                |           |         |         |                                       |           |            |      | 03003                 | 4 Ventura CA                                    | linit.          | ahorn Ave           | 2978 Sea        |               |
|                                      |                |                  |          |                | CAS#      |         |         |                                       |           | Π          |      | Inc.                  | S                                               | cals            | Analyti             |                 |               |
|                                      | Ô              | ÖR               | Ш.<br>С  | JSTODY RECORD  | TOD       |         | TI<br>C | CHAIN OF C                            | HAI       | <u>೧</u>   |      | 292145                | CAPCO                                           |                 |                     |                 |               |

ORMOND BEACH GENERATING STATION SAMPLE ANALYSIS REQUEST - CHAIN OF CUSTODY 6635 SOUTH EDISON DRIVE OXNARD, CA 93033 Phone: (805) 986-7291 Fax: (805) 986-7245

|                            | CAPCO                     | ) A   | nalytical      | Servic                | es      |            |                |                |         |        |          | 1.         | 11      |              |                  |                      | po                                                 |          |          |
|----------------------------|---------------------------|-------|----------------|-----------------------|---------|------------|----------------|----------------|---------|--------|----------|------------|---------|--------------|------------------|----------------------|----------------------------------------------------|----------|----------|
|                            | 2978 S                    | eak   | org Ave        | nue, Si               | uite    | #4         |                |                |         |        | 10       | 5/2<br>101 | 7       |              |                  |                      | Meth                                               |          |          |
| то:                        | Ventur                    | a, (  | Ca. 93003      | 3                     |         |            |                |                |         |        |          | iol        | 25      | -            |                  | 88)                  | Ifur ()<br>SCF                                     |          |          |
|                            | (805) 6                   | 44-   | 1095           |                       |         |            |                |                |         |        |          | 1-1        |         |              | alysis           | & D35                | ed Sul                                             |          |          |
|                            |                           |       | *** Charge     | to Ormo               | ond E   | Beach 2    | 2023 P.C       | ). No          | : 45    | 0373   | 9006     | S***       |         |              | as Ana           | D1945                | Sduce                                              | ·        |          |
| TAG<br>NO.                 | SAMPLE<br>DATE            |       | SAMI           | PLE NUMBER            |         |            | Sample<br>Time | Natural<br>Gas | GRAB    | WATER  | SOIL     | SLUDGE     |         | TYPE         | Nat Gas Analysis | (ASTM D1945 & D3588) | Total Rduced Sulfur (Method<br>GC/PFPD) Gr/100 SCF |          |          |
| 1                          | 18-Oct-23                 | OB-   | NAT GAS-       | 231018-               | 01-     | Sulfur     | 9:10           | Х              | Х       |        |          |            |         | TEDLAR       |                  | <                    | X                                                  |          |          |
| 2                          |                           |       |                | -                     |         |            |                |                |         |        |          |            |         |              |                  |                      |                                                    |          |          |
| 3                          |                           |       |                |                       |         |            |                |                |         |        |          |            |         |              |                  |                      |                                                    | +        |          |
| 4<br>5                     |                           |       |                |                       |         |            |                |                |         |        |          |            |         |              |                  |                      |                                                    |          |          |
| 6                          |                           |       |                |                       |         |            |                |                |         |        |          |            |         |              |                  |                      |                                                    |          |          |
| 7                          |                           |       |                |                       |         |            |                |                |         |        |          |            |         |              |                  |                      |                                                    |          | $\top$   |
| 8                          |                           |       |                |                       |         | •          |                |                |         |        |          |            |         |              |                  |                      |                                                    |          |          |
| 9                          |                           |       |                |                       |         |            |                |                |         |        |          |            |         |              |                  |                      |                                                    |          |          |
| 10                         |                           |       |                |                       |         |            |                |                |         |        |          |            |         |              |                  |                      |                                                    |          | ļ        |
| 11                         |                           |       |                |                       |         |            |                |                |         |        |          |            |         |              |                  |                      |                                                    |          | <u> </u> |
| 12                         |                           |       |                |                       |         |            |                |                |         |        |          |            |         |              |                  |                      |                                                    | _        |          |
| 13                         |                           |       |                |                       |         |            |                |                |         |        |          |            |         |              |                  |                      |                                                    |          |          |
| Comments:<br>Pleas         |                           |       |                |                       |         |            | results        | whon           |         | ilahle | <u> </u> |            |         |              |                  |                      |                                                    | <u> </u> |          |
| For additional information |                           |       |                |                       |         |            |                |                |         |        |          | at (8      | 205)    | 341-616      | 7                |                      |                                                    |          |          |
|                            |                           |       |                | Roger.Kahle@GenOn.com |         |            |                |                |         |        |          |            |         |              |                  |                      |                                                    |          |          |
|                            | SAME DA                   | AY    |                | 72                    | HOUF    |            |                |                |         |        | FR CAP   |            |         |              | CO Sample Number |                      |                                                    |          |          |
| HANDLING                   | 24 HOUF                   |       |                |                       | DAYS    |            |                |                |         | -      |          |            |         | 2            | 32               | 25                   | 00                                                 | )        |          |
|                            | 48 HOUF                   |       |                |                       | ANDAI   |            | X              |                |         |        |          | MPLE       |         |              |                  |                      |                                                    |          |          |
|                            | ndersigned h<br>greement. | ereby | acknowledges h | aving receiv          | ved a c | opy of the | fee schedu     | ule/gen        | eral in | forma  | tion ar  | nd cono    | ditions | , the provis | ions             | of w                 | hich ar                                            | e pai    | tof      |
| RELI                       | NQUISHED B                | Y OB  | GS (name & sig | nature):              |         | D.         | ATE            | TI             | ME      | REC    | EIVED    | BY (n      | ame &   | k signature) |                  |                      |                                                    |          |          |
| <u>Rog</u>                 | er Kable                  |       |                |                       |         | 10 /       | Oct-23         |                |         |        |          |            |         |              |                  |                      |                                                    |          |          |
| $\bigcirc$                 | \$10ê                     | ~     |                |                       |         | 10-0       | 501-20         | 10             | 12      |        |          |            |         |              |                  |                      |                                                    |          |          |
|                            | RELINQU                   | ISHE  | D BY (name & s | ignature):            |         | D          | ATE            | ТІ             | ME      | :REC   | EIVE     | D BY C     | APCO    | ) LAB (nam   | ie & :           | sign                 | ature):                                            |          |          |
|                            |                           |       |                |                       |         |            |                |                |         |        |          |            |         |              |                  |                      |                                                    |          |          |

**ASBESTOS NOTIFICATION** 



# Asbestos Notification Form ENF-62 for Demolition or Renovation

Ventura County Air Pollution Control District 4567 Telephone Road, 2nd Floor Ventura, California 93003 Contact: Ken Hall 805/303-3709 or Tod Neilan 805/303-3706 <u>asbestos@vcapcd.org</u>

# NOTIFICATION OF DEMOLITION OR RENOVATION

Notifications for non-residential renovation or demolition operations shall be delivered no later than 10 working days prior to commencement of demolition or renovation work.

| Only typed forms will be accept<br>NOTIFICATION MUST ALSO BE<br>CAL-OSHA ~ 6150 Van Nuys BI<br>I. TYPE OF NOTIFICATION | E SENT TO CAL-OSHA<br>vd, Suite 405, Van Nuys                             | , CA 914            | 01 PHONE: 818                                                          | OT REQUIRE A<br>/901-5403 FAX | COPY OF NOTIFICATION).<br>: 818/901-5578 (Prefer FAX)<br>Owner/Contractor Project #               |  |  |
|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------|------------------------------------------------------------------------|-------------------------------|---------------------------------------------------------------------------------------------------|--|--|
| IF REVISION, state: Change in amount, start/completion date, other?                                                    |                                                                           |                     |                                                                        |                               | 17D                                                                                               |  |  |
|                                                                                                                        | Annual Asbestos Notification Original - 2023                              |                     |                                                                        |                               |                                                                                                   |  |  |
| II. FACILITY INFORMATION [Ide<br>PROPERTY OWNER(S): Gen                                                                | ntify owner and removal                                                   | contracto           | r]<br>each Gener                                                       | ation Static                  | n                                                                                                 |  |  |
| ADDRESS: [No Post Office Boxe                                                                                          | <sup>es]</sup> 6635 Edison                                                | Drive               |                                                                        | adon otalic                   |                                                                                                   |  |  |
| CITY: C                                                                                                                | 0035 Edison                                                               | Dilve               | STATE: CA.                                                             |                               | <sup>ZIP:</sup> 93033                                                                             |  |  |
| CITY: Oxnard                                                                                                           |                                                                           | ITELE               | PHONE:                                                                 | Em                            |                                                                                                   |  |  |
| CONTACT: Scott Warnoo                                                                                                  | :k                                                                        | 805                 | -984-5217                                                              | Sc                            | <sup>all:</sup><br>cott.Warnock@genon.                                                            |  |  |
| REMOVAL CONTRACTOR: D2                                                                                                 |                                                                           |                     |                                                                        |                               |                                                                                                   |  |  |
| ADDRESS: [No Post Office Box                                                                                           | <sup>(es]</sup> 1501 W. Four                                              | ntainhe             | ad Parkway                                                             | Y                             |                                                                                                   |  |  |
| CITY: Tempe                                                                                                            |                                                                           |                     | STATE: AZ.                                                             |                               | <sup>ZIP:</sup> 85282                                                                             |  |  |
| CONTRACTOR'S SITE FOREM                                                                                                | IAN:                                                                      |                     | ABATEMENT C                                                            | ONTRACTOR O                   | DFFICE TELEPHONE:                                                                                 |  |  |
| kENNETH bRINGUEZ<br>RULE 62.7.B.2.K: For operation                                                                     | s involving the removal                                                   | of friable /        | 310-808-8070<br>ACM, Ventura Co                                        | unty APCD requ                | ires proof of California State                                                                    |  |  |
| Contractor's License Certification                                                                                     | n #. CAL OSHA Reg. #.                                                     | and date            | of expiration<br>CAL OSHA REC                                          |                               | EXPIRATION DATE:                                                                                  |  |  |
|                                                                                                                        |                                                                           |                     | #1182                                                                  |                               | 10/10/2023<br>EMERGENCY RENOVATION                                                                |  |  |
|                                                                                                                        | III. TYPE OF OPERATION DEMO ORDERED DEMO RENOVATION EMERGENCY RENOVATIO   |                     |                                                                        |                               |                                                                                                   |  |  |
|                                                                                                                        | OYES ON                                                                   |                     |                                                                        |                               |                                                                                                   |  |  |
| V. FACILITY DESCRIPTION [ Inc                                                                                          | clude building name, nur                                                  | nber, and           | floor or room nur                                                      | nber]                         |                                                                                                   |  |  |
| BUILDING NAME: Unit-1,2                                                                                                |                                                                           |                     |                                                                        |                               |                                                                                                   |  |  |
| ADDRESS: 6635 Edison                                                                                                   | Drive                                                                     |                     |                                                                        |                               |                                                                                                   |  |  |
| CITY: Oxnard                                                                                                           |                                                                           |                     | STATE: CA.                                                             |                               | <sup>ZIP:</sup> 93033                                                                             |  |  |
| BUILDING SIZE (sqft): N/A                                                                                              |                                                                           |                     | NUMBER OF FLOORS: N/A                                                  |                               |                                                                                                   |  |  |
| SITE LOCATION: [i.e., baseme                                                                                           | nt, attic, crawl space, etc                                               | <sup>.]</sup> Unit- | 1,2                                                                    |                               |                                                                                                   |  |  |
| PRESENT USE: Power Ge                                                                                                  | PRESENT USE: Power Generation Station PRIOR USE: Power Generation Station |                     |                                                                        |                               |                                                                                                   |  |  |
| VI. PROCEDURE, INCLUDING ANAL                                                                                          | YTICAL METHOD, IF APPI                                                    | ROPRIATE            | 1.5                                                                    |                               |                                                                                                   |  |  |
| PLM - Bulh sampling by third                                                                                           | party state certified co                                                  | onsultant           | group.                                                                 |                               |                                                                                                   |  |  |
| VII. APPROXIMATE AMOUNT OF<br>ASBESTOS REMOVED (SqFt):                                                                 | Description of friable a<br>to be removed (i.e., TS<br>aircell)           |                     | List Unit of mea<br>below (Rule 62<br>requires pipe m<br>BOTH LnFt & S | 7.B.2.f<br>easurement in      | If demolition: Amount of<br>nonfriable asbestos containing<br>material subject to Rule<br>62.7.C: |  |  |
| Distant                                                                                                                | Pipes Category I: Category I:                                             |                     |                                                                        |                               |                                                                                                   |  |  |
| Pipes                                                                                                                  | 6000'                                                                     |                     | LnFt: 6000'                                                            | 1.51                          | SqFt.                                                                                             |  |  |
| Surface area or volume                                                                                                 | Surface area or volume 6000' SqFt: 6000' CuFt: 6000' Category II: SqFt    |                     |                                                                        |                               |                                                                                                   |  |  |
| VIII. SCHEDULED REMOVAL D                                                                                              | ATES (mm/dd/yyyy):                                                        | Start: 1            | /1/2023                                                                | Comp                          | 12/31/2023                                                                                        |  |  |
| IX. SCHEDULED DEMO DATES (mm/dd/yyyy): Start: Complete:                                                                |                                                                           |                     |                                                                        |                               |                                                                                                   |  |  |

VCAPCD Notification No.

| Air Pollution<br>Control District                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ITION OR RENOVATION (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | continued)                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| X. DESCRIPTION OF PLANNED DEMOLITION WORK, AND MI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ETHOD(s) TO BE USED: (Do not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | list South Coast Procedures )                                                                                                       |
| Equipment and pipelagging insulation remo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |
| XI. DESCRIPTION OF WORK PRACTICES AND ENGINEERING<br>ASBESTOS AT THE DEMOLITION AND RENOVATION SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | G CONTROLS TO BE USED TO P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | REVENT EMISSIONS OF                                                                                                                 |
| Wet gross removal within a NPE containme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nts, glove bagging with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | general hand tools, he                                                                                                              |
| XII. WASTE TRANSPORTER #1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |
| NAME: MP Environmental Services                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |
| ADDRESS: [No post office box numbers] 3400 Manor St                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | reet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                     |
| CITY: Bakersfield                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STATE: CA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>ZIP:</sup> 93308                                                                                                               |
| CONTACT: Amanda Little / Lauren Kaufman                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TELEPHONE: 800-458-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 036                                                                                                                                 |
| XIII WASTE TRANSPORTER #2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |
| NAME: N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |
| ADDRESS: [No post office box numbers]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |
| CITY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ZIP:                                                                                                                                |
| CONTACT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TELEPHONE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                     |
| XIV. WASTE DISPOAL SITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |
| NAME: Azusa Land Reclamation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |
| ADDRESS: 1211 West Gladstone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |
| CITY: Azusa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | STATE: CA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <sup>ZIP:</sup> 91702                                                                                                               |
| CONTACT: Steve Amromin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TELEPHONE:<br>626-969-1384 Ext.47                                                                                                   |
| XV. IF DEMOLITION ORDERED BY GOVERNMENTAL AGENCY<br>NAME:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CY BELOW:                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TITLE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                     |
| AGENCY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |
| DATE OF ORDER: [mm/dd/yyyy]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DATE ORDERED TO BEGIN:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | [mm/dd/yyyy]                                                                                                                        |
| XVI. FOR EMERGENCY RENOVATIONS [Attach additional shee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |
| EMERGENCY DATE [mm/dd/yyyy]:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TIME (am/pm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                     |
| DESCRIPTION OF THE SUDDEN, UNEXPECTED EVENT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |
| EXPLANATION OF HOW THE EVENT CAUSED UNSAFE CON<br>AN UNREASONABLE FINANCIAL BURDEN TO PROPERTY OV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | UIPMENT DAMAGE OR                                                                                                                   |
| XVII. DESCRIPTION OF PROCEDURES TO BE FOLLOWED IN<br>PREVIOUSLY NONFRIABLE ASBESTOS MATERIAL BECC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | THE EVENT THAT UNEXPECTED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ASBESTOS IS FOUND OR                                                                                                                |
| [Attach additional sheets if necessary]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DMES CRUMBLED, PULVERIZED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | , OR REDUCED TO POWDER.                                                                                                             |
| [Attach additional sheets if necessary]<br>Stop Work, Assess Problem, Sample Materia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                     |
| [Attach additional sheets if necessarv]<br>Stop Work, Assess Problem, Sample Materia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | als, Report Findings Ac<br>ISIONS OF THIS REGULATION (I<br>ND EVIDENCE THAT THE REQU<br>FOR INSPECTION DURING NOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cordingly to Agency<br>RULE 62.7.B.2.n) WILL BE<br>IRED TRAINING HAS BEEN                                                           |
| [Attach additional sheets if necessarv]<br>Stop Work, Assess Problem, Sample Materia<br>(VIII. I CERTIFY THAT AN INDIVIDUAL TRAINED IN THE PROV<br>ON-SITE DURING THE DEMOLITION OR RENOVATION A<br>ACCOMPLISHED BY THIS PERSON WILL BE AVAILABLE<br>NOTE: MISSING SIGNATURE WILL RESULT IN NOTIFICA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | als, Report Findings Ac<br>ISIONS OF THIS REGULATION (I<br>ND EVIDENCE THAT THE REQU<br>FOR INSPECTION DURING NOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Cordingly to Agency<br>RULE 62.7.B.2.n) WILL BE<br>IRED TRAINING HAS BEEN                                                           |
| [Attach additional sheets if necessarv]         Stop Work, Assess Problem, Sample Materia         (VIII. I CERTIFY THAT AN INDIVIDUAL TRAINED IN THE PROV<br>ON-SITE DURING THE DEMOLITION OR RENOVATION A<br>ACCOMPLISHED BY THIS PERSON WILL BE AVAILABLE<br>NOTE: MISSING SIGNATURE WILL RESULT IN NOTIFICA         Richard Smith       Ør Sign Here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | als, Report Findings Ac<br>ISIONS OF THIS REGULATION (I<br>ND EVIDENCE THAT THE REQU<br>FOR INSPECTION DURING NOF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CORDINGLY to Agency<br>RULE 62.7.B.2.n) WILL BE<br>VIRED TRAINING HAS BEEN<br>RMAL BUSINESS HOURS.<br>COMPLETE.                     |
| [Attach additional sheets if necessarv]         Stop Work, Assess Problem, Sample Materia         (VIII. I CERTIFY THAT AN INDIVIDUAL TRAINED IN THE PROVON-SITE DURING THE DEMOLITION OR RENOVATION A         ACCOMPLISHED BY THIS PERSON WILL BE AVAILABLE         NOTE: MISSING SIGNATURE WILL RESULT IN NOTIFICA         Richard Smith         PRINT OWNER/OPERATOR NAME         SIGNATURE OF SIGN | als, Report Findings Active Strain St | Cordingly to Agency<br>RULE 62.7.B.2.n) WILL BE<br>IRED TRAINING HAS BEEN<br>MAL BUSINESS HOURS.<br>COMPLETE.<br>12/16/2022<br>DATE |
| [Attach additional sheets if necessarv]         Stop Work, Assess Problem, Sample Materia         Stop Work, Assess Problem, Sample Materia         (VIII. I CERTIFY THAT AN INDIVIDUAL TRAINED IN THE PROV<br>ON-SITE DURING THE DEMOLITION OR RENOVATION A<br>ACCOMPLISHED BY THIS PERSON WILL BE AVAILABLE<br>NOTE: MISSING SIGNATURE WILL RESULT IN NOTIFICA         Richard Smith       Ør Sign Here                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | als, Report Findings Active Strain St | Cordingly to Agency<br>RULE 62.7.B.2.n) WILL BE<br>IRED TRAINING HAS BEEN<br>MAL BUSINESS HOURS.<br>COMPLETE.<br>12/16/2022<br>DATE |

SUBMIT



# Asbestos Notification Form ENF-62 for Demolition or Renovation

Ventura County Air Pollution Control District 4567 Telephone Road, 2nd Floor Ventura, CA 93003 FAX: 805/456-7797

# Asbestos NESHAP Fees

| Demolition Projects without Asbestos:                                                                               |            |
|---------------------------------------------------------------------------------------------------------------------|------------|
| Notification Fee                                                                                                    | \$ 176.80  |
| Demolition or Renovation Projects with Asbestos:                                                                    |            |
| Greater than or equal to 100 but less than 1,000 square feet of asbestos containing material (100 – 999 sqft)       | \$ 270.40  |
| Greater than or equal to 1,000 but less than 5,000 square feet of asbestos containing material (1,000 – 4,999 sqft) | \$ 644.80  |
| Greater than or equal to 5,000 square feet of asbestos containing material (≥ 5,000 sqft)                           | \$ 1014.00 |
| Revisions:                                                                                                          |            |
| Any notification revision                                                                                           | \$ 62.40   |

Payment shall be due prior to the commencement of asbestos removal per Rule 45.2.

**NOTIFICATION SUBMITTAL:** Original notifications and revisions may be submitted by email (PDF required), mail, or hand delivered. Email completed forms to <u>asbestos@vcapcd.org</u> (preferred). Notifications for non-residential renovation or demolition operations shall be typewritten and postmarked or delivered no later than 10 working days prior to commencement of demolition or renovation work. Notifications for residential renovation or demolition operations shall be typewritten and received by the District prior to commencement of demolition or renovation work.

**FEE PAYMENT:** Payment may be made online, check, or cash. Submit online payments here: <u>https://www.govpaynow.com/gps/user/cyg/plc/a004cn</u>

**DEMOLITION:** Notification and 10 working day wait required on all subject demolitions even if Asbestos Containing Material (ACM) is not present.

**RENOVATION:** A separate notification is required for each planned renovation operation involving 100 square feet or more of ACM except Category I nonfriable ACM that is removed in accordance with the requirements of Subsection E.2.a of <u>Rule 62.7.</u>

**DEMOLITION:** A separate notification is required for each planned demolition operation where <u>any</u> amount of ACM is present.

**REVISIONS:** Revisions are required if there are any changes to removal or demolition dates, amounts of asbestos present or removed, or to contractors, transporters, or disposal site. Each revision shall be assessed a fee of \$62.40.

\*Additional fees MAY apply to any project if significant APCD staff time is needed to determine compliance.For additional information, an Asbestos NESHAP Notification Form, or other Asbestos related issues, visit our website at <a href="http://www.vcapcd.org/asbestos.htm">http://www.vcapcd.org/asbestos.htm</a> or call either VCAPCD Inspector Ken Hall at (805) 303-3709 or Tod Neilan at (805) 303-3706.

**RELATIVE ACCURACY TEST AUDIT** 

# TEST REPORT FOR 2023 EPA 40 CFR, PART 75 ANNUAL RELATIVE ACCURACY TEST AUDIT AT ORMOND BEACH POWER, LLC UNIT 2

**Prepared For:** 

Ormond Beach Power, LLC Ormond Beach Generating Station 6635 S. Edison Drive Oxnard, California 93033

For Submittal To:

**Ventura County Air Pollution Control District** 4567 Telephone Road, 2<sup>nd</sup> Floor Ventura, California 93003

Prepared By:

# Montrose Air Quality Services, LLC

1631 E. St. Andrew Pl. Santa Ana, California 92705 (714) 279-6777

Matt McCune

 Test Date:
 May 23, 2023

 Production Date:
 June 7, 2023

 Report Number:
 W002AS-026975-RT-4715





# **CONFIDENTIALITY STATEMENT**

Except as otherwise required by law or regulation, this information contained in this communication is intended exclusively for the individual or entity to which it is addressed. This communication may contain information that is proprietary, privileged or confidential or otherwise legally exempt from disclosure. If you are not the named addressee, you are not authorized to read, print, retain, copy, or disseminate this message or any part of it.



# **REVIEW AND CERTIFICATION**

All work, calculations, and other activities and tasks performed and presented in this document were carried out by me or under my direction and supervision. I hereby certify that, to the best of my knowledge, Montrose operated in conformance with the requirements of the Montrose Quality Management System and ASTM D7036-04 during this test project.

| Signature: | MAA MC      | Date:  | 6/7/2023    |  |
|------------|-------------|--------|-------------|--|
| Name:      | Matt McCune | Title: | Regional VP |  |

I have reviewed, technically and editorially, details, calculations, results, conclusions, and other appropriate written materials contained herein. I hereby certify that, to the best of my knowledge, the presented material is authentic, accurate, and conforms to the requirements of the Montrose Quality Management System and ASTM D7036-04.

| Signature: | Michel Changt         | Date:  | 6/7/2023              |  |
|------------|-----------------------|--------|-----------------------|--|
| Name:      | Michael Chowsanitphon | Title: | Reporting Hub Manager |  |



# TABLE OF CONTENTS

| <u>SE</u> | CTIO              | N                                       | <b>PAGE</b> |
|-----------|-------------------|-----------------------------------------|-------------|
| 1.0       | INTR              | RODUCTION AND SUMMARY                   | 5           |
| 2.0       | UNIT              | DESCRIPTION AND TEST CONDITIONS         | 6           |
|           | 2.1               | UNIT DESCRIPTION                        | 6           |
|           | 2.2               | TEST CONDITIONS                         | 6           |
|           | 2.3               | SAMPLE LOCATION                         | -           |
|           | 2.4               | CEMS DESCRIPTION                        | 6           |
| 3.0       | TEST              | T DESCRIPTION                           |             |
|           | 3.1               | REFERENCE METHODS                       |             |
|           | 3.2               | CEMS DATA                               | 9           |
| 4.0       | TEST              | T RESULTS AND OVERVIEW                  | 10          |
|           | 4.1               | TEST RESULTS                            |             |
|           | 4.2               | TEST OVERVIEW                           | 10          |
| LIS       | T OF /            | APPENDICES                              |             |
| А         | TEST              | Т ДАТА                                  | 11          |
|           | A.1               | Sample Location Data                    |             |
|           | A.2               | Reference Method Data Logger Data       | 16          |
|           | A.3               | Quality Assurance Data                  | 36          |
| В         | FACI              | ILITY CEMS DATA                         | 48          |
| С         | CALC              | CULATIONS                               | 58          |
|           | C.1               | General Emissions Calculations          | 59          |
|           | C.2               | Spreadsheet Summary                     | 65          |
| D         | QUA               | LITY ASSURANCE                          | 67          |
|           | D.1               | Quality Assurance Program Summary       | 68          |
|           | D.2               | STAC Certification                      | 74          |
|           | D.3               | Individual QI Certificates              | 76          |
| LIS       | T OF <sup>-</sup> | TABLES                                  |             |
| 1-1       | RES               | SULTS SUMMARY                           | 5           |
| 2-1       | ANA               | ALYZER SPECIFICATIONS                   | 6           |
| 3-1       | MEA               | ASUREMENT PROCEDURES                    | 9           |
| 4-1       | NOx               | LB/MMBTU RELATIVE ACCURACY TEST RESULTS | 10          |



# 1.0 INTRODUCTION AND SUMMARY

Montrose Air Quality Services, LLC (MAQS) was contracted by Ormond Beach Power, LLC Ormond Beach) to perform the annual Relative Accuracy Test Audit (RATA) of the Continuous Emission Monitoring System (CEMS) serving Ormond Beach Unit 2. The test was performed to determine the Relative Accuracy for  $NO_x$  emissions on a pounds per million Btu basis and determine compliance with EPA 40 CFR, Part 75.

The test was performed on May 23, 2023. The test was conducted in accordance with the test plan Document Number W002AS-026975-PP-750 submitted to Ormond Beach on April 21, 2023. The MAQS test team consisted of Matt McCune, Luis Olivera, and Leandrew Escobeda. Matt McCune was the on-site Qualified Individual for MAQS. Roger Kahle and Mike Escarcega of Ormond Beach coordinated the test and documented unit and CEMS operation. Ed Swede of the Ventura County Air Pollution Control District was on-site to witness the test.

Air Emission Test Body and on-site Qualified Individual information is presented in Appendix D.

Nine sets of reference method tests were performed. Each reference method test consisted of independent measurements of flue gas  $O_2$  and  $NO_x$  concentrations. All nine runs were used to calculate the NO<sub>x</sub> emission rate in units of pounds per million Btu. The calculated values for each run were then compared to the corresponding Unit 2 CEMS data and the Relative Accuracy of the CEMS was calculated. The Relative Accuracy data set was also evaluated to determine the Bias Adjustment Factor (BAF). The results of the test are summarized in Table 1-1. Test results show the Unit 2 CEMS passed the RATA because the Relative Accuracy between the reference method and the Unit 2 CEMS was 0.0% which meets the 10% criteria of EPA 40 CFR, Part 75 and also meets the annual incentive criteria of < 7.5%. Therefore, the next RATA will be due on an annual basis.

#### TABLE 1-1 RESULTS SUMMARY ORMOND BEACH GENERATING STATION UNIT 2 MAY 23, 2023

| Parameter              | Results | Limit                                          |
|------------------------|---------|------------------------------------------------|
| Relative Accuracy      | 0.0%    | 10% or +/-0.02 lb/MMBtu<br>absolute difference |
| Bias Adjustment Factor | 1.000   | N/A                                            |
| Next RATA              | Annual  | N/A                                            |

Section 2.0 of this report provides a description of the process tested and the test conditions under which it was operating while the test was performed. Section 3.0 describes the test methodology. Section 4.0 contains more detailed results including data for each test run.



# 2.0 UNIT DESCRIPTION AND TEST CONDITIONS

# 2.1 UNIT DESCRIPTION

Unit 2 at the Ormond Beach Generating Station consists of a utility boiler and steam turbine generator. The boiler and generator have a full load rating of 750 megawatts. The boiler fires natural gas exclusively. The unit is equipped with a Selective Catalytic Reduction (SCR) system for  $NO_x$  control.

# 2.2 TEST CONDITIONS

The tests were performed while the unit was firing natural gas and operating under normal conditions. The unit was operating at an average load of 264 gross megawatts, (35% of full load).

# 2.3 SAMPLE LOCATION

The reference method measurements were made from one of the four, equally spaced, sample ports located on the exhaust stack. The stack inside diameter at this location is approximately 32 feet. The sample ports are located greater than 2.0 diameters downstream of the nearest flow disturbance and greater than 0.5 diameters upstream of the nearest flow disturbance. The location of individual sampling traverse points is defined in Appendix A.1.

# 2.4 CEMS DESCRIPTION

The extractive CEMS installed on this unit is designed to determine emissions-related information including stack gas volumetric flow rate and  $NO_x$  mass emission rates. This system directly extracts a stack gas sample, then continuously measures  $NO_x$  and  $O_2$  concentrations. The system is equipped with a dual range  $NO_x$  analyzer (Component/System ID # = 011/101) and a single range  $O_2$  analyzer (Component/System ID # = 012/101). The make, model, serial number, and range of the analyzers are summarized in Table 2-1.

| TABLE 2-1<br>ANALYZER SPECIFICATIONS<br>ORMOND BEACH GENERATING STATION<br>UNIT 2 |              |       |                 |              |  |
|-----------------------------------------------------------------------------------|--------------|-------|-----------------|--------------|--|
| Component                                                                         | Manufacturer | Model | Serial Number   | Range(s)     |  |
| NO <sub>x</sub> Analyzer                                                          | TECO         | 42CHL | 42CHL-66202-351 | 0-10/250 ppm |  |
| O <sub>2</sub> Analyzer                                                           | Thermox      | 2000  | 10202873        | 0-20%        |  |

Sample gases are extracted through a probe assembly and transported through heated Teflon sample tubes to the analyzer enclosure. The analyzer cabinet houses the components of the sample control, conditioning system, and the analyzers. Control signals (calibration, sample, etc.) are generated by the data logger.



The analyzer signals are transmitted to the data logger where 40 CFR Part 75 calculations are performed. These calculated results are stored in the DAS computer. The CEMS calculates the NO<sub>x</sub> emission rate (lb/MMBtu) from the measured NO<sub>x</sub> and O<sub>2</sub> concentrations and fuel F-Factor using the following equation:

$$M = ppm *F * 1.194 * 10^{-7} * \frac{20.9}{20.9 - \%O_2}$$

Where:

 $M = NO_x \text{ emission rate (lb/MMBtu)}$   $ppm = NO_x \text{ concentration (ppmv, dry)}$  F = EPA Method 19 F-Factor (dscf/MMBtu) $\% O_2 = O_2 \text{ concentration (\%, dry)}$ 



# 3.0 TEST DESCRIPTION

Nine sets of reference method measurements were performed with the sample times synchronized with the CEMS. Each set of tests consisted of independent measurements of  $NO_x$  and  $O_2$  concentrations and calculation of the  $NO_x$  emission rate (lb/MMBtu) using EPA Method 19. The CEMS data from the same intervals were then compared to the reference method results and the Relative Accuracy was calculated according to the following equation:

$$RA = \frac{|d| + |CC|}{RM} \times 100\%$$

Where:

RA = relative accuracy

 $|\mathbf{d}|$  = Absolute value of the difference between RM and CEMS (RM - CEMS)

|CC| = confidence coefficient of the difference between RM and CEMS

 $\overline{RM}$  = mean value of the reference method

$$CC = \frac{t_{value} * Std. Dev.}{\sqrt{n}}$$

Where:

tvalue = statistical function of number of tests

Std. Dev. = sample standard deviation of the difference between RM and CEMS

n = number of valid tests

In addition to determining the relative accuracy of the CEMS, the test data were used to determine the Bias Adjustment Factor (BAF) which is be applied to the CEMS data. If the mean difference (RM - CEMS) is less than the confidence coefficient, the BAF is 1.000. If the mean difference (RM - CEMS) is greater than the confidence coefficient, then a BAF is generated using the following equation:

$$BAF = 1 + \frac{|\overline{d}|}{CEMS}$$



# 3.1 **REFERENCE METHODS**

NO<sub>x</sub> and O<sub>2</sub> concentrations were measured according to the procedures described in EPA methods 7E and 3A, respectively. A three-point traverse was performed during each test run. The traverse points were selected according to EPA 40 CFR, Part 60, Appendix B, Performance Specification 2. The measured concentrations were averaged over the sampling period and then corrected for system bias and analyzer drift. Copies of the reference method DAS data, strip charts, raw data, and quality assurance data are presented in Appendix A. Facility CEMS data is presented in Appendix B, and calculations are presented in Appendix C.

One of MAQS' mobile emission measurement laboratories was used for the performance of  $O_2$  and  $NO_x$  measurements. The laboratory is outfitted to provide a clean, quiet, environmentally controlled base for the testing operations. The laboratory has lighting, electrical distribution, air conditioning and heating to support the test instruments and provide for optimal test performance.

 $NO_x$  and  $O_2$  concentrations are measured using an extractive sampling system consisting of a heated probe, a heat traced Teflon sample line connected to a thermo-electrically cooled sample dryer. Following the dryer, the sample is drawn into a Teflon lined pump where it is pressurized and then filtered for delivery to the gas analysis portion of the system.

 $NO_x$  concentration is determined using a CAI chemiluminescence analyzer (model #700). The analyzer was operated on a 0-10 ppm range during the test. The analyzer is equipped with a carbon  $NO_2$  - NO converter for the determination of total nitrogen oxides without interference from other nitrogen containing compounds.

Oxygen concentration is determined using a CAI electro-chemical cell analyzer (model #600). The analyzer was operated on a 0-10% range during the test. The cell contains an electrolytic fluid that reacts with oxygen to generate an electrical signal proportional to the concentration.

The analyzers and sampling system are subjected to a variety of calibration and quality assurance procedures including leak checks, linearity and calibration error determinations before sampling, and system bias and drift determinations as part of each test run. Data are corrected for any observed bias or drift in accordance with the reference methods.

| Parameter      | Test Method | Measurement Principle | Comments         |
|----------------|-------------|-----------------------|------------------|
| O <sub>2</sub> | EPA 3A      | Electro-chemical Cell | 3-point traverse |
| NOx            | EPA 7E      | Chemiluminescence     | 3-point traverse |

# TABLE 3-1 MEASUREMENT PROCEDURES

### 3.2 CEMS DATA

The CEMS data were collected from the data logger by printing the one-minute average data over each test interval. The data logger report provides the average of the one-minute averages over each test interval for comparison to the reference method.



# 4.0 TEST RESULTS AND OVERVIEW

#### 4.1 TEST RESULTS

The results of the NO<sub>x</sub> emission rate Relative Accuracy test audit are summarized in Table 4-1. The Relative Accuracy between the reference method and CEMS was 0.0% which meets the 10% criteria of EPA 40 CFR, Part 75 and also meets the annual incentive criteria of < 7.5%.

#### TABLE 4-1 NO<sub>X</sub> LB/MMBTU RELATIVE ACCURACY TEST RESULTS ORMOND BEACH GENERATING STATION UNIT 2

|       | Station:<br>Unit:<br>Date: | Ormono<br>2<br>5/23/20 |            |                                |                                  | Parameter:<br>Units:<br>Performed By:  | NOx<br>Ib/MMBtu<br>MM, LO, LE |
|-------|----------------------------|------------------------|------------|--------------------------------|----------------------------------|----------------------------------------|-------------------------------|
| Test  | Date                       | Tir<br>Start           | ne<br>Stop | RM<br>NO <sub>x</sub> Ib/MMBtu | CEMS<br>NO <sub>x</sub> Ib/MMBtu | Difference<br>NO <sub>x</sub> Ib/MMBtu | Valid Run<br>(1=Yes, 0=No)    |
| 1     | 5/23/2023                  | 10:20                  | 10:41      | 0.008                          | 0.008                            | 0.000                                  | 1                             |
| 2     | 5/23/2023                  | 10:20                  | 11:11      | 0.008                          | 0.008                            | 0.000                                  | 1                             |
| 3     | 5/23/2023                  | 11:20                  | 11:41      | 0.008                          | 0.008                            | 0.000                                  | 1                             |
| 4     | 5/23/2023                  | 11:56                  | 12:17      | 0.008                          | 0.008                            | 0.000                                  | 1                             |
| 5     | 5/23/2023                  | 12:23                  | 12:44      | 0.008                          | 0.008                            | 0.000                                  | 1                             |
| 6     | 5/23/2023                  | 12:50                  | 13:11      | 0.008                          | 0.008                            | 0.000                                  | 1                             |
| 7     | 5/23/2023                  | 13:22                  | 13:43      | 0.008                          | 0.008                            | 0.000                                  | 1                             |
| 8     | 5/23/2023                  | 13:49                  | 14:10      | 0.008                          | 0.008                            | 0.000                                  | 1                             |
| 9     | 5/23/2023                  | 14:41                  | 15:02      | 0.008                          | 0.008                            | 0.000                                  | 1                             |
| Avera | ge                         |                        |            | 0.008                          | 0.008                            | 0.000                                  |                               |
|       |                            | Re                     | ference l  | Method Average:                | 0.008                            | lb/MMBtu                               | Limit                         |
|       |                            |                        |            | erage Difference:              | 0.000                            | lb/MMBtu                               |                               |
|       |                            |                        |            | Number of Tests:               | 9                                |                                        |                               |
|       |                            |                        | Sta        | ndard Deviation:               | 0.0000                           | lb/MMBtu                               |                               |
|       |                            |                        |            | t Value:                       | 2.306                            |                                        |                               |
|       |                            |                        | Confid     | ence Coefficient:              | 0.000                            | lb/MMBtu                               |                               |
|       |                            |                        | Re         | elative Accuracy:              | 0.0                              | %                                      | 10%                           |
|       |                            |                        |            | justment Factor:               | 1.000                            |                                        |                               |
|       |                            |                        |            | Test Condition:                | 264                              | MW                                     |                               |
|       |                            |                        |            |                                |                                  |                                        |                               |

(1) Since d is not less than CC, the system does not pass the bias test. (Note d = CC = 0.000)

(2) RA is less than 10%, CEMS passes RATA

(3) RA is less than 7.5%, CEMS meets the annual incentive.

### 4.2 TEST OVERVIEW

The test program was successful in meeting the program objectives. All nine runs were included in the Relative Accuracy calculations. Raw data from all runs can be found in appendix A.



# APPENDIX A TEST DATA



# Appendix A.1 Sample Location Data



# Montrose Air Quality Services, LLC Sample Point Location Data EPA Method 1



| Location:  | Ormond                | Beach               |             |        | Date:               | 5/23/2023                    |
|------------|-----------------------|---------------------|-------------|--------|---------------------|------------------------------|
| Unit:      | 2                     |                     |             |        | By:                 | MM, LO, LE, AE               |
| Stack Area | a (ft <sup>2</sup> ): | 804.2               |             |        | Downstream          | Disturbance: > 2.0 diameters |
| Stack Diar | neter (in.):          | 384.0               |             |        | Upstream Di         | sturbances: > 0.5 diameters  |
| Coupling L | ength (in.)           | : 12                |             |        | ·                   |                              |
|            |                       |                     |             |        |                     |                              |
|            | CEMS S                | Sample Points       | (Long Line) | CEMS S | ample Points (      | (Short Line)                 |
|            | % of                  | Inches from         | Inches from | % of   | Inches from         | Inches from                  |
| Point      | Duct                  | Wall <sup>(1)</sup> | Nozzle      | Duct   | Wall <sup>(1)</sup> | Nozzle                       |
| 1          | 16.7                  | 64.1                | 76.1        | n/a    | 15.7                | 27.7                         |
| 2          | 50                    | 192.0               | 204.0       | n/a    | 47.2                | 59.2                         |
| 3          | 83.3                  | 319.9               | 331.9       | n/a    | 78.7                | 90.7                         |
|            |                       |                     |             |        |                     |                              |
|            |                       |                     |             |        |                     |                              |

(1) From 40 CFR Part 60 Appendix B

## EPA "LONG LINE" Ormond Beach Unit 2

| Date      | Time       | O <sub>2</sub> | NO <sub>x</sub> |                    | O <sub>2</sub> Avg. | NO <sub>x</sub> Avg. |
|-----------|------------|----------------|-----------------|--------------------|---------------------|----------------------|
| 5/23/2023 | 9:31:00 AM | 4.996          | 1.789           |                    |                     |                      |
| 5/23/2023 | 9:32:00 AM | 5.077          | 1.873           | Point 1            | 5.04                | 1.83                 |
| 5/23/2023 | 9:38:00 AM | 5.03           | 2.48            |                    |                     |                      |
| 5/23/2023 | 9:39:00 AM | 4.858          | 2.568           | Point 3            | 4.94                | 2.52                 |
| 5/23/2023 | 9:41:00 AM | 4.822          | 2.884           |                    |                     |                      |
| 5/23/2023 | 9:42:00 AM | 4.923          | 2.941           | Point 2            | 4.87                | 2.91                 |
|           |            |                |                 |                    |                     |                      |
|           |            |                |                 | Average            | 4.95                | 2.42                 |
|           |            |                |                 | Maximum            | 5.04                | 2.91                 |
|           |            |                |                 | Minimum            | 4.87                | 1.83                 |
|           |            |                | Maximum Differe | nce from Average   | 0.09                | 0.59                 |
|           |            |                | Max Differen    | ice (% of average) | 1.7%                | 24.4%                |
|           |            |                |                 | Status             | Pass                | Pass                 |

U-2 STRATIF. TEST

# Average Data Plant: ORMOND BEACH GEN STA Interval: 1 Minute Type: Roll Report Period: 05/23/2023 09:30 Through 05/23/2023 09:41 Time Online Criteria: 1 minute(s)

W002AS-

|        | O2 UNITOPHR<br>(PERCENT) (MIN) | 4.90     | 4.93     | 4.85                 | 4.76     | 4.84     | 4.79     | 4.86     | 4.74     | 4.79     |          | 4.65 1.0 | 4.83     |   |          |          | 4.93 1.0 |           | 12                   |
|--------|--------------------------------|----------|----------|----------------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|---|----------|----------|----------|-----------|----------------------|
|        | NOXPPMC (PEF                   | 1.90     | 2.01     | 2.13                 | 2.11     | 2.22     | 2.33     | 2.46     | 2.65     | 2.78     | 2.89     | 3.09     | 3.22     | • | 2.48     | 1.90     | 3.22     | 29.79     | 12                   |
|        | NOXPPM<br>(MPM)                | 1.74     | 1.80     | 1.87                 | 1.93     | 2.00     | 2.14     | 2.23     | 2.37     | 2.47     | 2.55     | 2.78     | 2.88     |   | 2.23     | 1.74     | 2.88     | 26.76     | 12                   |
| ORB2   | (NWWN)<br>MWN/#XON             | 0.025    | 0.026    | 0.026                | 0.027    | 0.028    | 0.030    | 0.032    | 0.033    | 0.035    | 0.036    | 0.039    | 0.041    |   | 0.032    | 0.025    | 0.041    | 0.378     | 12                   |
|        | NOX#/MM<br>(LB/MMBTU)          | 0.002    | 0.002    | 0.003                | 0.003    | 0.003    | 0.003    | 0.003    | 0.003    | 0.003    | 0.004    | 0.004    | 0.004    |   | 0.003    | 0.002    | 0.004    | 0.037     | 12                   |
|        | NH3FLOW<br>(GPM)               | 0.00     | 0.00     | 0.00                 | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     |   | 0.00     | 00.00    | 0.00     | 0.00      | 12                   |
|        | LOADMWV<br>(MWV)               | 261.0    | 261.4    | 262.3                | 263.3    | 262.7    | 265.9    | 263.4    | 267.4    | 268.0    | 266.9    | 270.3    | 268.4    |   | 265.1    | 261.0    | 270.3    | 3,181.0   | 12                   |
|        | GASFLOW<br>(HSCFH)             | 25 235 4 | 25.062.3 | 25,144.7             | 25.380.4 | 25,370.5 | 25,501.5 | 25,361.3 | 25.674.7 | 25,668.7 | 25.754.6 | 26.090.6 | 25,836.3 |   | 25,506.8 | 25,062,3 | 26.090.6 | 306,081.0 | 12                   |
| Source | Parameter<br>Unit              | 06-00    |          | 66<br>05/23/23 09:32 |          | -        |          |          |          |          |          |          |          |   | Average  | Minimum  | Maximum  | Summation | Included Data Points |

RWEORBSV01/reportuser D = Shutdown a invalid S = Substituted U = Startup C = Calibration Version 6.18 T = Out Of Control = Suspect E = Exceedance Report Generated: 05/23/23 09:46 M = Maintenance F = Unit Offline

# Appendix A.2 Reference Method Data Logger Data



|            |             |                |       | MONTROSE |
|------------|-------------|----------------|-------|----------|
| F          | RM 1-MINUTE |                |       |          |
|            |             | JMBER 1        |       |          |
| Date       | Time        | O <sub>2</sub> | NOx   | CO       |
| 5/23/2023  | 10:21:00 AM | 5.009          | 5.601 | 10.579   |
| 5/23/2023  | 10:22:00 AM | 5.043          | 5.58  | 5.013    |
| 5/23/2023  | 10:23:00 AM | 5.048          | 5.927 | 5.75     |
| 5/23/2023  | 10:24:00 AM | 4.994          | 5.912 | 5.51     |
| 5/23/2023  | 10:25:00 AM | 5.164          | 5.751 | 3.587    |
| 5/23/2023  | 10:26:00 AM | 5.015          | 5.856 | 2.453    |
| 5/23/2023  | 10:27:00 AM | 5.007          | 5.645 | 6.938    |
| 5/23/2023  | 10:28:00 AM | 5.026          | 5.612 | 3.91     |
| 5/23/2023  | 10:29:00 AM | 4.975          | 5.817 | 3.738    |
| 5/23/2023  | 10:30:00 AM | 4.947          | 5.957 | 3.271    |
| 5/23/2023  | 10:31:00 AM | 5.073          | 5.727 | 7.864    |
| 5/23/2023  | 10:32:00 AM | 4.899          | 5.909 | 3.847    |
| 5/23/2023  | 10:33:00 AM | 4.892          | 5.831 | 9.047    |
| 5/23/2023  | 10:34:00 AM | 5.039          | 5.734 | 6.41     |
| 5/23/2023  | 10:35:00 AM | 4.927          | 5.786 | 5.462    |
| 5/23/2023  | 10:36:00 AM | 4.974          | 5.712 | 7.779    |
| 5/23/2023  | 10:37:00 AM | 5.021          | 5.851 | 4.241    |
| 5/23/2023  | 10:38:00 AM | 4.867          | 5.811 | 7.888    |
| 5/23/2023  | 10:39:00 AM | 4.982          | 5.668 | 9.46     |
| 5/23/2023  | 10:40:00 AM | 4.903          | 5.85  | 3.366    |
| 5/23/2023  | 10:41:00 AM | 4.989          | 5.823 | 7.106    |
|            |             |                |       |          |
|            | Average     | 4.99           | 5.78  | 5.87     |
| Pt 3 Avg.  |             | 5.040          | 5.753 | 5.690    |
| Pt 2 Avg.  |             | 4.979          | 5.798 | 5.441    |
| Pt 1 Avg.  |             | 4.952          | 5.786 | 6.472    |
| Li ti rug. |             | 4.002          | 0.700 | 0.772    |

# Montrose Air Quality Services, LLC RUN NUMBER 1 RM DAS

|           | RUN NUMB    | ER 2 RM        |                 | MONTROSE |
|-----------|-------------|----------------|-----------------|----------|
| F         | RM 1-MINUTE | AVERAG         | E DATA          |          |
|           | RUN NI      | JMBER 2        | 2               |          |
| Date      | Time        | O <sub>2</sub> | NO <sub>x</sub> | CO       |
| 5/23/2023 | 10:51:00 AM | 4.995          | 5.764           | 6.574    |
| 5/23/2023 | 10:52:00 AM | 5.137          | 5.651           | 4.517    |
| 5/23/2023 | 10:53:00 AM | 5.052          | 5.865           | 1.797    |
| 5/23/2023 | 10:54:00 AM | 5.154          | 5.791           | 3.227    |
| 5/23/2023 | 10:55:00 AM | 5.081          | 5.749           | 3.516    |
| 5/23/2023 | 10:56:00 AM | 5.109          | 5.585           | 4.961    |
| 5/23/2023 | 10:57:00 AM | 5.152          | 5.643           | 2.708    |
| 5/23/2023 | 10:58:00 AM | 5.019          | 5.723           | 6.252    |
| 5/23/2023 | 10:59:00 AM | 5.135          | 5.808           | 3.652    |
| 5/23/2023 | 11:00:00 AM | 5.016          | 6.039           | 1.966    |
| 5/23/2023 |             | 4.99           | 5.724           | 5.056    |
| 5/23/2023 | 11:02:00 AM | 5.115          | 5.582           | 4.982    |
| 5/23/2023 |             | 4.989          | 5.666           | 3.714    |
| 5/23/2023 | 11:04:00 AM | 5.145          | 5.729           | 3.254    |
| 5/23/2023 | 11:05:00 AM | 4.957          | 5.884           | 4.678    |
| 5/23/2023 | 11:06:00 AM | 4.994          | 5.836           | 5.5      |
| 5/23/2023 | 11:07:00 AM | 5.139          | 5.65            | 2.643    |
| 5/23/2023 | 11:08:00 AM | 5.061          | 5.776           | 1.448    |
| 5/23/2023 | 11:09:00 AM | 4.943          | 5.759           | 7.828    |
| 5/23/2023 | 11:10:00 AM | 5.019          | 5.546           | 5.412    |
| 5/23/2023 | 11:11:00 AM | 5.058          | 5.616           | 4.245    |
|           |             |                |                 |          |
|           | Average     | 5.06           | 5.73            | 4.19     |
| Pt 3 Avg. |             | 5.097          | 5.721           | 3.900    |
| Pt 2 Avg. |             | 5.058          | 5.753           | 4.125    |
| Dt 1 Avg. |             | 5.004          | 5.705           | 4.120    |

5.024

5.724

4.536

# Montrose Air Quality Services, IIC

Pt 1 Avg.

|           |             |                | W     | MON TROSE |
|-----------|-------------|----------------|-------|-----------|
| R         | M 1-MINUTE  |                |       |           |
| 1         | RUN NI      | JMBER 3        |       |           |
| Date      | Time        | O <sub>2</sub> | NOx   | CO        |
| 5/23/2023 | 11:21:00 AM | 5.188          | 5.556 | 4.785     |
| 5/23/2023 | 11:22:00 AM | 5.082          | 5.64  | 3.216     |
| 5/23/2023 | 11:23:00 AM | 5.185          | 5.595 | 3.902     |
| 5/23/2023 | 11:24:00 AM | 5.133          | 5.686 | 2.682     |
| 5/23/2023 | 11:25:00 AM | 5.063          | 5.848 | 3.861     |
| 5/23/2023 | 11:26:00 AM | 5.142          | 5.808 | 3.759     |
| 5/23/2023 | 11:27:00 AM | 5.058          | 5.711 | 4.692     |
| 5/23/2023 | 11:28:00 AM | 5.083          | 5.622 | 5.185     |
| 5/23/2023 | 11:29:00 AM | 5.049          | 5.698 | 4.802     |
| 5/23/2023 | 11:30:00 AM | 5.098          | 5.701 | 3.448     |
| 5/23/2023 | 11:31:00 AM | 5.107          | 5.826 | 2.452     |
| 5/23/2023 | 11:32:00 AM | 5.107          | 5.75  | 2.705     |
| 5/23/2023 | 11:33:00 AM | 4.973          | 5.72  | 4.178     |
| 5/23/2023 | 11:34:00 AM | 5.053          | 5.602 | 7.992     |
| 5/23/2023 | 11:35:00 AM | 4.987          | 5.636 | 6.434     |
| 5/23/2023 | 11:36:00 AM | 5.081          | 5.755 | 4.025     |
| 5/23/2023 | 11:37:00 AM | 5.002          | 5.846 | 2.99      |
| 5/23/2023 | 11:38:00 AM | 5.067          | 5.851 | 3.482     |
| 5/23/2023 | 11:39:00 AM | 4.944          | 5.709 | 5.108     |
| 5/23/2023 | 11:40:00 AM | 4.982          | 5.68  | 5.961     |
| 5/23/2023 | 11:41:00 AM | 4.984          | 5.601 | 8.504     |
|           |             |                |       |           |
|           | Average     | 5.07           | 5.71  | 4.48      |
| Pt 3 Avg. |             | 5.122          | 5.692 | 3.842     |
| Pt 2 Avg. |             | 5.067          | 5.703 | 4.395     |
| Pt 1 Avg. |             | 5.007          | 5.725 | 5.215     |
|           |             |                |       |           |

# Montrose Air Quality Services, LLC RUN NUMBER 3 RM DAS

| RM 1-MINUTE AVERAGE DATA |             |                |       |    |  |  |  |
|--------------------------|-------------|----------------|-------|----|--|--|--|
|                          | RUN NI      | JMBER 4        | ļ.    |    |  |  |  |
| Date                     | Time        | O <sub>2</sub> | NOx   | CO |  |  |  |
| 5/23/2023                | 11:57:00 AM | 5.187          | 5.536 |    |  |  |  |
| 5/23/2023                | 11:58:00 AM | 5.021          | 5.657 |    |  |  |  |
| 5/23/2023                | 11:59:00 AM | 5.103          | 5.582 |    |  |  |  |
| 5/23/2023                | 12:00:00 PM | 4.995          | 5.529 |    |  |  |  |
| 5/23/2023                | 12:01:00 PM | 5.178          | 5.519 |    |  |  |  |
| 5/23/2023                | 12:02:00 PM | 4.994          | 5.552 |    |  |  |  |
| 5/23/2023                | 12:03:00 PM | 5.194          | 5.618 |    |  |  |  |
| 5/23/2023                | 12:04:00 PM | 4.972          | 5.753 |    |  |  |  |
| 5/23/2023                | 12:05:00 PM | 5              | 5.769 |    |  |  |  |
| 5/23/2023                | 12:06:00 PM | 4.978          | 5.702 |    |  |  |  |
| 5/23/2023                | 12:07:00 PM | 5.024          | 5.69  |    |  |  |  |
| 5/23/2023                | 12:08:00 PM | 5.023          | 5.687 |    |  |  |  |
| 5/23/2023                | 12:09:00 PM | 5.074          | 5.634 |    |  |  |  |
| 5/23/2023                | 12:10:00 PM | 5.012          | 5.889 |    |  |  |  |
| 5/23/2023                | 12:11:00 PM | 4.987          | 5.943 |    |  |  |  |
| 5/23/2023                | 12:12:00 PM | 5.09           | 5.899 |    |  |  |  |
| 5/23/2023                | 12:13:00 PM | 4.926          | 5.888 |    |  |  |  |
| 5/23/2023                | 12:14:00 PM | 4.953          | 5.652 |    |  |  |  |
| 5/23/2023                | 12:15:00 PM | 5.074          | 5.6   |    |  |  |  |
| 5/23/2023                | 12:16:00 PM | 4.893          | 5.679 |    |  |  |  |
| 5/23/2023                | 12:17:00 PM | 4.975          | 5.849 |    |  |  |  |
|                          | Average     | 5.03           | 5.70  |    |  |  |  |

# Montrose Air Quality Services, LLC RUN NUMBER 4 RM DAS

| Pt 3 Avg. | 5.096 | 5.570 |  |
|-----------|-------|-------|--|
| Pt 2 Avg. | 5.012 | 5.732 |  |
| Pt 1 Avg. | 4.985 | 5.787 |  |

|           |             |                | MONTROSE WITH AND |
|-----------|-------------|----------------|-------------------------------------------------------|
| F         | RM 1-MINUTE |                |                                                       |
|           | RUN NU      | JMBER (        | 5                                                     |
| Date      | Time        | O <sub>2</sub> | NO <sub>x</sub>                                       |
| 5/23/2023 | 12:24:00 PM | 5.035          | 5.765                                                 |
| 5/23/2023 | 12:25:00 PM | 5.084          | 5.696                                                 |
| 5/23/2023 | 12:26:00 PM | 5.207          | 5.679                                                 |
| 5/23/2023 | 12:27:00 PM | 5.057          | 5.779                                                 |
| 5/23/2023 | 12:28:00 PM | 4.992          | 5.7                                                   |
| 5/23/2023 | 12:29:00 PM | 5.245          | 5.564                                                 |
| 5/23/2023 | 12:30:00 PM | 5.048          | 5.825                                                 |
| 5/23/2023 | 12:31:00 PM | 5.031          | 5.816                                                 |
| 5/23/2023 | 12:32:00 PM | 5.015          | 5.75                                                  |
| 5/23/2023 | 12:33:00 PM | 5.094          | 5.636                                                 |
| 5/23/2023 | 12:34:00 PM | 5.09           | 5.745                                                 |
| 5/23/2023 | 12:35:00 PM | 4.967          | 5.798                                                 |
| 5/23/2023 | 12:36:00 PM | 5.032          | 5.801                                                 |
| 5/23/2023 | 12:37:00 PM | 4.962          | 5.771                                                 |
| 5/23/2023 | 12:38:00 PM | 5.095          | 5.749                                                 |
| 5/23/2023 | 12:39:00 PM | 5.033          | 5.765                                                 |
| 5/23/2023 | 12:40:00 PM | 5.103          | 5.721                                                 |
| 5/23/2023 | 12:41:00 PM | 4.986          | 5.864                                                 |
| 5/23/2023 | 12:42:00 PM | 4.99           | 5.777                                                 |
|           | 12:43:00 PM | 5.086          | 5.758                                                 |
| 5/23/2023 | 12:44:00 PM | 4.935          | 5.925                                                 |
|           |             |                |                                                       |
|           | Average     | 5.05           | 5.76                                                  |

# Montrose Air Quality Services, LLC RUN NUMBER 5 RM DAS

| Pt 3 Avg. | 5.095 | 5.715 |  |
|-----------|-------|-------|--|
| Pt 2 Avg. | 5.027 | 5.760 |  |
| Pt 1 Avg. | 5.033 | 5.794 |  |

| RUN NUMBER 6 RM DAS      |             |                |       |   |  |  |  |  |
|--------------------------|-------------|----------------|-------|---|--|--|--|--|
| MONTROSE                 |             |                |       |   |  |  |  |  |
| RM 1-MINUTE AVERAGE DATA |             |                |       |   |  |  |  |  |
| RUN NUMBER 6             |             |                |       |   |  |  |  |  |
| Date                     | Time        | O <sub>2</sub> | NOx   |   |  |  |  |  |
| 5/23/2023                | 12:51:00 PM | 5.117          | 5.534 |   |  |  |  |  |
| 5/23/2023                | 12:52:00 PM | 5.1            | 5.647 |   |  |  |  |  |
| 5/23/2023                | 12:53:00 PM | 5.034          | 5.751 |   |  |  |  |  |
| 5/23/2023                | 12:54:00 PM | 5.078          | 5.696 |   |  |  |  |  |
| 5/23/2023                | 12:55:00 PM | 5.149          | 5.657 |   |  |  |  |  |
| 5/23/2023                | 12:56:00 PM | 5.079          | 5.648 |   |  |  |  |  |
| 5/23/2023                | 12:57:00 PM | 5.015          | 5.663 |   |  |  |  |  |
| 5/23/2023                | 12:58:00 PM | 5.112          | 5.615 |   |  |  |  |  |
| 5/23/2023                | 12:59:00 PM | 5.036          | 5.683 |   |  |  |  |  |
| 5/23/2023                | 1:00:00 PM  | 4.979          | 5.768 |   |  |  |  |  |
| 5/23/2023                | 1:01:00 PM  | 4.942          | 5.853 |   |  |  |  |  |
| 5/23/2023                | 1:02:00 PM  | 4.907          | 5.779 |   |  |  |  |  |
| 5/23/2023                | 1:03:00 PM  | 5.085          | 5.679 |   |  |  |  |  |
| 5/23/2023                | 1:04:00 PM  | 5.041          | 5.772 |   |  |  |  |  |
| 5/23/2023                | 1:05:00 PM  | 4.937          | 5.771 |   |  |  |  |  |
| 5/23/2023                | 1:06:00 PM  | 4.963          | 5.704 |   |  |  |  |  |
| 5/23/2023                | 1:07:00 PM  | 4.956          | 5.918 |   |  |  |  |  |
| 5/23/2023                | 1:08:00 PM  | 4.971          | 5.826 |   |  |  |  |  |
| 5/23/2023                | 1:09:00 PM  | 4.991          | 5.739 | 0 |  |  |  |  |
| 5/23/2023                | 1:10:00 PM  | 5.005          | 5.684 | 0 |  |  |  |  |
| 5/23/2023                | 1:11:00 PM  | 5.019          | 5.649 |   |  |  |  |  |
|                          |             |                |       |   |  |  |  |  |
|                          | Average     | 5.02           | 5.72  |   |  |  |  |  |

| Montrose Air Quality Services | : <i>IIC</i> |
|-------------------------------|--------------|
| <b>RUN NUMBER 6 RM DAS</b>    | 48.073       |
|                               | A MAN        |

| Pt 3 Avg. | 5.082 | 5.657 |  |
|-----------|-------|-------|--|
| Pt 2 Avg. | 5.015 | 5.736 |  |
| Pt 1 Avg. | 4.977 | 5.756 |  |

| MUNIKOSE                                 |            |                |                 |  |  |  |  |
|------------------------------------------|------------|----------------|-----------------|--|--|--|--|
| RM 1-MINUTE AVERAGE DATA<br>RUN NUMBER 7 |            |                |                 |  |  |  |  |
|                                          |            |                |                 |  |  |  |  |
| Date                                     | Time       | O <sub>2</sub> | NO <sub>x</sub> |  |  |  |  |
| 5/23/2023                                | 1:23:00 PM | 5.097          | 5.648           |  |  |  |  |
| 5/23/2023                                | 1:24:00 PM | 5.074          | 5.63            |  |  |  |  |
| 5/23/2023                                |            | 5.096          | 5.639           |  |  |  |  |
| 5/23/2023                                |            | 5.071          | 5.768           |  |  |  |  |
| 5/23/2023                                | 1:27:00 PM | 5.037          | 5.816           |  |  |  |  |
| 5/23/2023                                | 1:28:00 PM | 5.129          | 5.767           |  |  |  |  |
| 5/23/2023                                | 1:29:00 PM | 5.043          | 5.684           |  |  |  |  |
| 5/23/2023                                | 1:30:00 PM | 5.118          | 5.7             |  |  |  |  |
| 5/23/2023                                |            | 4.998          | 5.707           |  |  |  |  |
| 5/23/2023                                | 1:32:00 PM | 4.967          | 5.711           |  |  |  |  |
| 5/23/2023                                | 1:33:00 PM | 4.939          | 5.684           |  |  |  |  |
| 5/23/2023                                | 1:34:00 PM | 5.048          | 5.756           |  |  |  |  |
| 5/23/2023                                | 1:35:00 PM | 4.928          | 5.731           |  |  |  |  |
| 5/23/2023                                | 1:36:00 PM | 5.019          | 5.708           |  |  |  |  |
| 5/23/2023                                | 1:37:00 PM | 5.022          | 5.887           |  |  |  |  |
| 5/23/2023                                | 1:38:00 PM | 4.961          | 5.862           |  |  |  |  |
| 5/23/2023                                | 1:39:00 PM | 5.026          | 5.922           |  |  |  |  |
| 5/23/2023                                | 1:40:00 PM | 4.982          | 5.838           |  |  |  |  |
| 5/23/2023                                | 1:41:00 PM | 4.964          | 5.73            |  |  |  |  |
| 5/23/2023                                | 1:42:00 PM | 5.036          | 5.65            |  |  |  |  |
| 5/23/2023                                | 1:43:00 PM | 5.045          | 5.635           |  |  |  |  |
|                                          | A          | E 02           | 6 74            |  |  |  |  |
|                                          | Average    | 5.03           | 5.74            |  |  |  |  |

# Montrose Air Quality Services, LLC RUN NUMBER 7 RM DAS

| Pt 3 Avg. | 5.078 | 5.707 |  |
|-----------|-------|-------|--|
| Pt 2 Avg. | 5.002 | 5.714 |  |
| Pt 1 Avg. | 5.005 | 5.789 |  |

| MONTROSE MONTROSE        |            |                |                 |  |  |  |  |  |
|--------------------------|------------|----------------|-----------------|--|--|--|--|--|
| RM 1-MINUTE AVERAGE DATA |            |                |                 |  |  |  |  |  |
| RUN NUMBER 8             |            |                |                 |  |  |  |  |  |
| Date                     | Time       | O <sub>2</sub> | NO <sub>x</sub> |  |  |  |  |  |
| 5/23/2023                | 1:50:00 PM | 5.091          | 5.742           |  |  |  |  |  |
| 5/23/2023                | 1:51:00 PM | 5.054          | 5.706           |  |  |  |  |  |
| 5/23/2023                |            | 5.032          | 5.74            |  |  |  |  |  |
| 5/23/2023                | 1:53:00 PM | 5.107          | 5.803           |  |  |  |  |  |
|                          | 1:54:00 PM | 5.102          | 5.688           |  |  |  |  |  |
| 5/23/2023                | 1:55:00 PM | 5.13           | 5.686           |  |  |  |  |  |
| 5/23/2023                | 1:56:00 PM | 5.056          | 5.681           |  |  |  |  |  |
| 5/23/2023                |            | 5.09           | 5.72            |  |  |  |  |  |
|                          | 1:58:00 PM | 4.975          | 5.753           |  |  |  |  |  |
|                          | 1:59:00 PM | 5.073          | 5.708           |  |  |  |  |  |
|                          | 2:00:00 PM | 5.04           | 5.713           |  |  |  |  |  |
|                          | 2:01:00 PM | 4.977          | 5.712           |  |  |  |  |  |
| 5/23/2023                |            | 5.027          | 5.696           |  |  |  |  |  |
| 5/23/2023                |            | 5.042          | 5.783           |  |  |  |  |  |
| 5/23/2023                | =          | 4.933          | 5.782           |  |  |  |  |  |
| 5/23/2023                |            | 5.073          | 5.75            |  |  |  |  |  |
| 5/23/2023                |            | 4.939          | 5.803           |  |  |  |  |  |
|                          | 2:07:00 PM | 5.01           | 5.806           |  |  |  |  |  |
|                          | 2:08:00 PM | 5.016          | 5.838           |  |  |  |  |  |
| 5/23/2023                |            | 5.053          | 5.855           |  |  |  |  |  |
| 5/23/2023                | 2:10:00 PM | 5.071          | 5.721           |  |  |  |  |  |
|                          | A          | 5.04           | 6.76            |  |  |  |  |  |
|                          | Average    | 5.04           | 5.75            |  |  |  |  |  |

| Pt 3 Avg. | 5.082 | 5.721 |  |
|-----------|-------|-------|--|
| Pt 2 Avg. | 5.032 | 5.726 |  |
| Pt 1 Avg. | 5.014 | 5.794 |  |

# Montrose Air Quality Services, LLC RUN NUMBER 8 RM DAS

|           |              |                | WA MONTKUSE     |  |  |  |  |  |  |
|-----------|--------------|----------------|-----------------|--|--|--|--|--|--|
| R         | M 1-MINUTE   |                |                 |  |  |  |  |  |  |
|           | RUN NUMBER 9 |                |                 |  |  |  |  |  |  |
| Date      | Time         | O <sub>2</sub> | NO <sub>x</sub> |  |  |  |  |  |  |
| 5/23/2023 | 2:42:00 PM   | 4.968          | 5.67            |  |  |  |  |  |  |
| 5/23/2023 | 2:43:00 PM   | 5.001          | 5.521           |  |  |  |  |  |  |
| 5/23/2023 | 2:44:00 PM   | 4.918          | 5.597           |  |  |  |  |  |  |
| 5/23/2023 | 2:45:00 PM   | 4.939          | 5.61            |  |  |  |  |  |  |
| 5/23/2023 | 2:46:00 PM   | 4.919          | 5.752           |  |  |  |  |  |  |
| 5/23/2023 | 2:47:00 PM   | 4.87           | 5.637           |  |  |  |  |  |  |
| 5/23/2023 | 2:48:00 PM   | 4.962          | 5.649           |  |  |  |  |  |  |
| 5/23/2023 | 2:49:00 PM   | 4.917          | 5.755           |  |  |  |  |  |  |
| 5/23/2023 | 2:50:00 PM   | 4.958          | 5.782           |  |  |  |  |  |  |
| 5/23/2023 | 2:51:00 PM   | 4.94           | 5.906           |  |  |  |  |  |  |
| 5/23/2023 | 2:52:00 PM   | 4.991          | 5.758           |  |  |  |  |  |  |
| 5/23/2023 | 2:53:00 PM   | 4.924          | 5.843           |  |  |  |  |  |  |
| 5/23/2023 | 2:54:00 PM   | 4.974          | 5.812           |  |  |  |  |  |  |
| 5/23/2023 | 2:55:00 PM   | 5.043          | 5.789           |  |  |  |  |  |  |
| 5/23/2023 | 2:56:00 PM   | 4.89           | 5.777           |  |  |  |  |  |  |
| 5/23/2023 | 2:57:00 PM   | 4.996          | 5.655           |  |  |  |  |  |  |
| 5/23/2023 | 2:58:00 PM   | 4.987          | 5.694           |  |  |  |  |  |  |
| 5/23/2023 | 2:59:00 PM   | 4.877          | 5.785           |  |  |  |  |  |  |
| 5/23/2023 | 3:00:00 PM   | 4.997          | 5.705           |  |  |  |  |  |  |
| 5/23/2023 | 3:01:00 PM   | 4.885          | 5.781           |  |  |  |  |  |  |
| 5/23/2023 | 3:02:00 PM   | 4.968          | 5.704           |  |  |  |  |  |  |
|           |              |                |                 |  |  |  |  |  |  |
|           | Average      | 4.95           | 5.72            |  |  |  |  |  |  |

# Montrose Air Quality Services, LLC RUN NUMBER 9 RM DAS

| Pt 3 Avg. | 4.940 | 5.634 |  |
|-----------|-------|-------|--|
| Pt 2 Avg. | 4.964 | 5.806 |  |
| Pt 1 Avg. | 4.943 | 5.729 |  |

| Date<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023 | Time<br>7:26:00<br>7:27:00<br>7:28:00<br>7:29:00 | 0<br>-0.004 | NO <sub>x</sub><br>PPM<br>0.04 | CO<br>PPM |      | Comments |
|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-------------|--------------------------------|-----------|------|----------|
| 5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023                      | 7:26:00<br>7:27:00<br>7:28:00                    | 0           | PPM                            |           |      | Commonts |
| 5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023                      | 7:26:00<br>7:27:00<br>7:28:00                    | 0<br>-0.004 |                                | 1 1 101   |      |          |
| 5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023                                   | 7:27:00<br>7:28:00                               | -0.004      | 0.04                           |           |      | Comments |
| 5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023                                                | 7:28:00                                          |             |                                | -0.125    |      |          |
| 5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023                                                             |                                                  |             | 0.017                          | -0.114    | Zero |          |
| 5/23/2023<br>5/23/2023<br>5/23/2023<br>5/23/2023                                                                          | 7.20.00                                          | 6.325       | 7.19                           | 102.531   | -    |          |
| 5/23/2023<br>5/23/2023<br>5/23/2023                                                                                       | 1.29.00                                          | 8.935       | 9.276                          | 473.471   |      |          |
| 5/23/2023<br>5/23/2023                                                                                                    | 7:30:00                                          | 8.937       | 9.167                          | 476.304   |      |          |
| 5/23/2023                                                                                                                 | 7:31:00                                          | 8.938       | 9.118                          | 475.577   | High |          |
|                                                                                                                           | 7:32:00                                          | 5.647       | 5.364                          | 379.296   |      |          |
| 5/23/2023                                                                                                                 | 7:33:00                                          | 4.534       | 4.722                          | 227.504   | Mid  |          |
|                                                                                                                           | 7:34:00                                          | 2.505       | 4.245                          | 215.602   |      |          |
| 5/23/2023                                                                                                                 | 7:35:00                                          | 0.006       | 6.398                          | 53.181    |      |          |
| 5/23/2023                                                                                                                 | 7:36:00                                          | -0.003      | 6.535                          | 3.546     | NO2  |          |
| 5/23/2023                                                                                                                 | 7:37:00                                          | -0.068      | 1.243                          | 0.248     |      |          |
| 5/23/2023                                                                                                                 | 7:38:00                                          | 4.451       | 0.088                          | 0.193     |      |          |
| 5/23/2023                                                                                                                 | 7:39:00                                          | 10.758      | 0.055                          | 0.213     |      |          |
| 5/23/2023                                                                                                                 | 7:40:00                                          | 10.757      | 0.045                          | 0.271     |      |          |
| 5/23/2023                                                                                                                 | 7:41:00                                          | 10.757      | 0.042                          | 0.262     |      |          |
| 5/23/2023                                                                                                                 | 7:42:00                                          | 10.757      | 0.052                          | 0.221     |      |          |
| 5/23/2023                                                                                                                 | 7:43:00                                          | 10.757      | 0.041                          | 0.192     |      |          |
| 5/23/2023                                                                                                                 | 7:44:00                                          | 10.757      | 0.039                          | 0.189     |      |          |
| 5/23/2023                                                                                                                 | 7:45:00                                          | 10.757      | 0.03                           | 0.187     |      |          |
| 5/23/2023                                                                                                                 | 7:46:00                                          | 10.757      | 0.03                           | 0.188     |      |          |
| 5/23/2023                                                                                                                 | 7:47:00                                          | 10.757      | 0.044                          | 0.095     |      |          |
| 5/23/2023                                                                                                                 | 7:48:00                                          | 10.757      | 0.025                          | 0.161     |      |          |
| 5/23/2023                                                                                                                 | 7:49:00                                          | 10.757      | 0.028                          | 0.101     |      |          |
| 5/23/2023                                                                                                                 | 7:50:00                                          | 10.757      | 0.023                          | 0.192     |      |          |
| 5/23/2023                                                                                                                 | 7:51:00                                          | 10.757      | 0.023                          | 0.195     |      |          |
| 5/23/2023                                                                                                                 | 7:52:00                                          | 10.757      | 0.025                          | 0.135     |      |          |
| 5/23/2023                                                                                                                 | 7:53:00                                          | 10.757      | 0.037                          | 0.159     |      |          |
| 5/23/2023                                                                                                                 | 7:54:00                                          | 10.757      | 0.028                          | 0.100     |      |          |
| 5/23/2023                                                                                                                 | 7:55:00                                          | 10.756      | 0.025                          | 0.139     |      |          |
| 5/23/2023                                                                                                                 | 7:56:00                                          | 10.757      | 0.000                          | 0.309     |      |          |
| 5/23/2023                                                                                                                 | 7:57:00                                          | 10.756      | 0.027                          | 0.149     |      |          |
| 5/23/2023                                                                                                                 | 7:58:00                                          | 10.756      | 0.023                          | 0.228     |      |          |
| 5/23/2023                                                                                                                 | 7:59:00                                          | 10.756      | 0.027                          | 0.220     |      |          |
| 5/23/2023                                                                                                                 | 8:00:00                                          | 10.756      | 0.028                          | 0.118     |      |          |
| 5/23/2023                                                                                                                 | 8:01:00                                          | 10.757      | 0.025                          | 0.081     |      |          |
| 5/23/2023                                                                                                                 | 8:02:00                                          | 10.545      | 0.023                          | 0.089     |      |          |
| 5/23/2023                                                                                                                 | 8:03:00                                          | 6.305       | 1.079                          | 2.936     |      |          |
| 5/23/2023                                                                                                                 | 8:04:00                                          | 6.025       | 1.055                          | 12.282    |      |          |
| 5/23/2023                                                                                                                 | 8:05:00                                          | 6.119       | 0.984                          | 58.055    |      |          |
| 5/23/2023                                                                                                                 | 8:06:00                                          | 6.382       | 0.904                          | 50.634    |      |          |
| 5/23/2023                                                                                                                 | 8:07:00                                          | 6.319       | 1.011                          | 31.596    |      |          |
| 5/23/2023                                                                                                                 | 8:08:00                                          | 6.505       | 1.02                           | 25.809    |      |          |
| 5/23/2023                                                                                                                 | 8:09:00                                          | 6.453       | 0.975                          | 70.267    |      |          |
| 5/23/2023                                                                                                                 | 8:10:00                                          | 6.27        | 1.03                           | 151.843   |      |          |
| 5/23/2023                                                                                                                 | 8:10:00                                          | 6.22        | 1.03                           | 38.543    |      |          |

|           |                    | O <sub>2</sub> | NOx   | CO      |          |
|-----------|--------------------|----------------|-------|---------|----------|
| Date      | Time               | %              | PPM   | PPM     | Comments |
| 5/23/2023 | 8:12:00            | 6.204          | 1.027 | 63.817  |          |
| 5/23/2023 | 8:13:00            | 6.122          | 1.027 | 88.98   |          |
| 5/23/2023 | 8:14:00            | 6.257          | 1.048 | 48.309  |          |
| 5/23/2023 | 8:15:00            | 6.032          | 1.071 | 35.262  |          |
| 5/23/2023 | 8:16:00            | 6.239          | 1.109 | 24.401  |          |
| 5/23/2023 | 8:17:00            | 5.996          | 1.154 | 7.329   |          |
| 5/23/2023 | 8:18:00            | 6.045          | 1,134 | 6.433   |          |
| 5/23/2023 | 8:19:00            | 5.836          | 1.136 | 13.339  |          |
| 5/23/2023 | 8:20:00            | 5.812          | 1.135 | 8.438   |          |
| 5/23/2023 | 8:21:00            | 5.618          | 1.128 | 11.581  |          |
| 5/23/2023 | 8:22:00            | 5.68           | 1.104 | 12.662  |          |
| 5/23/2023 | 8:23:00            | 5.535          | 1.102 | 7.946   |          |
| 5/23/2023 | 8:24:00            | 5.261          | 1.048 | 120.656 |          |
| 5/23/2023 | 8:25:00            | 5.087          | 1.013 | 394.954 |          |
| 5/23/2023 | 8:26:00            | 5.121          | 0.983 | 444.94  |          |
| 5/23/2023 | 8:27:00            | 5.007          | 0.99  | 429.728 |          |
| 5/23/2023 | 8:28:00            | 5.013          | 0.969 | 407.656 |          |
| 5/23/2023 | 8:29:00            | 4.602          | 0.958 | 539.158 |          |
| 5/23/2023 | 8:30:00            | 4.715          | 0.96  | 539.153 |          |
| 5/23/2023 | 8:31:00            | 4.72           | 0.975 | 539.158 |          |
| 5/23/2023 | 8:32:00            | 4.559          | 1.006 | 539.149 |          |
| /23/2023  | 8:33:00            | 4.864          | 1.03  | 391.597 |          |
| 5/23/2023 | 8:34:00            | 4.711          | 1.145 | 83.319  |          |
| 5/23/2023 | 8:35:00            | 4.876          | 1.143 | 43.249  |          |
| 5/23/2023 | 8:36:00            | 4.975          | 1.225 | 9.434   |          |
| 5/23/2023 | 8:37:00            | 4.876          | 1.183 | 22.352  |          |
| 5/23/2023 | 8:38:00            | 4.955          | 1.198 | 15.839  |          |
| 5/23/2023 | 8:39:00            | 4.93           | 1.186 | 19.779  |          |
| 5/23/2023 | 8:40:00            | 4.93           |       |         |          |
| 5/23/2023 | 8:40:00<br>8:41:00 |                | 1.203 | 19.692  |          |
| 5/23/2023 | 8:42:00            | 4.873          | 1.195 | 17.84   |          |
| 5/23/2023 |                    | 4.881          | 1.21  | 20.841  |          |
|           | 8:43:00            | 4.959          | 0.56  | 20.379  | Suct O2  |
| 5/23/2023 | 8:44:00            | 4.476          | 0.04  | 1.283   | Syst O2  |
| 5/23/2023 | 8:45:00            | 1.848          | 2.854 | -0.221  |          |
| 5/23/2023 | 8:46:00            | 0.013          | 4.692 | 0.047   | Syst NOx |
| /23/2023  | 8:47:00            | 0.01           | 2.829 | 3.717   |          |
| 6/23/2023 | 8:48:00            | 0.007          | 0.035 | 172.124 |          |
| 5/23/2023 | 8:49:00            | 0.006          | 0.027 | 225.886 |          |
| 6/23/2023 | 8:50:00            | 0.005          | 0.031 | 225.594 |          |
| 6/23/2023 | 8:51:00            | 0.004          | 0.033 | 225.536 | Syst CO  |
| 6/23/2023 | 8:52:00            | 3.366          | 0.918 | 185.935 | _        |
| 6/23/2023 | 8:53:00            | 4.978          | 1.292 | 15.545  |          |
| /23/2023  | 8:54:00            | 4.937          | 1.298 | 25.472  |          |
| 6/23/2023 | 8:55:00            | 4.934          | 1.303 | 12.302  |          |
| 6/23/2023 | 8:56:00            | 4.968          | 1.308 | 17.89   |          |
| 6/23/2023 | 8:57:00            | 4.989          | 1.306 | 7.641   |          |
| 5/23/2023 | 8:58:00            | 4.921          | 1.299 | 12.549  |          |
| 6/23/2023 | 8:59:00            | 5.027          | 1.308 | 9.885   |          |
|           |                    |                |       |         |          |

|           |                    | O <sub>2</sub> | NOx   | CO     |                             |
|-----------|--------------------|----------------|-------|--------|-----------------------------|
| Date      | Time               | %              | PPM   | PPM    | Comments                    |
| 5/23/2023 | 9:01:00            | 4.916          | 1.299 | 11.33  |                             |
| 5/23/2023 | 9:02:00            | 5.051          | 1.307 | 12.882 |                             |
| 5/23/2023 | 9:03:00            | 5.046          | 1.313 | 5.724  |                             |
| 5/23/2023 | 9:04:00            | 5.014          | 1.308 | 7.067  |                             |
| 5/23/2023 | 9:05:00            | 4.921          | 1.3   | 13.864 |                             |
| 5/23/2023 | 9:06:00            | 5.033          | 1.301 | 9.783  |                             |
| 5/23/2023 | 9:07:00            | 4.998          | 1.328 | 14.329 |                             |
| 5/23/2023 | 9:08:00            | 5.154          | 1.296 | 10.157 |                             |
| 5/23/2023 | 9:09:00            | 5.287          | 1.271 | 3.661  |                             |
| 5/23/2023 | 9:10:00            | 5.103          | 1.3   | 2.523  |                             |
| 5/23/2023 | 9:11:00            | 5.152          | 1.287 | 5.814  |                             |
| 5/23/2023 | 9:12:00            | 4.97           | 1.307 | 14.06  |                             |
| 5/23/2023 | 9:13:00            | 4.997          | 1.313 | 11.152 |                             |
| 5/23/2023 | 9:14:00            | 4.852          | 1.349 | 20.547 |                             |
| 5/23/2023 | 9:15:00            | 4.967          | 1.35  | 20.954 |                             |
| 5/23/2023 | 9:16:00            | 4.945          | 1.37  | 10.097 |                             |
| 5/23/2023 | 9:17:00            | 4.943          | 1.389 | 22.532 |                             |
| 5/23/2023 | 9:18:00            | 5.02           | 1.41  | 10.136 |                             |
| 5/23/2023 | 9:19:00            | 4.988          | 1.448 | 8.823  |                             |
| 5/23/2023 | 9:20:00            | 5.031          | 1.455 | 8.597  |                             |
| 5/23/2023 | 9:21:00            | 5.082          | 1.483 | 7.44   |                             |
| 5/23/2023 | 9:22:00            | 4.991          | 1.505 | 5.481  |                             |
| 5/23/2023 | 9:23:00            | 5.119          | 1.512 | 8.937  |                             |
| 5/23/2023 | 9:24:00            | 4.993          | 1.564 | 4.476  |                             |
| 5/23/2023 | 9:25:00            | 5.074          | 1.566 | 9.415  |                             |
| 5/23/2023 | 9:26:00            | 5.25           | 1.578 | 4.673  |                             |
| 5/23/2023 | 9:27:00            | 5.142          | 1.625 | 2.652  | Start Long Line Strat Check |
| 5/23/2023 | 9:28:00            | 4.952          | 1.664 | 12.247 |                             |
| 5/23/2023 | 9:29:00            | 5.151          | 1.673 | 10.203 |                             |
| 5/23/2023 | 9:30:00            | 5.133          | 1.714 | 2.409  | Start Long Line Strat Check |
| 5/23/2023 | 9:31:00            | 4.996          | 1.789 | 10.553 | W-1                         |
| 5/23/2023 | 9:32:00            | 5.077          | 1.873 | 8.56   | W-1                         |
| 5/23/2023 | 9:33:00            | 5.083          | 1.92  | 5.614  |                             |
| 5/23/2023 | 9:34:00            | 9.825          | 0.4   | 7.257  |                             |
| 5/23/2023 | 9:35:00            | 10.756         | 0.026 | 0.431  |                             |
| 5/23/2023 | 9:36:00            | 10.756         | 0.026 | 0.029  |                             |
| 5/23/2023 | 9:37:00            | 10.756         | 0.099 | 0.032  |                             |
| 5/23/2023 | 9:38:00            | 5.03           | 2.48  | 2.847  | E-1                         |
| 5/23/2023 | 9:39:00            | 4.858          | 2.568 | 21.284 | E-1                         |
| 5/23/2023 | 9:40:00            | 4.885          | 2.691 | 19.309 | · ·                         |
| 5/23/2023 | 9:41:00            | 4.822          | 2.884 | 26.393 | E-2                         |
| 5/23/2023 | 9:42:00            | 4.923          | 2.941 | 26.453 | E-2                         |
| 5/23/2023 | 9:43:00            | 4.832          | 2.741 | 9.492  |                             |
| 5/23/2023 | 9:44:00            | 4.488          | 0.057 | 13.678 |                             |
| 5/23/2023 | 9:45:00            | 4.508          | 0.03  | -0.136 | Syst O2                     |
| 5/23/2023 | 9:46:00            | 1.586          | 3.134 | -0.343 |                             |
| 5/23/2023 | 9:47:00            | 0.01           | 4.727 | -0.007 | Syst NOx                    |
|           | 9:47:00<br>9:48:00 | 0.007          | 1.327 | 32.919 | Joysentox                   |
| 5/23/2023 | <u>u'/yy'nn</u>    |                |       |        |                             |

|           | _        | O <sub>2</sub> | NO <sub>x</sub> | CO      |             |          |
|-----------|----------|----------------|-----------------|---------|-------------|----------|
| Date      | Time     | %              | PPM             | PPM     |             | Comments |
| 5/23/2023 | 9:50:00  | 0.002          | 0.023           | 225.844 | Syst CO     |          |
| 5/23/2023 | 9:51:00  | 2.385          | 2.241           | 212.02  |             |          |
| 5/23/2023 | 9:52:00  | 4.886          | 4.674           | 38.041  |             |          |
| 5/23/2023 | 9:53:00  | 4.864          | 4.875           | 32.631  |             |          |
| 5/23/2023 | 9:54:00  | 4.952          | 5.205           | 12.139  |             |          |
| 5/23/2023 | 9:55:00  | 4.836          | 5.435           | 19.518  |             |          |
| 5/23/2023 | 9:56:00  | 4.954          | 5.592           | 15.471  |             |          |
| 5/23/2023 | 9:57:00  | 4.989          | 5.865           | 8.687   |             |          |
| 5/23/2023 | 9:58:00  | 5.009          | 6.134           | 6.793   |             |          |
| 5/23/2023 | 9:59:00  | 5.04           | 6.327           | 3.74    |             |          |
| 5/23/2023 | 10:00:00 | 5.07           | 6.604           | 1.337   |             |          |
| 5/23/2023 | 10:01:00 | 5.04           | 6.747           | 6.137   |             |          |
| 5/23/2023 | 10:02:00 | 5.083          | 6.991           | 3.277   |             |          |
| 5/23/2023 | 10:03:00 | 5.047          | 7.193           | 4.295   |             |          |
| 5/23/2023 | 10:04:00 | 5.127          | 7.251           | 5.943   |             |          |
| 5/23/2023 | 10:05:00 | 5.136          | 7.441           | 4.582   |             |          |
| 5/23/2023 | 10:06:00 | 5.144          | 7.508           | 5.394   |             |          |
| 5/23/2023 | 10:07:00 | 5.047          | 5.87            | 4.031   |             |          |
| 5/23/2023 | 10:08:00 | 5.081          | 3.656           | 8.075   |             |          |
| 5/23/2023 | 10:09:00 | 5.106          | 4.294           | 6.314   |             |          |
| 5/23/2023 | 10:10:00 | 5.078          | 6.06            | 3.838   |             |          |
| 5/23/2023 | 10:11:00 | 5.028          | 6.003           | 7.122   |             |          |
| 5/23/2023 | 10:12:00 | 5.126          | 4.965           | 6.412   |             |          |
| 5/23/2023 | 10:13:00 | 5.015          | 5.117           | 4.918   |             |          |
| 5/23/2023 | 10:14:00 | 4.983          | 5.759           | 9.49    |             |          |
| 5/23/2023 | 10:15:00 | 5.14           | 5.928           | 6.666   |             |          |
| 5/23/2023 | 10:16:00 | 5.006          | 5.61            | 3.983   |             |          |
| 5/23/2023 | 10:17:00 | 4.983          | 5.432           | 11.139  |             |          |
| 5/23/2023 | 10:18:00 | 5.084          | 5.592           | 6.739   |             |          |
| 5/23/2023 | 10:19:00 | 5.043          | 5.944           | 3.262   |             |          |
| 5/23/2023 | 10:20:00 | 4.908          | 5.814           | 9.662   | Start Run 1 |          |
| 5/23/2023 | 10:21:00 | 5.009          | 5.601           | 10.579  | Pt 3        |          |
| 5/23/2023 | 10:22:00 | 5.043          | 5.58            | 5.013   | Pt 3        |          |
| 5/23/2023 | 10:23:00 | 5.048          | 5.927           | 5.75    | Pt 3        |          |
| 5/23/2023 | 10:24:00 | 4.994          | 5.912           | 5.51    | Pt 3        |          |
| 5/23/2023 | 10:25:00 | 5.164          | 5.751           | 3.587   | Pt 3        |          |
| 5/23/2023 | 10:26:00 | 5.015          | 5.856           | 2.453   | Pt 3        |          |
| 5/23/2023 | 10:27:00 | 5.007          | 5.645           | 6.938   | Pt 3        |          |
| 5/23/2023 | 10:28:00 | 5.026          | 5.612           | 3.91    | Pt 2        |          |
| 5/23/2023 | 10:29:00 | 4.975          | 5.817           | 3.738   | Pt 2        |          |
| 5/23/2023 | 10:30:00 | 4.947          | 5.957           | 3.271   | Pt 2        |          |
| 5/23/2023 | 10:31:00 | 5.073          | 5.727           | 7.864   | Pt 2        |          |
| 5/23/2023 | 10:32:00 | 4.899          | 5.909           | 3.847   | Pt 2        |          |
| 5/23/2023 | 10:33:00 | 4.892          | 5.831           | 9.047   | Pt 2        |          |
| 5/23/2023 | 10:34:00 | 5.039          | 5.734           | 6.41    | Pt 2        |          |
| 5/23/2023 | 10:35:00 | 4.927          | 5.786           | 5.462   | Pt 1        |          |
| 5/23/2023 | 10:36:00 | 4.974          | 5.712           | 7.779   | Pt 1        |          |
| 5/23/2023 | 10:37:00 | 5.021          | 5.851           | 4.241   | Pt 1        |          |
| 5/23/2023 | 10:38:00 | 4.867          | 5.811           | 7.888   | Pt 1        |          |
| 5/23/2023 | 10:39:00 | 4.982          | 5.668           | 9.46    | Pt 1        |          |
|           |          |                | 0.000           | 0.10    |             |          |

|           | -                |                | 110             |         |             |          |  |
|-----------|------------------|----------------|-----------------|---------|-------------|----------|--|
|           | <b></b>          | O <sub>2</sub> | NO <sub>x</sub> | CO      |             |          |  |
| Date      | Time             | %              | PPM             | PPM     | DI 4        | Comments |  |
| 5/23/2023 | 10:40:00         | 4.903          | 5.85            | 3.366   | Pt 1        |          |  |
| 5/23/2023 | 10:41:00         | 4.989          | 5.823           | 7.106   | End 1       |          |  |
| 5/23/2023 | 10:42:00         | 4.372          | 1.412           | 13.617  | 0           |          |  |
| 5/23/2023 | 10:43:00         | 4.512          | 0.046           | 2.824   | Syst O2     |          |  |
| 5/23/2023 | 10:44:00         | 1.385          | 3.367           | -0.319  |             |          |  |
| 5/23/2023 | 10:45:00         | 0.004          | 4.769           | -0.059  | Syst NOx    |          |  |
| 5/23/2023 | 10:46:00         | 0              | 1.447           | 30.582  |             |          |  |
| 5/23/2023 | 10:47:00         | -0.001         | 0.038           | 216.338 |             |          |  |
| 5/23/2023 | 10:48:00         | -0.001         | 0.029           | 226.161 | Syst CO     |          |  |
| 5/23/2023 | 10:49:00         | 3.3            | 3.627           | 190.393 | -           |          |  |
| 5/23/2023 | 10:50:00         | 5.122          | 5.573           | 15.597  | Start 2     |          |  |
| 5/23/2023 | 10:51:00         | 4.995          | 5.764           | 6.574   | Pt 3        |          |  |
| 5/23/2023 | 10:52:00         | 5.137          | 5.651           | 4.517   | Pt 3        |          |  |
| 5/23/2023 | 10:53:00         | 5.052          | 5.865           | 1.797   | Pt 3        |          |  |
| 5/23/2023 | 10:54:00         | 5.154          | 5.791           | 3.227   | Pt 3        |          |  |
| 5/23/2023 | 10:55:00         | 5.081          | 5.749           | 3.516   | Pt 3        |          |  |
| 5/23/2023 | 10:56:00         | 5.109          | 5.585           | 4.961   | Pt 3        |          |  |
| 5/23/2023 | 10:57:00         | 5.152          | 5.643           | 2.708   | Pt 3        |          |  |
| 5/23/2023 | 10:58:00         | 5.019          | 5.723           | 6.252   | Pt 2        |          |  |
| 5/23/2023 | 10:59:00         | 5.135          | 5.808           | 3.652   | Pt 2        |          |  |
| 5/23/2023 | 11:00:00         | 5.016          | 6.039           | 1.966   | Pt 2        |          |  |
| 5/23/2023 | 11:01:00         | 4.99           | 5.724           | 5.056   | Pt 2        |          |  |
| 5/23/2023 | 11:02:00         | 5.115          | 5.582           | 4.982   | Pt 2        |          |  |
| 5/23/2023 | 11:03:00         | 4.989          | 5.666           | 3.714   | Pt 2        |          |  |
| 5/23/2023 | 11:04:00         | 5.145          | 5.729           | 3.254   | Pt 2        |          |  |
| 5/23/2023 | 11:05:00         | 4.957          | 5.884           | 4.678   | Pt 1        |          |  |
| 5/23/2023 | 11:06:00         | 4.994          | 5.836           | 5.5     | Pt 1        |          |  |
| 5/23/2023 | 11:07:00         | 5.139          | 5.65            | 2.643   | Pt 1        |          |  |
| 5/23/2023 | 11:08:00         | 5.061          | 5.776           | 1.448   | Pt 1        |          |  |
| 5/23/2023 | 11:09:00         | 4.943          | 5.759           | 7.828   | Pt 1        |          |  |
| 5/23/2023 | 11:10:00         | 5.019          | 5.546           | 5.412   | Pt 1        |          |  |
| 5/23/2023 | 11:11:00         | 5.058          | 5.616           | 4.245   | End Run 2   |          |  |
| 5/23/2023 | 11:12:00         | 4.37           | 1.288           | 11.864  |             |          |  |
| 5/23/2023 | 11:13:00         | 4.516          | 0.059           | 2.382   | Syst O2     |          |  |
| 5/23/2023 | 11:14:00         | 1.908          | 2.835           | -0.323  |             |          |  |
| 5/23/2023 | 11:15:00         | 0.005          | 4.737           | -0.082  | Syst NOx    |          |  |
| 5/23/2023 | <b>11</b> :16:00 | 0.001          | 1.571           | 26.616  |             |          |  |
| 5/23/2023 | 11:17:00         | 0              | 0.047           | 213.702 | -           |          |  |
| 5/23/2023 | <b>11</b> :18:00 | 0              | 0.029           | 226.102 | Syst CO     |          |  |
| 5/23/2023 | 11:19:00         | 3.248          | 3.754           | 191.846 | -           |          |  |
| 5/23/2023 | 11:20:00         | 5.114          | 5.729           | 15.273  | Start Run 3 |          |  |
| 5/23/2023 | 11:21:00         | 5.188          | 5.556           | 4.785   | Pt 3        |          |  |
| 5/23/2023 | 11:22:00         | 5.082          | 5.64            | 3.216   | Pt 3        |          |  |
| 5/23/2023 | 11:23:00         | 5.185          | 5.595           | 3.902   | Pt 3        |          |  |
| 5/23/2023 | 11:24:00         | 5.133          | 5.686           | 2.682   | Pt 3        |          |  |
| 5/23/2023 | 11:25:00         | 5.063          | 5.848           | 3.861   | Pt 3        |          |  |
| 5/23/2023 | 11:26:00         | 5.142          | 5.808           | 3.759   | Pt 3        |          |  |
| 5/23/2023 | 11:27:00         | 5.058          | 5.711           | 4.692   | Pt 3        |          |  |
| 5/23/2023 | 11:28:00         | 5.083          | 5.622           | 5.185   | Pt 2        |          |  |
| 5/23/2023 | 11:29:00         | 5.049          | 5.698           | 4.802   | Pt 2        |          |  |
|           |                  |                |                 |         |             |          |  |

|           |          | O <sub>2</sub> | NOx    | CO      |             |          |
|-----------|----------|----------------|--------|---------|-------------|----------|
| Date      | Time     | %              | PPM    | PPM     |             | Comments |
| 5/23/2023 | 11:30:00 | 5.098          | 5.701  | 3.448   | Pt 2        |          |
| 5/23/2023 | 11:31:00 | 5.107          | 5.826  | 2.452   | Pt 2        |          |
| 5/23/2023 | 11:32:00 | 5.107          | 5.75   | 2.705   | Pt 2        |          |
| 5/23/2023 | 11:33:00 | 4.973          | 5.72   | 4.178   | Pt 2        |          |
| 5/23/2023 | 11:34:00 | 5.053          | 5.602  | 7.992   | Pt 2        |          |
| 5/23/2023 | 11:35:00 | 4.987          | 5.636  | 6.434   | Pt 1        |          |
| 5/23/2023 | 11:36:00 | 5.081          | 5.755  | 4.025   | Pt 1        |          |
| 5/23/2023 | 11:37:00 | 5.002          | 5.846  | 2.99    | Pt 1        |          |
| 5/23/2023 | 11:38:00 | 5.067          | 5.851  | 3.482   | Pt 1        |          |
| 5/23/2023 | 11:39:00 | 4.944          | 5.709  | 5.108   | Pt 1        |          |
| 5/23/2023 | 11:40:00 | 4.982          | 5.68   | 5.961   | Pt 1        |          |
| 5/23/2023 | 11:41:00 | 4.984          | 5.601  | 8.504   | End 3       |          |
| 5/23/2023 | 11:42:00 | 4.348          | 1.234  | 13.211  |             |          |
| 5/23/2023 | 11:43:00 | 4.514          | 0.053  | 2.251   | Syst O2     |          |
| 5/23/2023 | 11:44:00 | 1.284          | 3.478  | -0.304  |             |          |
| 5/23/2023 | 11:45:00 | 0.002          | 4.751  | -0.051  | Syst NOx    |          |
| 5/23/2023 | 11:46:00 | -0.001         | 2.342  | 9.168   |             |          |
| 5/23/2023 | 11:47:00 | -0.003         | 0.041  | 194.127 |             |          |
| 5/23/2023 | 11:48:00 | -0.005         | 0.034  | 226.433 | Syst CO     |          |
| 5/23/2023 | 11:49:00 | -0.001         | 0.014  | 143.412 |             |          |
| 5/23/2023 | 11:50:00 | -0.013         | 0.018  | 1.565   |             |          |
| 5/23/2023 | 11:51:00 | -0.014         | 0.018  | -0.13   | Zero        |          |
| 5/23/2023 | 11:52:00 | 3.851          | 4.292  | 89.499  | -           |          |
| 5/23/2023 | 11:53:00 | 4.529          | 4.738  | 226.189 |             |          |
| 5/23/2023 | 11:54:00 | 4.529          | 4.731  | 226.757 | Span        |          |
| 5/23/2023 | 11:55:00 | 3.706          | 4.463  | 204.945 |             |          |
| 5/23/2023 | 11:56:00 | 5.111          | 5.569  | 26.606  | Start Run 4 |          |
| 5/23/2023 | 11:57:00 | 5.187          | 5.536  | 0.198   | Pt 3        |          |
| 5/23/2023 | 11:58:00 | 5.021          | 5.657  | -0.038  | Pt 3        |          |
| 5/23/2023 | 11:59:00 | 5.103          | 5.582  | -0.037  | Pt 3        |          |
| 5/23/2023 | 12:00:00 | 4.995          | 5.529  | -0.028  | Pt 3        |          |
| 5/23/2023 | 12:01:00 | 5.178          | 5.519  | -0.036  | Pt 3        |          |
| 5/23/2023 | 12:02:00 | 4.994          | 5.552  | -0.032  | Pt 3        |          |
| 5/23/2023 | 12:03:00 | 5.194          | 5.618  | -0.031  | Pt 3        |          |
| 5/23/2023 | 12:04:00 | 4.972          | 5.753  | -0.022  | Pt 2        |          |
| 5/23/2023 | 12:05:00 | 5              | 5.769  | -0.018  | Pt 2        |          |
| 5/23/2023 | 12:06:00 | 4.978          | 5.702  | -0.023  | Pt 2        |          |
| 5/23/2023 | 12:07:00 | 5.024          | 5.69   | -0.031  | Pt 2        |          |
| 5/23/2023 | 12:08:00 | 5.023          | 5.687  | -0.04   | Pt 2        |          |
| 5/23/2023 | 12:09:00 | 5.074          | 5.634  | -0.035  | Pt 2        |          |
| 5/23/2023 | 12:10:00 | 5.012          | 5.889  | -0.028  | Pt 2        |          |
| 5/23/2023 | 12:11:00 | 4.987          | 5.943  | -0.024  | Pt 1        |          |
| 5/23/2023 | 12:12:00 | 5.09           | 5.899  | -0.014  | Pt 1        |          |
| 5/23/2023 | 12:13:00 | 4.926          | 5.888  | -0.03   | Pt 1        |          |
| 5/23/2023 | 12:14:00 | 4.953          | 5.652  | -0.027  | Pt 1        |          |
| 5/23/2023 | 12:15:00 | 5.074          | 5.6    | -0.032  | Pt 1        |          |
| 5/23/2023 | 12:16:00 | 4.893          | 5.679  | -0.029  | Pt 1        |          |
| 5/23/2023 | 12:17:00 | 4.975          | 5.849  | -0.027  | End 4       |          |
| 5/23/2023 | 12:18:00 | 4.496          | 3.723  | -0.027  | T MILE      |          |
|           |          |                | 2.1 20 | 0.001   |             |          |

|           |          | 0              | NO              |        |          |          |
|-----------|----------|----------------|-----------------|--------|----------|----------|
|           | Time     | O <sub>2</sub> | NO <sub>x</sub> | CO     |          | 0        |
| Date      | Time     | %              | PPM             | PPM    |          | Comments |
| 5/23/2023 | 12:20:00 | 3.571          | 1.131           | -0.099 | 0        |          |
| 5/23/2023 | 12:21:00 | 0.012          | 4.76            | -0.013 | Syst NOx |          |
| 5/23/2023 | 12:22:00 | 1.614          | 5.041           | -0.034 | o        |          |
| 5/23/2023 | 12:23:00 | 5.172          | 5.634           | -0.036 | Start 5  |          |
| 5/23/2023 | 12:24:00 | 5.035          | 5.765           | -0.034 | Pt 3     |          |
| 5/23/2023 | 12:25:00 | 5.084          | 5.696           | -0.005 | Pt 3     |          |
| 5/23/2023 | 12:26:00 | 5.207          | 5.679           | -0.031 | Pt 3     |          |
| 5/23/2023 | 12:27:00 | 5.057          | 5.779           | -0.037 | Pt 3     |          |
| 5/23/2023 | 12:28:00 | 4.992          | 5.7             | 0.011  | Pt 3     |          |
| 5/23/2023 | 12:29:00 | 5.245          | 5.564           | -0.018 | Pt 3     |          |
| 5/23/2023 | 12:30:00 | 5.048          | 5.825           | -0.02  | Pt 3     |          |
| 5/23/2023 | 12:31:00 | 5.031          | 5.816           | 0.01   | Pt 2     |          |
| 5/23/2023 | 12:32:00 | 5.015          | 5.75            | -0.026 | Pt 2     |          |
| 5/23/2023 | 12:33:00 | 5.094          | 5.636           | -0.031 | Pt 2     |          |
| 5/23/2023 | 12:34:00 | 5.09           | 5.745           | -0.018 | Pt 2     |          |
| 5/23/2023 | 12:35:00 | 4.967          | 5.798           | 0.023  | Pt 2     |          |
| 5/23/2023 | 12:36:00 | 5.032          | 5.801           | -0.023 | Pt 2     |          |
| 5/23/2023 | 12:37:00 | 4.962          | 5.771           | -0.031 | Pt 2     |          |
| 5/23/2023 | 12:38:00 | 5.095          | 5.749           | 0.068  | Pt 1     |          |
| 5/23/2023 | 12:39:00 | 5.033          | 5.765           | -0.028 | Pt 1     |          |
| 5/23/2023 |          |                |                 |        |          |          |
|           | 12:40:00 | 5.103          | 5.721           | 0.044  | Pt 1     |          |
| 5/23/2023 | 12:41:00 | 4.986          | 5.864           | 0.012  | Pt 1     |          |
| 5/23/2023 | 12:42:00 | 4.99           | 5.777           | -0.027 | Pt 1     |          |
| 5/23/2023 | 12:43:00 | 5.086          | 5.758           | 0.061  | Pt 1     |          |
| 5/23/2023 | 12:44:00 | 4.935          | 5.925           | -0.03  | End 5    |          |
| 5/23/2023 | 12:45:00 | 4.48           | 3.495           | -0.069 |          |          |
| 5/23/2023 | 12:46:00 | 4.516          | 0.087           | -0.02  | Syst O2  |          |
| 5/23/2023 | 12:47:00 | 3.319          | 1.379           | -0.09  |          |          |
| 5/23/2023 | 12:48:00 | 0.01           | 4.841           | 0.003  | Syst NOx |          |
| 5/23/2023 | 12:49:00 | 0.014          | 4.801           | -0.001 |          |          |
| 5/23/2023 | 12:50:00 | 4.926          | 5.583           | 0.036  | Start 6  |          |
| 5/23/2023 | 12:51:00 | 5.117          | 5.534           | -0.017 | Pt 3     |          |
| 5/23/2023 | 12:52:00 | 5.1            | 5.647           | 0.06   | Pt 3     |          |
| 5/23/2023 | 12:53:00 | 5.034          | 5.751           | 0.071  | Pt 3     |          |
| 5/23/2023 | 12:54:00 | 5.078          | 5.696           | -0.011 | Pt 3     |          |
| 5/23/2023 | 12:55:00 | 5.149          | 5.657           | 0.008  | Pt 3     |          |
| 5/23/2023 | 12:56:00 | 5.079          | 5.648           | 0.094  | Pt 3     |          |
| 5/23/2023 | 12:57:00 | 5.015          | 5.663           | -0.028 | Pt 3     |          |
| 5/23/2023 | 12:58:00 | 5.112          | 5.615           | 0.064  | Pt 2     |          |
| 5/23/2023 | 12:59:00 | 5.036          | 5.683           | 0.06   | Pt 2     |          |
| 5/23/2023 | 13:00:00 | 4.979          | 5.768           | 0.049  | Pt 2     |          |
| 5/23/2023 | 13:01:00 | 4.942          | 5.853           | 0.040  | Pt 2     |          |
| 5/23/2023 | 13:02:00 | 4.907          | 5.779           | 0.045  | Pt 2     |          |
| 5/23/2023 | 13:03:00 | 5.085          | 5.679           | 0.121  | Pt 2     |          |
| 5/23/2023 | 13:04:00 | 5.085          | 5.772           | 0.091  | Pt 2     |          |
| 5/23/2023 |          |                |                 |        |          |          |
|           | 13:05:00 | 4.937          | 5.771<br>5.704  | 0.068  | Pt 1     |          |
| 5/23/2023 | 13:06:00 | 4.963          | 5.704           | 0.068  | Pt 1     |          |
| 5/23/2023 | 13:07:00 | 4.956          | 5.918           | 0.018  | Pt 1     |          |
| 5/23/2023 | 13:08:00 | 4.971          | 5.826           | 0.066  | Pt 1     |          |
| 5/23/2023 | 13:09:00 | 4.991          | 5.739           | 0.058  | Pt 1     |          |
|           |          |                |                 |        |          |          |

|           |          | O <sub>2</sub> | NOx   | CO     |          |          |
|-----------|----------|----------------|-------|--------|----------|----------|
| Date      | Time     | %              | PPM   | PPM    |          | Comments |
| 5/23/2023 | 13:10:00 | 5.005          | 5.684 | 0.09   | Pt 1     |          |
| 5/23/2023 | 13:11:00 | 5.019          | 5.649 | 0.121  |          |          |
| 5/23/2023 | 13:12:00 | 4.963          | 5.773 | 0.053  |          |          |
| 5/23/2023 | 13:13:00 | 4.394          | 2.853 | 0.001  |          |          |
| 5/23/2023 | 13:14:00 | 4.515          | 0.09  | -0.022 | Syst O2  |          |
| 5/23/2023 | 13:15:00 | 2.88           | 1.88  | -0.062 |          |          |
| 5/23/2023 | 13:16:00 | 0.008          | 4.794 | 0.072  | Syst NOx |          |
| 5/23/2023 | 13:17:00 | 0.004          | 0.71  | -0.007 |          |          |
| 5/23/2023 | 13:18:00 | -0.008         | 0.017 | 0.031  | Zero     |          |
| 5/23/2023 | 13:19:00 | 3.586          | 4.036 | 0.079  |          |          |
| 5/23/2023 | 13:20:00 | 4.529          | 4.744 | 0.006  | Span     |          |
| 5/23/2023 | 13:21:00 | 2.357          | 5.032 | 0.107  |          |          |
| 5/23/2023 | 13:22:00 | 5.095          | 5.588 | 0.068  | Start 7  |          |
| 5/23/2023 | 13:23:00 | 5.097          | 5.648 | 0.074  | Pt 3     |          |
| 5/23/2023 | 13:24:00 | 5.074          | 5.63  | 0.081  | Pt 3     |          |
| 5/23/2023 | 13:25:00 | 5.096          | 5.639 | 0.052  | Pt 3     |          |
| 5/23/2023 | 13:26:00 | 5.071          | 5.768 | 0.084  | Pt 3     |          |
| 5/23/2023 | 13:27:00 | 5.037          | 5.816 | 0.089  | Pt 3     |          |
| 5/23/2023 | 13:28:00 | 5.129          | 5.767 | -0.006 | Pt 3     |          |
| 5/23/2023 | 13:29:00 | 5.043          | 5.684 | 0.062  | Pt 3     |          |
| 5/23/2023 | 13:30:00 | 5.118          | 5.7   | 0.022  | Pt 2     |          |
| 5/23/2023 | 13:31:00 | 4.998          | 5.707 | 0.093  | Pt 2     |          |
| 5/23/2023 | 13:32:00 | 4.967          | 5.711 | 0.038  | Pt 2     |          |
| 5/23/2023 | 13:33:00 | 4.939          | 5.684 | 0.03   | Pt 2     |          |
| 5/23/2023 | 13:34:00 | 5.048          | 5.756 | 0.108  | Pt 2     |          |
| 5/23/2023 | 13:35:00 | 4.928          | 5.731 | 0.043  | Pt 2     |          |
| 5/23/2023 | 13:36:00 | 5.019          | 5.708 | 0.119  | Pt 2     |          |
| 5/23/2023 | 13:37:00 | 5.022          | 5.887 | 0.13   | Pt 1     |          |
| 5/23/2023 | 13:38:00 | 4.961          | 5.862 | 0.062  | Pt 1     |          |
| 5/23/2023 | 13:39:00 | 5.026          | 5.922 | 0.07   | Pt 1     |          |
| 5/23/2023 | 13:40:00 | 4.982          | 5.838 | 0.052  | Pt 1     |          |
| 5/23/2023 | 13:41:00 | 4.964          | 5.73  | 0.097  | Pt 1     |          |
| 5/23/2023 | 13:42:00 | 5.036          | 5.65  | 0.037  | Pt 1     |          |
| 5/23/2023 | 13:43:00 | 5.045          | 5.635 | 0.114  | End 7    |          |
| 5/23/2023 | 13:44:00 | 4.394          | 2.509 | 0.001  |          |          |
| 5/23/2023 | 13:45:00 | 4.522          | 0.097 | -0.006 | Syst O2  |          |
| 5/23/2023 | 13:46:00 | 1.906          | 2.841 | 0.079  | •        |          |
| 5/23/2023 | 13:47:00 | 0.009          | 4.8   | 0.054  | Syst NOx |          |
| 5/23/2023 | 13:48:00 | 2.635          | 5.241 | 0.086  | -        |          |
| 5/23/2023 | 13:49:00 | 5.107          | 5.688 | 0.121  | Start 8  |          |
| 5/23/2023 | 13:50:00 | 5.091          | 5.742 | 0.042  | Pt 3     |          |
| 5/23/2023 | 13:51:00 | 5.054          | 5.706 | 0.12   | Pt 3     |          |
| 5/23/2023 | 13:52:00 | 5.032          | 5.74  | 0.04   | Pt 3     |          |
| 5/23/2023 | 13:53:00 | 5.107          | 5.803 | 0.122  | Pt 3     |          |
| 5/23/2023 | 13:54:00 | 5.102          | 5.688 | 0.118  | Pt 3     |          |
| 5/23/2023 | 13:55:00 | 5.13           | 5.686 | 0.12   | Pt 3     |          |
| 5/23/2023 | 13:56:00 | 5.056          | 5.681 | 0.1    | Pt 3     |          |
| 5/23/2023 | 13:57:00 | 5.09           | 5.72  | 0.112  | Pt 2     |          |
| 5/23/2023 | 13:58:00 | 4.975          | 5.753 | 0.096  | Pt 2     |          |
| 5/23/2023 | 13:59:00 | 5.073          | 5.708 | 0.119  | Pt 2     |          |
|           |          | 0.010          |       | v      |          |          |

|                        |                      | O <sub>2</sub> | NO <sub>x</sub> | CO            |                                          |
|------------------------|----------------------|----------------|-----------------|---------------|------------------------------------------|
| Date                   | Time                 | %              | PPM             | PPM           | Comments                                 |
| 5/23/2023              | 14:00:00             | 5.04           | 5.713           | 0.07          | Pt 2                                     |
| 5/23/2023              | 14:01:00             | 4.977          | 5.712           | 0.122         | Pt 2                                     |
| 5/23/2023              | 14:02:00             | 5.027          | 5.696           | 0.071         | Pt 2                                     |
| 5/23/2023              | 14:03:00             | 5.042          | 5.783           | 0.122         | Pt 2                                     |
| 5/23/2023              | 14:04:00             | 4.933          | 5.782           | 0.122         | Pt 1                                     |
| 5/23/2023              | 14:05:00             | 5.073          | 5.75            | 0.027         | Pt 1                                     |
| 5/23/2023              | 14:06:00             | 4.939          | 5.803           | 0.115         | Pt 1                                     |
| 5/23/2023              | 14:07:00             | 5.01           | 5.806           | 0.105         | Pt 1                                     |
| 5/23/2023              | 14:08:00             | 5.016          | 5.838           | 0.124         | Pt 1                                     |
| 5/23/2023              | 14:09:00             | 5.053          | 5.855           | 0.102         | Pt 1                                     |
| 5/23/2023              | 14:10:00             | 5.071          | 5.721           | 0.123         | End 8                                    |
| 5/23/2023              | 14:11:00             | 4.471          | 2.691           | 0.056         | End o                                    |
| 5/23/2023              | 14:12:00             | 4.526          | 0.103           | 0.000         | Syst O2                                  |
| 5/23/2023              | 14:13:00             | 2.012          | 2.676           | 0.081         | 0,01.02                                  |
| 5/23/2023              | 14:14:00             | 0.01           | 4.747           | 0.108         | Syst NOx                                 |
| 5/23/2023              | 14:15:00             | 2.334          | 5.234           | 0.108         | Syst NOX                                 |
| 5/23/2023              | 14:15:00             | 2.334<br>5.035 | 5.234           | 0.119         |                                          |
| 5/23/2023              | 14:17:00             | 5.066          | 5.65            | 0.123         |                                          |
| 5/23/2023              | 14:17:00             | 5.076          |                 |               |                                          |
| 5/23/2023              | 14:18:00             |                | 5.628           | 0.087         |                                          |
| 5/23/2023              |                      | 5.103          | 5.574<br>5.741  | 0.116         |                                          |
|                        | 14:20:00             | 5.062          |                 | 0.123         |                                          |
| 5/23/2023              | 14:21:00             | 5.059          | 5.686           | 0.125         |                                          |
| 5/23/2023<br>5/23/2023 | 14:22:00<br>14:23:00 | 5.144          | 5.671<br>5.72   | 0.13          |                                          |
| 5/23/2023              | 14:23:00             | 5.058<br>5.07  | 5.72            | 0.124         |                                          |
| 5/23/2023              | 14:24:00             | 5.07           | 5.766           | 0.127<br>0.13 |                                          |
| 5/23/2023              | 14:26:00             | 5.053          | 5.736           | 0.13          |                                          |
| 5/23/2023              | 14:27:00             | 4.943          | 5.703           | 0.121         |                                          |
| 5/23/2023              | 14:28:00             | 4.943          | 5.641           | 0.133         |                                          |
| 5/23/2023              | 14:29:00             | 5.026          | 5.652           | 0.095         |                                          |
| 5/23/2023              | 14:30:00             | 4.945          | 5.684           | 0.122         |                                          |
| 5/23/2023              | 14:30:00             | 5.04           | 5.743           | 0.122         |                                          |
| 5/23/2023              | 14:41:00             | NaN            | NaN             | NaN           | Data Logger error 14:31 - 14:41/Start Ru |
| 5/23/2023              | 14:42:00             | 4.968          | 5.67            | 0.121         | Pt 3                                     |
| 5/23/2023              | 14:43:00             | 5.001          | 5.521           | 0.121         | Pt 3                                     |
| 5/23/2023              | 14:44:00             | 4.918          | 5.597           | 0.122         | Pt 3                                     |
| 5/23/2023              | 14:44:00             | 4.918          | 5.61            | 0.117         | Pt 3                                     |
| 5/23/2023              | 14:45:00             |                |                 |               |                                          |
|                        |                      | 4.919          | 5.752           | 0.126         | Pt 3                                     |
| 5/23/2023              | 14:47:00             | 4.87           | 5.637           | 0.12          | Pt 3                                     |
| 5/23/2023              | 14:48:00             | 4.962          | 5.649           | 0.12          | Pt 3                                     |
| 5/23/2023              | 14:49:00             | 4.917          | 5.755           | 0.128         | Pt 2                                     |
| 5/23/2023              | 14:50:00             | 4.958          | 5.782           | 0.123         | Pt 2                                     |
| 5/23/2023              | 14:51:00             | 4.94           | 5.906           | 0.124         | Pt 2                                     |
| 5/23/2023              | 14:52:00             | 4.991          | 5.758           | 0.123         | Pt 2                                     |
| 5/23/2023              | 14:53:00             | 4.924          | 5.843           | 0.12          | Pt 2                                     |
| 5/23/2023              | 14:54:00             | 4.974          | 5.812           | 0.126         | Pt 2                                     |
| 5/23/2023              | 14:55:00             | 5.043          | 5.789           | 0.123         | Pt 2                                     |
| 5/23/2023              | 14:56:00             | 4.89           | 5.777           | 0.128         | Pt 1                                     |
| 5/23/2023              | 14:57:00             | 4.996          | 5.655           | 0.125         | Pt 1                                     |
| 5/23/2023              | 14:58:00             | 4.987          | 5.694           | 0.119         | Pt 1                                     |
|                        |                      |                |                 |               |                                          |

|           |          | O <sub>2</sub> | NOx   | CO    |          |          |
|-----------|----------|----------------|-------|-------|----------|----------|
| Date      | Time     | %              | PPM   | PPM   |          | Comments |
| 5/23/2023 | 14:59:00 | 4.877          | 5.785 | 0.126 | Pt 1     |          |
| 5/23/2023 | 15:00:00 | 4.997          | 5.705 | 0.124 | Pt 1     |          |
| 5/23/2023 | 15:01:00 | 4.885          | 5.781 | 0.121 | Pt 1     |          |
| 5/23/2023 | 15:02:00 | 4.968          | 5.704 | 0.119 | End 9    |          |
| 5/23/2023 | 15:03:00 | 4.443          | 2.484 | 0.07  |          |          |
| 5/23/2023 | 15:04:00 | 4.518          | 0.131 | 0.041 | Syst O2  |          |
| 5/23/2023 | 15:05:00 | 2.406          | 2.279 | 0.073 |          |          |
| 5/23/2023 | 15:06:00 | 0.007          | 4.78  | 0.117 | Syst NOx |          |
| 5/23/2023 | 15:07:00 | -0.003         | 0.806 | 0.048 | -        |          |
| 5/23/2023 | 15:08:00 | -0.011         | 0.024 | 0.032 | Zero     |          |
| 5/23/2023 | 15:09:00 | 3.837          | 4.266 | 0.102 |          |          |
| 5/23/2023 | 15:10:00 | 4.531          | 4.745 | 0.109 | Span     |          |

# Appendix A.3 Quality Assurance Data



# Montrose Air Quality Services, LLC CEMS Performance Data Sheet



|                                              | Ormond Beach<br>Ormond Beach<br>Cube | Date:<br>Performed By: ] | 5/23/2023<br>MM, LO, LE, A        | E                         |                     |        |    |
|----------------------------------------------|--------------------------------------|--------------------------|-----------------------------------|---------------------------|---------------------|--------|----|
| Analyzer:<br>Manufacturer:<br>Serial Number: | O <sub>2</sub><br>CAI<br>Z08006-M    | CO <sub>2</sub><br>      | NO <sub>x</sub><br>CAI<br>2203012 | CO<br>Thermo<br>812329452 | SO <sub>2</sub><br> |        |    |
| CEMS Probe:                                  | Material:                            | S.S.                     | Length:                           | 10'/20'                   | Gas Temp:           | 200    | °F |
| Heated Line                                  | Material:                            | Teflon                   | Length:                           | 35'                       | Gas Temp:           | 313    | °F |
| Sample Conditio                              | ner:                                 |                          | Туре:                             | Universal                 | Gas Temp:           | 33     | °F |
| CEMS Line:                                   | Material:                            | Teflon                   | Length:                           | 150'                      |                     |        |    |
| Bias Line:                                   | Material:                            | Teflon                   | Length:                           | 150'                      |                     |        |    |
| Upscale Re                                   | esponse Time:                        | 45                       | Downscale F                       | Response Time:            | 45                  | second | s  |
| Sample P                                     | ressure (psi):                       | 4                        | San                               | nple Flow Rate:           | 9                   | SCFH   |    |

# Montrose Air Quality Services, LLC SPAN GAS RECORD AND CALIBRATION ERROR

MONTROSE AIR QUALITY SERVICES

CLIENT/LOCATION: Ormond Beach Unit 2 TRUCK/CEM I.D.: Cube DATE: 5/23/23 BY: MM, LO, LE, AE

|                 | CYLINDER NO. | CONCENTRATION | Expiration Date | Vendor ID |
|-----------------|--------------|---------------|-----------------|-----------|
| ZERO            | CC40169      | 0.0           | 12/9/2027       | F22022    |
| O <sub>2</sub>  | CC755408     | 4.54          | 8/24/2030       | F22022    |
| O <sub>2</sub>  | SA10524      | 8.94          | 1/16/2031       | F22023    |
| NOx             | DT0042444    | 4.790         | 5/11/2025       | F22022    |
| NOx             | CC757982     | 9.13          | 9/8/2025        | F22022    |
| CO              | CC755368     | 228.7         | 7/11/2030       | F22022    |
| CO              | DT0035931    | 475.6         | 4/21/2028       | F22020    |
| NO <sub>2</sub> | DT0028293    | 7.03          | 3/22/2024       | F22023    |

#### PRE-TEST INSTRUMENT CALIBRATION ERROR

|                    | 1              | ANALYZER |        |  |        |  |
|--------------------|----------------|----------|--------|--|--------|--|
|                    | O <sub>2</sub> | NOx      | CO     |  | STATUS |  |
| Calibration Span   | 8.94           | 9.13     | 475.6  |  |        |  |
| Zero Gas Value     | 0.0            | 0.0      | 0.0    |  |        |  |
| Analyzer Reads     | 0.00           | 0.02     | -0.11  |  |        |  |
| Error (% of scale) | 0.0%           | 0.2%     | 0.0%   |  | PASS   |  |
| High Gas Value     | 8.94           | 9.13     | 475.6  |  |        |  |
| Analyzer Reads     | 8.94           | 9.12     | 475.58 |  |        |  |
| Error (% of scale) | 0.0%           | -0.1%    | 0.0%   |  | PASS   |  |
| Mid Gas Value      | 4.54           | 4.79     | 228.7  |  |        |  |
| Analyzer Reads     | 4.53           | 4.72     | 227.50 |  |        |  |
| Error (% of scale) | -0.1%          | -0.7%    | -0.3%  |  | PASS   |  |

|                 |                                             |     | ir Quality Servi<br>onverter Efficie |                                    | MONTROS<br>AIR QUALITY SERVIC |
|-----------------|---------------------------------------------|-----|--------------------------------------|------------------------------------|-------------------------------|
| ļ               | Analyzer Manufacturer:<br>Analyzer Model:   |     |                                      | Cal Gas Value:<br>2 Cal Gas Value: |                               |
| Aı              | nalyzer Serial Number:                      |     |                                      | -                                  | MM, LO, LE, AE                |
| GAS             | ANALYZEF<br>MODE                            | 2   | ANALYZER<br>RESPONSE                 | CAL<br>CORRECTE                    | D LABEI                       |
| Zero            | NO <sub>x</sub>                             |     | 0.02                                 |                                    |                               |
| NO              | NO <sub>x</sub>                             |     | 9.12                                 |                                    |                               |
| NO <sub>2</sub> | NO <sub>x</sub>                             |     | 6.54                                 | 6.54                               | C <sub>2</sub>                |
|                 | CE = D <sub>2</sub> /D <sub>1</sub> * 100%: | 93% | Requireme<br>> 90%                   | nt                                 |                               |
|                 | Cylinder #                                  |     | Eve Data                             |                                    |                               |

|                         | Cylinder # | Exp. Date |
|-------------------------|------------|-----------|
| NO bottle:              | CC757982   | 9/8/2025  |
| NO <sub>2</sub> bottle: | DT0028293  | 3/22/2024 |



MONTROSE

Montrose Air Quality Services, LLC 1631 E. St. Andrew Pl. Santa Ana, CA 92705

Linde Order Number: 72290056 Customer PO Number: 80296499



Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles, CA 90058 Tel: 323-585-2154 Fax: 714-542-6689

Certificate Issuance Date: 12/12/2022

Certification Date: 12/12/2022 Lot Number: N70086234106 Part Number: NI 5.5CE-AS DocNumber: 633250

### **CERTIFICATE OF ANALYSIS** Nitrogen, 5.5 Continuous Emission Monitoring Zero

Analytical Analytical Analytical Analytes Specification Results Reference Uncertainty Nitrogen ≥ 99.9995 % ≥ 99,9995 % 5 N/A **Carbon Dioxide** ≤ 1 ppm ≤ 0.5 ppm 3 ± 10% Carbon Monoxide ≤ 0.5 ppm ≤ 0.5 ppm 3 ± 15% **Total Hydrocarbons** ≤ 0.1 ppm ≤ 0.1 ppm 6 ± 15% Oxides of Nitrogen ≤ 0.1 ppm ≤ 0.1 ppm 7 ± 15% Oxygen ≤ 0.5 ppm ≤ 0.5 ppm 2 ± 15% Sulfur Dioxide ≤ 0.1 ppm ≤ 0.1 ppm 1 ± 15% Water ≤ 2 ppm ≤ 1.5 ppm 4 ± 10%

Cylinder Style: AS Cylinder Pressure @ 70 F: 2000 psig Cylinder Volume: 142 ft3 Valve Outlet Connection: CGA 580

Fill Date: 12/7/2022 Analysis Date: 12/9/2022 Filling Method: Pressure/Temperature

Cylinder Number(s): CC40169, CC76985, SA3038, IL-2374, DT0010305, DT0022891, CC122650, CC187751, ALM-015666, DT0011378, CC69127, ALM-053937

Analyzed Cylinder Number(s): CC40169

Analyst: Amalia Real

Approved Signer Ying Yu

| Key to Ar | nalytical Techniques:                                        |         |
|-----------|--------------------------------------------------------------|---------|
| Reference | Analytical Instrument - Analytical Principle                 |         |
| 1         | Ametek 921CE S/N AW-921-S321 - UV Spectrometry               |         |
| 2         | Delta F DF-550 Nanotrace - Electrolytic Cell/Electrochemical | Δ       |
| 3         | Horiba Instruments Inc. GA-360E - NDIR                       |         |
| 4         | Meeco Aquavolt PLUS - Specific Water Analyzer                | / / 0   |
| 5         | N/A - By Difference of Typical Impurities                    |         |
| 6         | Rosemount/Beckman 400A - FID Total Hydrocarbon Analyzer      | CCUDIA  |
| 7         | Thermo Electron 42i-LS S/N 1030645077 - Chemiluminescence    | LC40169 |
|           |                                                              |         |

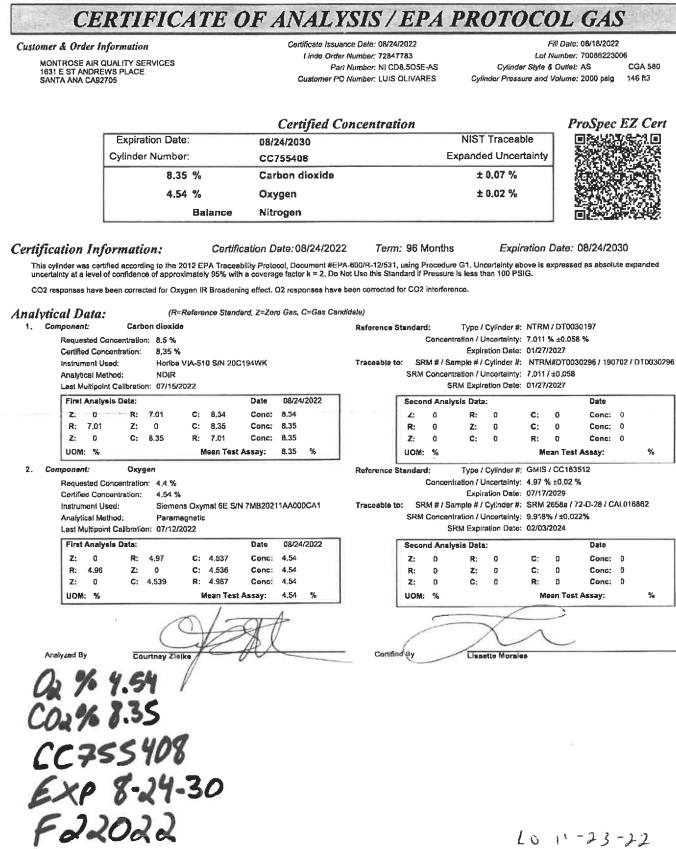
This analysis of the product described herein was prepared by Linde Gas & Equipment Inc, using instruments whose calibration is certified using Linde Gas & Equipment Inc, Reference Materials which are traceable to the International System of Units (SI) through either weights traceable to the National Institute of Standards and Technology (NIST) or Measurement Canada, or through NIST Standard Reference Materials or equivalent where available.

Note: All expressions for concentration (e.g., % or ppm) are for gas phase, by mole unless otherwise noted. Analytical uncertanity is expressed as a Relative % unless otherwise noted.

) N-3-N3

12-7-20

#### IMPORTANT


IMPORTANT The information contained herein has been prepared at your request by personnel within Linde Gas & Equipment Inc. While we believe the Information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any particular purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall liability of Linde Gas & Equipment Inc, arising out of the use of the information contained herein exceed the fee established for providing such information.



#### DocNumber: 491592



Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22022



Information contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc., arising out of the use of the information contained herein exceed the fee established for providing such information.



DocNumber: 532041



Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22023

# CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS

Customer & Order Information

MONTROSE AIR QUALITY SERVICES 1631 E ST ANDREWS PLACE SANTA ANA CA 92705 Certificate Issuance Date: 01/17/2023 Linde Order Number: 86769254 Parl Number: NI CD17.501E-AS Customer PO Number: LUIS OLIVARES Fill Dete: 12/12/2022 Lot Number: 70086234604 Cylinder Style & Outlet: AS CGA 590 Cylinder Pressure and Volume: 2000 psig 153 tt3

#### **Certified Concentration ProSpec EZ Cert** Expiration Date: 01/16/2031 NIST Traceable 地址并为21回 Cylinder Number: Expanded Uncertainty SA10524 17.63 % Carbon dioxide ± 0.06 % 8.94 % Oxygen ± 0.05 % Balance Nitrogen

**Certification Information:** 

Certification Date: 01/16/2023

Term: 96 Months

Expiration Date: 01/16/2031

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-800/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard If Pressure is less then 100 PSIG.

CO2 responses have been corrected for Oxygen IR Broadening effect. O2 responses have been corrected for CO2 interference.

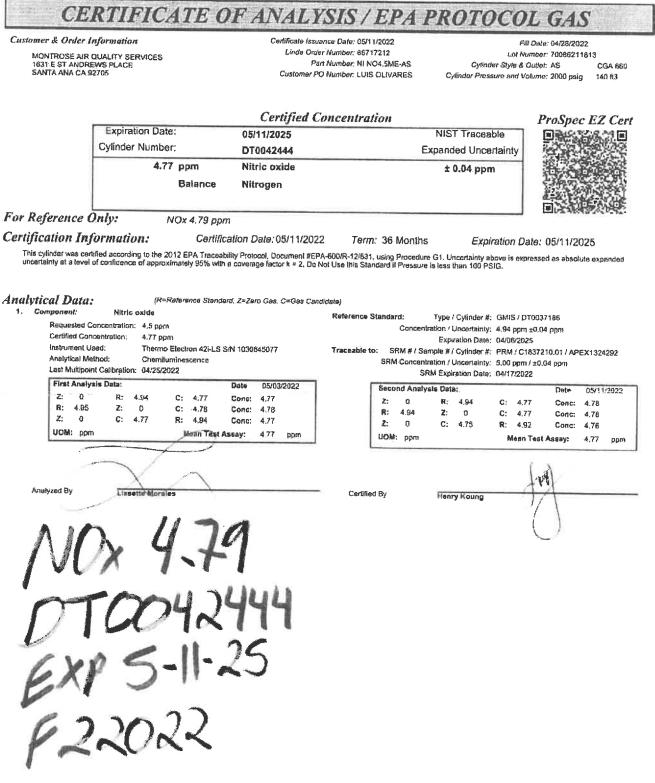
#### Analytical Data:

(R=Reference Standard, Z=Zero Gas, C=Gas Candidate)

| Construction         Construction<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Instrument Usad:       Hotika VIA-510 S/M 20C194/VIK         Analyteid Method:       NDIR         Last Multipoint Calibration:       12/19/2022         Instrument Usad:       12/19/2022         Instrument Usad:       19.34         Component:       Oxygen         Requested Concentration:       8.94         Component:       Oxygen         Requested Concentration:       8.94         List Multipoint Calibration:       12/19/2022         Instrument Usad:       Simmens Coymat EE S/N 7/M620211AA000CA1         Analyteid Method:       Paramagnetic         Last Multipoint Calibration:       12/19/2022         Instrument Usad:       Simmens Coymat EE S/N 7/M620211AA000CA1         Analyteid Method:       Paramagnetic         Last Multipoint Calibration:       12/19/2022         Instrument Usad:       Simmens Coymat EE S/N 7/M620211AA000CA1         Analyteid Method:       Paramagnetic         Last Multipoint Calibration:       12/19/2022         Instrument Wasd:       Simmens Toymat EE S/N 7/M620211AA000CA1         Analyteid Method:       Paramagnetic         Last Multipoint Calibration:       12/19/2022         Ci:       0       C:       8.96         Quot:       %       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
| First Analysis Data:       Date       01/16/2023         Z:       0       R:       17.62       Conc:       17.6         R:       19.37       Z:       0       C:       17.66       Conc:       17.66         UOM:       %       Mean Test Assay:       17.63       %       Component:       O C:       0       C:       C:       C:       C: <td< td=""><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| Z:       0       R:       19.34       C:       17.62       Control       17.63         Z:       0       C:       17.66       Control       17.64       Control       0       R:       0       C:       0       Conce:       0       C: <t< th=""><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |      |
| R: 19.37       Z: 0       C: 17.66       Cont: 17.64         Z: 0       C: 17.67       R: 19.36       Cont: 17.64         Z: 0       C: 17.67       R: 19.36       Cont: 17.64         UM: %       Mean Test Assay: 17.63 %       Concent: 0         Component:       Oxygen         Requested Concentration:       9 %         Certified Concentration:       9 %         Certified Concentration:       9 %         Certified Concentration:       9.47 %         Instrument Used:       Siemens Oxymat 6E S/N 7MB20211AA000CA1         Analyzad Method:       Paramagnetic         Lest Multipoint Calibration: 12/19/2022       Date       01/16/2023         Z: 0       C: 8.952       Conce: 8.95         UOM: %       Mean Test Assay: 8.94 %         Near Test Assay: 8.94 %       Second Analysis Data:       Date         UOM: %       Mean Test Assay: 8.94 %       Occurrue 216/Med       Date         Analyzad By       Courtney Zielke       Certified By       Jonathan Gutterrez         Analyzad By       Courtney Zielke       Certified By       Jonathan Gutterrez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| Z:       0       C:       17.67       R:       19.36       Conc:       17.63       %         Component: Oxygen         Requested Concentration: 9 %         Certified Concentration: 10 / Uncertainty: 9.918 % J 0.024 %         Expiration Date: 12/20/200         Instrument Used:       Siemens Oxymat 6E S/N 7MB20211AA000CA1         Analyteis Data:       Date       01/16/2023         First Analytics Data:       Date       01/16/2023         Z:       0       C:       8.957.8         Yo       8.9378       Z:       0       C:       8.95         UOM: %       Mean Test Assay:       8.94 %       Second Analysis Data:       Date         Z:       0       C:       0       Certified By       Jonathan Cutterres         Analyzed By       Courtney Zielke         Analyzed By <td< td=""><td></td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |
| UDM: %       Mean Test Assay:       17.63 %         Component:       Oxygen       Requested Concentration:       9 %         Cartified Concentration:       8.94 %       Exercised Concentration:       9.978 % ±0.024 %         Cartified Concentration:       8.94 %       Exercised Concentration:       9.978 % ±0.024 %         Cartified Concentration:       12/19/2022       First Analysia Date:       12/20/2030         First Analysia Date:       0       C:       0         Z:       0       C:       8.956       Conce:       8.95         UOM: %       Mean Test Assay:       8.94 %       SRM Expiration Date:       12/20/2030         First Analysia Date:       Date       01/16/2023       SRM Expiration Date:       02/03/2024         Z:       0       C:       8.950       Conce:       0       R:       0       Conce:       0         Z:       0       C:       8.952       R:       9.988       Conce:       8.95       Conce:       0       Conce:       0         UOM: %       Mean Test Assay:       8.94 %       Certified By       Jonathan Gutterrez       Jonathan Gutterrez         X%       8.974       X%       Analyzad By       Analyzad By       Certified By                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| Component:       Oxygen         Requested Concentration:       9 %         Certified Concentration:       9 4 %         Instrument Used:       Siemens Oxymat 6E S/N 7MB20211AA000CA1         Analyteid Method:       Peremagnetic         Lest Multipoint Calibration:       12/19/2022         First Analyteis Deta:       Date       01/16/2023         Z:       0       R:       9.978         Z:       0       C:       8.956         R:       9.978       Z:       0         Go:       8.929       Conc:       8.95         UOM:       %       Mean Test Assay:       8.94 %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | %    |
| Requested Concentration: 9 %       Concentration: 9 %         Certified Concentration: 8.94 %       Expiration Date: 12/20/2030         Instrument Used: Siemens Oxymat 6E S/N 7MB20211AA000CA1       Analyted Method: Parsmagnetic         Lest Multipoint Calibration: 12/19/2022       First Analysis Date: Date: 02/03/2024         First Analysis Date: 2 0 C: 8.957 R: 9.978 C: 8.956 Conc: 8.95       SRM Concentration / Uncertainty: 9.978 % ±0.024 %         Z: 0 R: 9.978 Z: 0 C: 8.929 Conc: 8.95       SRM Concentration / Uncertainty: 9.918 % ±0.024 %         UOM: %       Mean Test Assay: 8.94 %         Analyzed By       Courtney Ziellst         Analyzed By       Courtney Ziellst         Analyzed By       Courtney Ziellst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |      |
| Certified Concentration:       8.94 %       Expiration Date:       12/20/2030         Instrument Used:       Siemens Oxymat 6E S/N 7MB20211AA000CA1       SRM Sample # / Cylinder #:       SRM 2658a / 72-D-28 / CALO16         Analytical Method:       Paramagnetic       SRM 2010       SRM 2010       Uncertainty:       9.916 % / 40.022 %         Lest Multipoint Calibration:       12/19/2022       SRM Concentration / Uncertainty:       9.916 % / 40.022 %         Z:       0       R:       9.976       C:       8.956       Conci:       8.95         UOM: %       Mean Test Assay:       8.94 %       Mean Test Assay:       8.94 %       Mean Test Assay:         Analyzed By       Courtney Ztelf       Courtney Ztelf       Certified By       Jonathan Gutterrez         37.0       R:       9.44 %       Second Analysis Date:       Date       Certified By         Analyzed By       Courtney Ztelf       Courtney Ztelf       Certified By       Jonathan Gutterrez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| Analytical Method:       Paramagnetic         Lest Multipoint Calibration:       12/19/2022         First Analytical Method:       Date         0       R:       9.978         2:       0       C:       8.956         2:       0       C:       8.929         2:       0       C:       8.929         2:       0       C:       8.929         2:       0       C:       8.929         2:       0       C:       8.952         2:       0       C:       8.952         2:       0       C:       0         3:       0       Courting:       D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| Last Multipoint Calibration: 12/19/2022       Date       01/16/2023         Z:       0       R:       9.978       C:       8.956         Z:       0       C:       8.929       Conc:       8.93         Z:       0       C:       8.929       Conc:       8.95         UOM:       %       Mean Test Assay:       8.94       %         Analyzed By       Courtney Zielling       Certified By       Jonathan Gutterrez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6862 |
| Z:       0       R:       9.978       C:       8.956       Conc:       8.95         R:       9.978       Z:       0       C:       8.929       Conc:       8.93         Z:       0       C:       8.952       R:       9.988       Conc:       8.95         UOM:       %       Mean Test Assay:       8.94       %       Mean Test Assay:       8.94         Analyzed By       Courtney Zielik       Courtney Zielik       Certified By       Jonathan Gutterrez         X%       8.914       Jonathan Gutterrez       Jonathan Gutterrez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| R: 9.978       Z: 0       C: 8.929       Conc: 8.93         Z: 0       C: 8.952       R: 9.988       Conc: 8.95         UOM: %       Mean Test Assay: 8.94 %       Mean Test Assay: 8.94 %         Analyzed By       Courtney Zlefket       Certified By         Q%       8.914         Q%       8.914         Analyzed By       Courtney Zlefket         Courtney Zlefket       Certified By         Jonathan Gutterrez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
| R: 9.978       Z: 0       C: 8.929       Conc: 8.93         Z: 0       C: 8.952       R: 9.988       Conc: 8.95         UOM: %       Mean Test Assay: 8.94 %       Mean Test Assay:         Analyzed By       Courtiney Ziellin       Certified By         Z?       O       C: 0         Courtiney Ziellin       Certified By       Jonathan Gutterrez         Z%       8.914         Analyzed By       Certified By       Jonathan Gutterrez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |      |
| UOM: % Mean Test Assay: 8.94 %<br>Analyzed By Courtney Zielin<br>2: 0 C: 0 R: 0 Conc: 0<br>UOM: % Mean Test Assay:<br>UOM: % Mean Test Assay:<br>Jonathan Gutterrez<br>3/0 8.14<br>Jonathan Gutterrez                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |
| Analyzad By Courtney Zielk, Courtney Zielk, Certified By Jonathan Gutterrez<br>29. 8.14<br>29. 17.63<br>A 10 5.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| Analyzed By Courtney Zleff, Co | %    |
| CAMS24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| CAMS24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
| xp /-1631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| XP 1-1631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |
| XP 1-16 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| -20023 (SR-3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      |

Information contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we nake no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc. Page 1 of 1




Making our world more productive

#### DocNumber: 463732



Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22022

1520-22

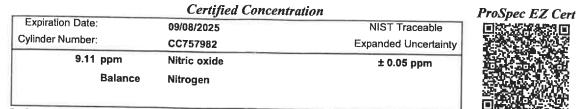


Information contained herein has been prepared at your request by qualified experts within. Linda Gas & Equipment Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is all the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc., arising out of the use of the information contained herein exceed the fee established for providing such information.



#### DocNumber: 502292




Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22022

# **CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS**

#### **Customer & Order Information**

MONTROSE AIR QUALITY SERVICES 1631 E ST ANDREWS PLACE SANTA ANA CA92705 Certificate Issuance Date: 09/08/2022 Linde Order Number: 72174559 Part Number: NI NO9ME-AS Customer PO Number: 80179225

Fill Date: 08/25/2022 Lot Number: 70086223704 Cylinder Style & Outlet: AS CGA 660 Cylinder Pressure and Volume: 2000 psig 140 ft3



For Reference Only: NOx 9.13 ppm

Certification Information: Certification

Certification Date: 09/08/2022 Term: 36 Months

Expiration Date: 09/08/2025

This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard if Pressure is less than 100 PSIG.

#### Analytical Data:

(R=Reference Standard, Z=Zero Gas, C=Gas Candidate)

| 1. | Component:                                                                                   | Nitric                 | oxide                    |                             |                                   |                                           |              |               | Reference   | Standa         |                                   | Tupo                                          | Collector A.                                                                                   | ~                           | 0 / 07000                                      |                                           |             |              |
|----|----------------------------------------------------------------------------------------------|------------------------|--------------------------|-----------------------------|-----------------------------------|-------------------------------------------|--------------|---------------|-------------|----------------|-----------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------|-------------------------------------------|-------------|--------------|
|    | Requested Con<br>Certified Conce<br>Instrument User<br>Analytical Metho<br>Last Multipoint ( | ntration:<br>d:<br>od: | 9.11 p<br>Therm<br>Chemi | pm<br>10 Electi<br>ilumines |                                   | S S/N 10306                               | 645077       |               | Traceable t | o: SI          | Concen<br>RM # / Sa<br>I Concen   | tration /<br>Expi<br>ample # /<br>tration / I | / Cylinder #:<br>Uncertainty:<br>ration Date:<br>/ Cylinder #:<br>Uncertainty:<br>ration Date: | 9.42<br>04/0<br>PRN<br>10.0 | ppm ±0.0<br>8/2025<br>1 / C18372<br>0 ppm / ±1 | 95 ppm<br>210.02 / AP                     | EX1324      | 1301         |
|    | First Analysis<br>Z: 0<br>R: 9.43<br>Z: 0<br>UOM: ppm                                        | R: 9<br>Z:             | 9.42<br>0<br>9.1         | C:<br>C:<br>R:<br>₩         | 9.11<br>9.12<br>9.41<br>Iean Test | Date<br>Conc:<br>Conc:<br>Conc:<br>Assay: | 9.11<br>9.12 | 1/2022<br>ppm |             | Z:<br>R:<br>Z: | nd Analy<br>U<br>9.41<br>Q<br>ppm |                                               |                                                                                                | C:<br>C:<br>R:              | 9.1<br>9.09<br>9.41<br>Tean Test               | Date<br>Conc:<br>Conc:<br>Conc:<br>Assay: | 9.11<br>9.1 | /2022<br>ppm |
|    | Analyzed By                                                                                  | Henry                  | y Koung                  | 1                           |                                   | freef                                     |              |               | ertifie     | d By           |                                   | Liss                                          | ette Morale                                                                                    | /                           |                                                | $\gtrsim$                                 | -           |              |

# NUX 7.15 CC 757982 EXP 09/08/25

F22022

Information contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc., arising out of the information contained herein exceed the fee established for providing such information.



Making our world more productive

DocNumber: 536268



Linde Gas & Equipment Inc. 5700 S. Alameda Street Los Angeles CA 90058 Tel: 323-585-2154 Fax: 714-542-6689 PGVP ID: F22023

#### CERTIFICATE OF ANALYSIS / EPA PROTOCOL GAS FIII Date: 03/09/2023 Certificate Issuance Date: 03/22/2023 Customer & Order Information Linde Order Number: 72350668 Lot Number: 70086308802 MONTROSE AIR QUALITY SERVICES 1631 E ST ANDREWS PLACE Part Number: AI NX7MZE-AS Cylinder Style & Outlet: AS CGA 660 SANTA ANA CA92705 Customer PO Number: 80358053 Cylinder Pressure and Volume: 2000 psig 140 ft3 **Certified Concentration** ProSpec EZ Cert 63.20 Expiration Date: NIST Traceable 03/22/2024 Cylinder Number: Expanded Uncertainty DT0028293 7.03 ppm Nitrogen dioxide (as NOx) ± 0.16 ppm Balance Air For Reference Only: HNO3 0.14 ppm Certification Date: 03/22/2023 **Certification Information:** Term: 12 Months Expiration Date: 03/22/2024 This cylinder was certified according to the 2012 EPA Traceability Protocol, Document #EPA-600/R-12/531, using Procedure G1. Uncertainty above is expressed as absolute expanded uncertainty at a level of confidence of approximately 95% with a coverage factor k = 2. Do Not Use this Standard if Pressure is tess than 100 PSIG. The above certified concentration of Total Oxides of Nitrogen (NOx) excludes HNO3. (R=Reference Standard, Z=Zero Gas, C=Gas Candidate) Analytical Data: Component: Nitrogen dioxide (as NOx) 1. Reference Standard: Type / Cylinder #: GMIS / ND7457 Requested Concentration: 7 ppm Concentration / Uncertainty: 11.4 ppm ±0.2 ppm Certified Concentration: 7.03 ppm Expiration Date: 11/18/2023 Instrument Used: MKS 2 MultiGas 2031 FTIR Traceable to: SRM # / Sample # / Cylinder #: PRM / C2185601.1 / D970555 Analytical Method: FTIR SRM Concentration / Uncertainty: 10.02 ppm / ±0.20 ppm Last Multipoint Calibration: 02/27/2023 SRM Expiration Date: 11/18/2023 03/15/2023 First Analysis Data: Date Second Analysia Data: Date 03/22/2023 Z: 0 R: 11.3 C: 6.98 Conc: 6.98 z: 0 R: C: 7 7.1 11.4 Conc: 11.5 7.04 R: Z: 0 C: Conc: 7.04 R: 11.3 Z: 0 C: 6.98 Conc: 7.08 Z: 7.01 0 C: R: 11.4 Conc: 7.01 11 Z: a C: 7 R: Conc: 7.1 UOM: ppm Mean Test Assay: 7.01 ppm UOM: ppm Mean Test Assav: 7.1 DDm Analyzed By Certified By Henry Koung Lissette Mor 2 7.03 )TOO 28 293 EXP 3-22-24 F22023

AS 4-11-23

Information contained herein has been prepared at your request by qualified experts within Linde Gas & Equipment Inc. While we believe that the information is accurate within the limits of the analytical methods employed and is complete to the extent of the specific analyses performed, we make no warranty or representation as to the suitability of the use of the information for any purpose. The information is offered with the understanding that any use of the information is at the sole discretion and risk of the user. In no event shall the liability of Linde Gas & Equipment Inc. arising out of the use of the information contained herein exceed the fee established for providing such information. Page 1 of 1 REFERENCE METHOD CEMS QUALITY ASSURANCE DATA AND WORKSHEET SAMPLE SYSTEM BIAS AND ANALYZER DRIFT RESULTS

8,710 dscf/MMBtu

Fuel F-Factor:

MM, LO, LE, AE

Performed By: Test Condition:

Ormond Beach

Generating Station:

Unit:

5/23/2023

Test Date:

264 MW

Ň 0.13 0.3% 9.13 4.79 0.02 4.74 0.10 4.78 0.9% 1.2% 0.4% 4.75 0.0% 0.4% 5/23/2023 14:41 15:02 ດ -0.1% 0.2% 0.2% -0.1% 0.0% 8.94 4.54 -0.01 0.0% õ 4.53 0.01 0.01 4.53 4.52 0.9% -0.6% 0.9% 0.0% 0.1% Ň 0.6% 9.13 4.74 4.79 0.10 4.80 0.10 4.75 0.02 5/23/2023 13:49 14:10 ω 0.2% 0.0% 0.5% -0.1% 0.2% -0.1% 0.0% 8.94 4.54 -0.0 4.53 4.53 0.01 4.52 0.01 õ 0.8% 0.1% 0.8% 0.6% 0.1% Ň 9.13 4.74 4.79 0.02 0.09 4.79 0.10 4.80 5/23/2023 13:43 13:22 0.2% 0.2% -0.2% -0.1% 0.0% 0.1% 8.94 -0.01 4.54 4.53 0.01 4.52 0.01 4.52 ő 0.8% 0.8% 1.2% 0.0% -0.5% 0.5% 9.13 Ň 4.79 0.02 4.73 0.09 4.84 0.09 4.79 5/23/2023 12:50 13:11 ဖ 0.2% 0.3% -0.1% 0.0% -0.2% 0.0% 8.94 -0.01 4.54 4.53 4.52 4.52 0.01 0.01 ဂ် 0.3% 0.8% 1.1% 0.0% 0.9% 0.7% 9.13 Ň 4.79 0.02 4.73 0.08 4.76 0.09 4.84 5/23/2023 12:23 12:44 S 0.2% -0.1% -0.1% 0.0% 8.94 4.54 -0.01 4.53 0.3% 0.0% 0.01 4.52 4.52 0.01 δ 0.3% 0.1% 0.05 0.2% 0.4% -0.2% 0.2% 0.2% 0.7% 0.2% 0.02 0.08 4.76 Ň 9.13 4.79 4.73 4.75 5/23/2023 11:56 12:17 4 -0.01 -0.1% 0.1% 8.94 4.54 4.53 0.00 4.52 0.0% 4.51 0.01 ဂ် 0.2% 0.2% 0.2% 0.4% -0.1% 0.5% Ň 9.13 0.02 0.06 0.05 4.75 4.79 4.72 4.74 5/23/2023 11:20 11:41 က 0.1% -0.2% 0.0% 0.2% -0.2% 0.0% 8.94 4.54 0.00 4.53 0.01 4.52 0.00 ဝ် 4.51 0.5% 0.4% 0.1% -0.4% 0.3% o Z 9.13 0.02 0.05 0.06 0.1% 4.79 4.72 4.74 4.77 5/23/2023 10:50 11:11 2 -0.2% 0.1% 0.2% -0.1% 0.0% 0.0% 0.00 8.94 4.54 4.53 0.00 4.51 0.01 4.52 õ 0.3% 0.5% 0.4% 0.2% 4.79 0.03 0.05 0.1% 0.1% Ň 9.13 0.02 4.72 4.73 4.77 5/23/2023 10:20 10:41 0.2% -0.3% -0.2% 0.2% 0.01 -0.1% 0.0% 8.94 4.54 0.00 4.53 4.51 0.00 õ 4.51 Calibration Span Pre-Test Zero Bias(%): | Pre-Test Span Bias(%): Analyzer Zero Pre-Test Zero Bias Pre-Test Span Bias Post-Test Zero Bias Test Date Start Time Stop Time Span Gas Value Analyzer Span Post-Test Span Bias Post-Test Zero Bias (%): Post-Test Span Bias(%): Zero Drift (%): Run Number Span Drift (%):

|                   | ied Individual Data                 |
|-------------------|-------------------------------------|
| Source            | Ormond Beach Unit 2                 |
| Test Date         | 5/23/2023                           |
| AETB Name         | Montrose Air Quality Services, LLC. |
| AETB Phone Number | 714-279-6777                        |
| AETB e-mail       | qualitymanagement@montrose-env.com  |
| QI Last Name      | McCune                              |
| QI First Name     | Matthew                             |
| QI Middle Initial | R                                   |
| QI Exam Date      | September 17, 2018                  |
| Exam Provider     | Source Evaluation Society           |
| Exam Contact      | gstiprogram@gmail.com               |

### APPENDIX B FACILITY CEMS DATA



Average Data Plant: ORMOND BEACH GEN STA Interval: 1 Minute Type: Roll Report Period: 05/23/2023 10:20 Through 05/23/2023 10:40 Time Online Criteria: 1 minute(s)

BRMOND # 2 RATA RUN #

UNITOPHR (MIN) 1.0 21.0 21.0 21.0 21.0 21.0 5 0.1 0 0 þ. 0 0 2 0 0.1 0. 1.0 1.0 2 1.0 1.0 1.0 0.1 10 1.0 1.0 (PERCENT) 4.88 4.79 4.96 102.42 4.85 4.89 4.96 4.90 4.96 4.79 4.85 4.94 4.82 4.91 4.88 4.84 4.89 4.81 4.91 212 4.86 4.95 4.83 4.88 4.89 4.81 02 NOXPPMC 6.82 6.64 6.67 6.49 6.71 6.78 6.64 6.78 6.56 6.60 6.63 6.38 6.82 6.82 139.28 6.38 6.82 6.49 6.56 6.60 6.71 6.56 6.60 6.78 6.71 6.38 7 7 (MPPM) 6.07 5.87 5.95 5.89 5.93 5.70 6.11 124.61 5.96 6.07 5.90 5.79 5.77 5.92 5.70 6.05 6.06 5.92 6.00 6.04 5.95 5.88 MOXPPM 5.72 6.11 5.99 22 (Mdd) (NMWN/#XON 0.086 0.088 0.084 0.087 0.086 0.086 0.085 0.086 0.086 0.082 0.088 1.808 0.088 0.087 0.087 0.087 0.088 0.086 0.085 0.088 0.082 0.083 0.088 0.084 0.087 22 ORB2 NOX#/MM (LB/MMBTU) 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.168 0.008 0.008 0.008 22 NH3FLOW 0.15 0.15 0.15 0.15 0.15 0.11 0.18 3.15 0.15 0.15 0.13 0.12 0.15 0.15 0.15 0.17 0.15 0.16 0.18 0.16 0.16 0.17 0.12 0.17 0.11 22 (GPM) (MW) 261.6 262.6 263.4 261.0 263.2 264.0 262.8 260.9 264.1 261.1 263.2 263.8 261.2 263.8 262.1 263.6 263.9 262.8 260.9 264.3 5,517.8 264.3 261.1 263.7 262.4 55 GASFLOW (HSCFH) 25,846.4 25,725.9 25,965.8 542,774.6 25,851.2 25,766.6 25,809.4 25,808.5 25,855.7 25,853.4 25,771.7 25,965.8 25,950.4 25,833.2 25,871.4 25,737.7 25,909.7 25,961.7 25,820.7 25,884.7 25,767.4 25,954.1 25,725.9 25,915.9 25,759.5 33 Average Minimum Maximum Summation Included Data Points 10:22 10:23 10:24 10:25 10:26 10:27 10:28 10:29 10:30 10:31 10:32 10:33 10:34 10:35 10:36 10:38 10:39 10:40 10:20 10:21 10:37 Parameter Source Unit 82/23/23 62/23/23 62/23/23 05/23/23 05/23/23 05/23/23 05/23/23 05/23/23 05/23/23 05/23/23 05/23/23 05/23/23 05/23/23 05/23/23 05/23/23 05/23/23 05/23/23

D = Shutdown RWEORBSV01/reportuser

Version 6.18

I = Invalid

S = Substituted

C = Calibration

U = Startup

\* = Suspect

E = Exceedance T = Out Of Control

F = Unit Offline M = Maintenance

Total number of Data Points Report Generated: 05/23/23 10:43

Average Data Plant: ORMOND BEACH GEN STA Interval: 1 Minute Type: Roll Report Period: 05/23/2023 10:50 Through 05/23/2023 11:10 Time Online Criteria: 1 minute(s)

ORNOND U-2 RATA RUN #2

UNITOPHR (MIN) 0.1 0.1 0 0.1 1.0 0. 1 0. o. 0. 0. 0. 0.1 0.1 1.0 0. 0. 0. 0. 0. 0. 0. 21.0 21.0 21.0 21.0 21.0 (PERCENT) 4.92 4.99 4.92 4.98 4.90 5.00 4.83 4.96 5.02 4.93 4.82 5.04 103.46 21 21 4.98 4.86 5.04 4.88 4.88 4.82 4.95 4.86 4.99 4.85 4.98 02 NOXPPMC (PPM) 6.60 6.60 6.64 6.75 6.65 6.42 6.89 139.55 21 21 6.82 6.75 6.60 6.53 6.49 6.87 6.89 6.53 6.49 6.78 6.64 6.71 6.64 6.67 6.42 6.60 6.53 (MPM) 5.99 5.95 5.80 5.90 6.08 6.19 5.88 5.78 5.90 6.06 6.00 5.93 5.71 6.19 124.46 21 21 5.93 6.06 5.79 5.81 6.05 5.91 5.95 5.95 5.71 5.77 (NMW/#XON 0.086 0.082 0.089 1.796 21 21 0.085 0.083 0.088 0.085 0.089 0.089 0.083 0.085 0.086 0.084 0.083 0.085 0.086 0.087 0.087 0.087 0.086 0.082 0.086 0.087 0.083 ORB2 NOX#/MM (LB/MMBTU) 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.168 21 21 21 0.008 0.008 0.008 0.008 0.008 0.008 (GPM) 0.16 0.16 0.19 0.17 0.18 0.18 0.19 0.17 0.16 0.16 0.16 0.20 0.21 0.18 0.18 0.18 0.20 0.19 0.15 0.15 0.15 0.21 3.70 21 21 0.17 0.16 263.5 LOADMW (MW) 260.6 263.1 260.4 263.0 262.2 263.2 260.8 264.3 261.5 262.4 263.3 263.2 263.1 262.5 262.0 259.9 262.0 262.5 259.9 264.7 5,512.0 264.7 264.3 262.0 212 GASFLOW (HSCFH) 25,647.9 25,437.9 25,856.9 538,605.3 25,751.4 25,601.1 25,704.2 25,780.1 25,547.1 25,581.7 25,500.9 25,437.9 25,638.6 25,856.9 25,748.8 25,637.3 25,831.8 25,612.8 25,685.4 25,616.6 25,664.0 23 25,618.1 25,441.7 25,834.1 25,514.8 Included Data Points Total number of Data Points Average Minimum Maximum Summation 10:58 10:55 10:56 10:59 11:00 11:02 11:03 11:04 11:05 11:08 10:50 10:51 10:52 10:53 10:54 10:57 11:01 11:06 11:07 11:09 05/23/23 11:10 Parameter Source Unit 405/23/23 45/23/23 45/23/23 66/23/23 05/23/23 66/23/23 66/23/23 05/23/23 05/23/23 05/23/23 05/23/23 05/23/23 05/23/23 05/23/23 05/23/23 05/23/23 05/23/23 05/23/23 05/23/23 05/23/23 W002AS-026975-RT

D = Shutdown I = Invalid S = Substituted U = Startup C = Calibration Version 6.18 \* = Suspect T = Out Of Control E = Exceedance Report Generated: 05/23/23 11:11 M = Maintenance F = Unit Offline

GONPRODU/MEscarcega

Report Period: 05/23/2023 11:20 Through 05/23/2023 11:40 Average Data Time Online Criteria: 1 minute(s) Interval: 1 Minute Type: Roll

ORMOND U-Z RATA RUN #3

| S-02              | 3                      |                       |                  |                  |                        |                        |                 |                  |                 |                   |
|-------------------|------------------------|-----------------------|------------------|------------------|------------------------|------------------------|-----------------|------------------|-----------------|-------------------|
| Source            | rce                    |                       |                  |                  |                        | ORB2                   |                 |                  |                 |                   |
| Parameter<br>Unit | neter<br>iit           | GASFLOW<br>(HSCFH)    | LOADMW (MW)      | NH3FLOW<br>(GPM) | NOX#//MM<br>(LB/MMBTU) | NOX#/NMWV<br>(LB/NMWV) | MOXPPM<br>(MPG) | NOXPPMC<br>(PPM) | O2<br>(PERCENT) | UNITOPHR<br>(MIN) |
|                   | 11:20                  | 25,534.2              | 262.5            | 0.18             | 0.008                  | 0.085                  | 5.84            | 6.57             | 5.06            | 1.0               |
|                   | 11:21                  | 25,471.6              | 261.9            | 0.17             | 0.008                  | 0.084                  | 5.85            | 6.60             | 4.90            | 1.0               |
| <b>G</b> 5/23/23  | 11:22                  | 25,425.2              | 261.8            | 0.16             | 0.008                  | 0.083                  | 5.74            | 6.42             | 5.01            | 1.0               |
| 05/23/23          | 11:23                  | 25,494.7              | 262.0            | 0.18             | 0.008                  | 0.085                  | 5.92            | 6.60             | 4.91            | 1.0               |
| 05/23/23          | 11:24                  | 25,563.1              | 260.6            | 0.20             | 0.008                  | 0.088                  | 6.08            | 6.82             | 4.91            | 1.0               |
| 05/23/23          | 11:25                  | 25,512.8              | 263.1            | 0.19             | 0.008                  | 0.086                  | 6.04            | 6.71             | 4.91            | 1.0               |
| 05/23/23          | 11:26                  | 25,537.5              | 261.8            | 0.18             | 0.008                  | 0.085                  | 5.90            | 6.60             | 4.93            | 1.0               |
| 05/23/23          | 11:27                  | 25,431.5              | 261.4            | 0.17             | 0.008                  | 0.084                  | 5.83            | 6.49             | 4.89            | 1.0               |
| 05/23/23          | 11:28                  | 25,481.9              | 262.5            | 0.17             | 0.008                  | 0.085                  | 5,88            | 6.60             | 4.94            | 1.0               |
| 05/23/23          | 11:29                  | 25,415.4              | 261.5            | 0.19             | 0.008                  | 0.086                  | 5.98            | 6.75             | 5.01            | 1.0               |
|                   | 11:30                  | 25,469.4              | 261.9            | 0.19             | 0.008                  | 0.087                  | 6.06            | 6.82             | 4.88            | 1.0               |
| 05/23/23          | 11:31                  | 25,547.2              | 261.4            | 0.20             | 0.008                  | 0.086                  | 5.95            | 6.64             | 4.97            | 1.0               |
|                   | 11:32                  | 25,662.9              | 261.9            | 0.18             | 0.008                  | 0.085                  | 5.89            | 6.60             | 4.85            | 1.0               |
| 05/23/23          | 11:33                  | 25,577.4              | 262.9            | 0.17             | 0.008                  | 0.083                  | 5.76            | 6.49             | 4.92            | 1.0               |
|                   | 11:34                  | 25,538.3              | 261.9            | 0.18             | 0.008                  | 0.084                  | 5.88            | 6.60             | 4.88            | 1.0               |
| 05/23/23          | 11:35                  | . 25,441.8            | 265.1            | 0.18             | 0.008                  | 0.085                  | 5.99            | 6.75             | 4.96            | 1.0               |
| 05/23/23          | 11:36                  | 25,606.3              | 263.3            | 0.21             | 0.008                  | 0.088                  | 60.9            | 6.82             | 4.94            | 1.0               |
| 05/23/23          | 11:37                  | 25,616.2              | 265.3            | 0.20             | 0.008                  | 0.086                  | 6.05            | 6.71             | 4.91            | 1.0               |
| 05/23/23          | 11:38                  | 25,850.5              | 263.8            | 0.20             | 0.008                  | 0.086                  | 5.93            | 6.60             | 4.90            | 1.0               |
| 05/23/23          | 11:39                  | 25,851.1              | 266.9            | 0.19             | 0.008                  | 0.084                  | 5.92            | 6.56             | 4.83            | 1.0               |
| 05/23/23          | 11:40                  | 25,814.6              | 266.6            | 0.18             | 0.008                  | 0.083                  | 5.83            | 6.49             | 4.89            | 1.0               |
|                   | Averade                | 75 564 0              | 262 Q            | 018              | 800 U                  | 0 ពុនន                 | 5 Q7            | 6 63             | 4 92            | 5                 |
|                   | Minimum                | 25.415.4              | 260.6            | 0.16             | 0.008                  | 0.083                  | 5.74            | 6.42             | 4.83            | 0.1               |
|                   | Maximum<br>Summation   | 25,851.1<br>536,843.6 | 266.9<br>5.520.1 | 0.21<br>3.87     | 0.008<br>0.168         | 0.088<br>1.788         | 6.09<br>124.41  | 6.82<br>139.24   | 5.06<br>103.40  | 0.10              |
| Included          | Included Data Points   | 21                    | 21               | 21               | 21                     | 21                     | 21              | 21               | 21              | 51                |
| סומו ווחו         | iber ur Dala<br>Dointe | 17                    | 17               | 2                | L i                    |                        | 21              | 12               | - 7             | 7                 |

D = Shutdown I = Invalid S = Substituted U = Startup C = Calibration Version 6.18 T = Out Of Control \* = Suspect E = Exceedance M = Maintenance F = Unit Offline

Points

Report Generated: 05/23/23 11:41

GONPRODU/MEscarcega

1 of 1

Average Data Plant: ORMOND BEACH GEN STA Interval: 1 Minute Type: Roll

ORNOND U-2 RATA RUN #4

| GASFLOW<br>(HSCFH)<br>25,939.4<br>26,054.6<br>25,932.1<br>25,932.1<br>25,932.1<br>25,932.1<br>25,912.7<br>25,830.1<br>25,830.1<br>25,830.1<br>25,830.1<br>25,830.1<br>25,668.7<br>25,668.6<br>25,768.9<br>25,768.9<br>25,777.9<br>25,777.9<br>25,598.6<br>25,777.9<br>25,598.5<br>25,598.5<br>25,598.6<br>25,777.9<br>25,777.9<br>25,598.5<br>25,598.5<br>25,598.5<br>25,598.5<br>25,777.9<br>25,777.9<br>25,598.5<br>25,598.5<br>25,777.9<br>25,777.9<br>25,598.5<br>25,598.5<br>25,777.9<br>25,777.9<br>25,598.5<br>25,598.5<br>25,777.9<br>25,777.9<br>25,598.5<br>25,598.5<br>25,777.9<br>25,777.9<br>25,598.5<br>25,777.9<br>25,777.9<br>25,598.5<br>25,777.9<br>25,777.9<br>25,598.5<br>25,777.9<br>25,777.9<br>25,598.5<br>25,777.9<br>25,777.9<br>25,598.5<br>25,598.5<br>25,777.9<br>25,777.9<br>25,598.5<br>25,777.9<br>25,777.9<br>25,598.5<br>25,598.5<br>25,777.9<br>25,777.9<br>25,598.5<br>25,598.5<br>25,598.5<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,777.9<br>25,77 | NH3FLOW<br>(GPM))<br>0.20<br>0.22<br>0.19<br>0.18<br>0.18 | (LB/MMBTU)<br>(LB/MMBTU)<br>0.008<br>0.008<br>0.008 | NOX#/NMW<br>(LB/NMW)<br>0.084<br>0.086<br>0.083<br>0.083 | NOXPPM<br>(PPM)<br>5.78<br>5.82<br>5.74<br>5.65<br>5.68 | NOXPPMC<br>(PPM) | 02        |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|------------------|-----------|-------------------|
| 11:56         25,939.4           11:57         26,054.6           11:58         25,912.1           11:58         25,912.1           11:59         25,932.1           11:59         25,932.1           12:00         25,832.1           12:01         25,830.1           12:02         26,116.2           12:03         26,116.2           12:04         26,072.9           12:05         25,588.0           12:06         25,588.0           12:06         25,588.0           12:09         25,588.0           12:09         25,588.0           12:09         25,786.9           12:01         25,786.9           12:02         25,786.9           12:03         25,786.9           12:10         25,786.9           12:11         25,796.9           12:13         25,773.9           12:15         25,948.5           12:16         26,155.3           12:15         26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.20<br>0.22<br>0.19<br>0.18<br>0.18<br>0.18              | 0.008<br>0.008<br>0.008<br>0.008                    | 0.084<br>0.086<br>0.083<br>0.083                         | 5.78<br>5.82<br>5.74<br>5.75<br>5.68                    |                  | (PERCENT) | UNITOPHR<br>(MIN) |
| 11:57         26,054.6           11:58         25,912.1           11:58         25,992.2           12:00         25,832.1           12:01         25,832.1           12:02         25,832.1           12:03         26,116.2           12:04         26,912.7           12:03         26,116.2           12:04         26,072.9           12:05         26,116.2           12:06         26,912.7           12:06         26,912.7           12:06         26,588.0           12:07         25,588.0           12:08         26,758.9           12:09         25,788.9           12:09         25,788.9           12:09         25,798.9           12:10         25,798.9           12:11         25,798.9           12:12         25,798.9           12:13         25,799.9           12:15         25,948.5           12:16         26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.22<br>0.19<br>0.20<br>0.18<br>0.18                      | 0.008<br>0.008<br>0.008                             | 0.086<br>0.083<br>0.084                                  | 5.82<br>5.74<br>5.65<br>5.65<br>5.68                    | 6.49             | 4.93      | 1.0               |
| 11:58         25,912.1           11:59         25,992.2           12:00         25,832.1           12:01         25,832.1           12:02         25,832.1           12:02         25,832.1           12:02         25,832.1           12:02         26,116.2           12:03         26,116.2           12:04         26,072.9           12:05         25,588.0           12:06         25,768.9           12:07         25,588.0           12:08         25,788.9           12:09         25,788.9           12:09         25,788.9           12:09         25,788.9           12:09         25,798.9           12:10         25,798.9           12:11         25,798.9           12:12         25,798.9           12:13         25,798.5           12:15         25,988.5           12:16         25,948.5           12:15         25,948.5           12:16         26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.19<br>0.20<br>0.18<br>0.18                              | 0.008                                               | 0.083<br>0.084                                           | 5.74<br>5.65<br>5.77<br>5.68                            | 6.49             | 4.91      | 1.0               |
| 11:59     25,992.2       12:00     26,832.1       12:01     26,832.1       12:02     26,830.1       12:03     26,116.2       12:04     26,116.2       12:05     26,116.2       12:06     26,912.7       12:06     26,912.7       12:06     26,912.7       12:06     26,912.7       12:06     26,588.0       12:09     26,768.9       12:09     26,788.9       12:09     26,798.9       12:09     26,798.9       12:10     26,798.9       12:11     26,798.9       12:12     25,798.9       12:13     26,798.9       12:15     26,798.5       12:16     26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.20<br>0.18<br>0.18                                      | 0.008                                               | 0.084                                                    | 5.65<br>5.77<br>5.68                                    | 6.34             | 4.84      | 1.0               |
| 12:00     25,832.1       12:01     25,832.1       12:02     25,830.1       12:03     26,116.2       12:04     26,115.2       12:05     26,115.2       12:06     25,912.7       12:06     25,768.4       12:07     25,588.0       12:08     25,768.9       12:09     25,788.9       12:09     25,788.9       12:09     25,798.6       12:10     25,798.9       12:11     25,798.9       12:12     25,798.9       12:13     25,799.9       12:15     25,798.5       12:16     25,798.5       12:15     25,798.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.18<br>0.18<br>0.20                                      | ****                                                | And a                | 5.77<br>5.68                                            | 6.42             | 5.04      | 1.0               |
| 12:01     25,831.8       12:02     25,830.1       12:03     26,116.2       12:05     25,912.7       12:06     25,769.4       12:07     25,568.0       12:08     25,768.9       12:09     25,768.9       12:09     25,768.9       12:09     25,768.9       12:09     25,768.9       12:10     25,768.9       12:11     25,768.9       12:12     25,768.9       12:13     25,760.9       12:14     25,760.9       12:15     25,760.9       12:16     25,756.3       12:15     25,756.3       12:16     26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.18                                                      | 0.008                                               | 0.082                                                    | 5.68                                                    | 6.45             | 4.82      | 1.0               |
| 12:02     26,830.1       12:03     26,072.9       12:05     26,072.9       12:06     26,912.7       12:06     25,788.0       12:08     25,588.0       12:09     25,788.9       12:09     25,788.9       12:09     25,788.9       12:09     25,788.9       12:09     25,788.9       12:10     25,788.9       12:11     25,788.9       12:13     25,786.9       12:14     25,780.9       12:15     25,780.9       12:16     25,750.9       12:15     25,548.5       12:16     26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 000                                                       | 0.008                                               | 0.083                                                    |                                                         | 6.42             | 5.03      | 1.0               |
| 12:03     26,116.2       12:04     26,072.9       12:05     25,912.7       12:06     25,788.9       12:08     25,588.0       12:09     25,788.9       12:09     25,788.9       12:09     25,788.9       12:09     25,788.9       12:09     25,788.9       12:09     25,788.9       12:10     25,788.9       12:11     25,788.9       12:12     25,788.9       12:13     25,780.9       12:14     25,750.9       12:15     25,750.9       12:16     26,155.3       12:16     26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.4.0                                                     | 0.008                                               | 0.084                                                    | 5.83                                                    | 6.49             | 4.86      | 1.0               |
| 12:04     26,072.9       12:05     25,912.7       12:06     25,789.4       12:08     25,788.9       12:09     25,588.0       12:09     25,788.9       12:09     25,788.9       12:10     25,788.9       12:11     25,788.9       12:12     25,786.9       12:13     25,780.9       12:14     25,750.9       12:15     25,548.5       12:16     25,548.5       12:15     25,548.5       12:16     26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.21                                                      | 0.008                                               | 0.086                                                    | 5.92                                                    | 6.56             | 4.85      | 1.0               |
| 12:05     25,912.7       12:06     25,769.4       12:08     25,769.4       12:08     25,588.0       12:09     25,788.9       12:10     25,788.9       12:11     25,785.4       12:12     25,795.4       12:13     25,795.9       12:14     25,750.9       12:15     25,948.5       12:16     26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.20                                                      | 0.008                                               | 0.085                                                    | 5.96                                                    | 6.67             | 4.84      | 1.0               |
| 12:06 25,769.4<br>12:07 25,688.7<br>12:08 25,588.0<br>12:09 25,788.9<br>12:10 25,789.6<br>12:11 25,795.4<br>12:11 25,795.4<br>12:11 25,930.4<br>12:13 25,750.9<br>12:15 25,948.5<br>12:16 26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.19                                                      | 0.008                                               | 0.084                                                    | 5.83                                                    | 6,49             | 4.92      | 1.0               |
| 12:07 25,688.7<br>12:08 26,588.0<br>12:09 25,788.9<br>12:10 25,788.9<br>12:11 25,795.4<br>12:12 25,990.4<br>12:13 25,750.9<br>12:14 25,750.9<br>12:15 25,948.5<br>12:16 26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.17                                                      | 0.008                                               | 0.083                                                    | 5.78                                                    | 6.49             | 4.95      | 1.0               |
| 12.08     25,588.0       12.09     25,788.9       12.10     25,669.6       12.11     25,669.6       12.12     25,930.4       12.13     25,750.9       12.14     25,750.9       12.15     25,948.5       12.16     26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.17                                                      | 0.008                                               | 0.083                                                    | 5.77                                                    | 6.53             | 4.96      | 1.0               |
| 12.09 25,768.9<br>12.10 25,669.6<br>12.11 25,669.6<br>12.12 25,930.4<br>12.13 25,777.9<br>12.15 25,948.5<br>12.16 26,155.3<br>12.16 26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.19                                                      | 0.008                                               | 0.085                                                    | 5.88                                                    | 6.64             | 4.99      | 1.0               |
| 12:10 25,669.6<br>12:11 25,795.4<br>12:12 25,930.4<br>12:13 25,750.9<br>12:15 25,948.5<br>12:16 26,155.3<br>12:16 26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.20                                                      | 0.008                                               | 0.087                                                    | 6.10                                                    | 6.82             | 4.91      | 1.0               |
| 12:11 25,795.4<br>12:12 25,930.4<br>12:13 25,750.9<br>12:14 25,777.9<br>12:15 25,948.5<br>12:16 26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.21                                                      | 0.008                                               | 0.088                                                    | 6.05                                                    | 6.87             | 5.01      | 1.0               |
| 12:12 25,930.4 12:13 25,750.9<br>12:14 25,777.9<br>12:15 25,948.5<br>12:16 26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.23                                                      | 0.008                                               | 0.089                                                    | 6.06                                                    | 6.82             | 4.88      | 1.0               |
| 12:13 25,750.9<br>12:14 25,777.9<br>12:15 25,948.5<br>12:16 26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.21                                                      | 0.008                                               | 0.087                                                    | 6.01                                                    | 6.67             | 4.80      | 1.0               |
| 12:14 25,777.9<br>12:15 25,948.5<br>12:16 26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.19                                                      | 0.008                                               | 0.083                                                    | 5.70                                                    | 6.42             | 4.96      | 1.0               |
| 12:15 25,948.5<br>12:16 26,155.3<br>6,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.19                                                      | 0.008                                               | 0.083                                                    | 5.82                                                    | 6.49             | 4.89      | 1.0               |
| 12:16 26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.21                                                      | 0.008                                               | 0.085                                                    | 5.81                                                    | 6.49             | 4.93      | 1.0               |
| 0 U 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.24                                                      | 0.008                                               | 0.089                                                    | 6.07                                                    | 6.78             | 4.79      | 1.0               |
| 1. 1. / B 4/.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 02.0                                                      |                                                     | 20.0                                                     | 30<br>20<br>21                                          | 0<br>1<br>0      | 2         |                   |
| Average 20,012.2 200.0<br>Minimum 25,588 0 259 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.17                                                      | 0,008                                               | 0.082                                                    | 5.65                                                    | 0.00             | 4.91      | 2.5               |
| 26,155.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.24                                                      | 0.008                                               | 0.089                                                    | 6.10                                                    | 6.87             | 5.04      | 5.4<br>2.4        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.18                                                      | 0.168                                               | 1.783                                                    | 123.03                                                  | 137.84           | 103.11    | 21.0              |
| Included Data Points 21 21<br>Total number of Data 21 21<br>Pointe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21<br>21                                                  | 21                                                  | 21                                                       | 21                                                      | 21               | 21        | 21                |

I = Invalid S = Substituted U = Startup C = Calibration T = Out Of Control \* = Suspect E = Exceedance M = Maintenance F = Unit Offline

Version 6.18

Report Generated: 05/23/23 12:18

GONPRODU/MEscarcega

D = Shutdown

Average Data Plant: ORMOND BEACH GEN STA Interval: 1 Minute

CRMOND U-2 RATA RUN #5

| I ype: Koll | Report Period: 05/23/2023 12:23 Through 05/23/2023 12:43 | Time Online Criteria: 1 minute(s) |
|-------------|----------------------------------------------------------|-----------------------------------|
|-------------|----------------------------------------------------------|-----------------------------------|

| OR82         OR82           Parameter         OR82           Parameter         OR82           Parameter         OR82           Parameter         OR82           OR82         OR82           OR82         OR82         OR82           OR82         OR82         OR82           OR82         OR82         OR82           OR82         OR82         OR82           OR82         OR82         OR82           OR82         OR82         OR82           SEG1         OR82         OR82           SEG1         OR82         OR82           SEG1         SEG1         OR82           SEG1         SEG1         OR82           SEG1         SEG1         SEG1           SEG1         SEG1         SEG1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                     |                               |                       |                  | Report Peric     | od: 05/23/2023 12<br>Time Online Cri | Report Period: 05/23/2023 12:23 Through 05/23/2023 12:43<br>Time Online Criteria: 1 minute(s) | /2023 12:43     |                  |                 |                   |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-------------------------------|-----------------------|------------------|------------------|--------------------------------------|-----------------------------------------------------------------------------------------------|-----------------|------------------|-----------------|-------------------|
| GASFLOW         LOADMW         NH3FLOW         NOX#INMOV         NOX#INMOV         NOX#INMOV         NOX#INMOV         NOXPPM         NOX           145CFHj         (MO)         (GFM)         (LBNMBTU)         NOX#INMOV         (PPM)         (PPM)           25.576.1         285.71         285.71         0.19         0.008         0.065         5.66           25.696.1         285.7         0.19         0.008         0.066         5.66           25.696.1         285.7         0.19         0.008         0.066         5.66           25.696.1         285.7         0.19         0.008         0.066         5.66           25.696.1         285.7         0.22         0.008         0.066         5.66           25.697.1         285.7         0.22         0.008         0.066         5.66           25.677.2         286.1         0.20         0.008         0.066         5.66           25.684.2         286.1         0.20         0.008         0.066         5.66           25.681.1         26.61         0.21         0.008         0.066         5.66           25.631.3         28.61         0.20         0.008         0.066         5.66                                                                                                                                                                 | Sc                  | urce                          |                       |                  |                  |                                      | ORB2                                                                                          |                 |                  |                 |                   |
| 12.3         25,976,1         266,3         0.20         0.006         5.66           12.26         25,665,9         286,5         0.22         0.008         0.067         5.66           12.27         25,766,5         286,5         0.22         0.008         0.066         5.66           12.28         25,665,1         283,9         0.22         0.008         0.086         5.66           12.28         25,665,1         283,9         0.20         0.008         0.087         5.76           12.28         25,665,1         283,9         0.21         0.008         0.087         5.76           12.29         25,871,6         283,7         0.20         0.008         0.086         5.87           12.29         25,871,6         283,7         0.20         0.008         0.084         5.76           12.31         25,871,6         284,7         0.19         0.008         0.084         5.87           12.32         25,612         281,7         0.19         0.008         0.084         5.89           12.33         25,612         281,7         0.19         0.008         0.086         5.89           12.34         25,814,2         281,7                                                                                                                                                                     | ר<br>ש              | Init                          | GASFLOW<br>(HSCFH)    | LOADMW<br>(MW)   | NH3FLOW<br>(GPM) | NOX#/MM<br>(LB/MMBTU)                | NOX#/NMW                                                                                      | MOXPPM<br>(MPP) | NOXPPMC<br>(PPM) | O2<br>(PERCENT) | UNITOPHR<br>(MIN) |
| 12.24         25/76.1         26.37         0.19         0.006         0.065         5.65           12.25         25/06.6         259.5         0.22         0.008         0.067         5.64           12.27         25/06.6         263.4         0.22         0.008         0.085         5.64           12.28         25/06.1         263.9         0.22         0.008         0.085         5.64           12.28         25/06.1         263.7         0.20         0.008         0.087         5.79           12.29         25/06.1         263.7         0.20         0.008         0.087         5.87           12.29         25/06.1         263.7         0.20         0.008         0.087         5.87           12.31         25/06.1         263.7         0.20         0.008         0.066         5.87           12.34         25/07.1         0.19         0.008         0.066         5.86         5.89           12.34         25/03.3         265.0         0.208         0.066         5.86         5.89           12.34         25/03.3         265.1         0.209         0.068         0.066         5.89           12.34         25/03.3                                                                                                                                                                            | 23/23               | 12:23                         | 25,976.1              | 266.3            | 0.20             | 0.008                                | 0.086                                                                                         | 5.96            | 6.71             | 4.87            | 1.0               |
| 12.25         25/95.9         259.5         0.22         0.008         0.067         5.4           12.26         26,003.6         265.4         0.20         0.008         0.066         5.69           12.28         25,003.6         265.4         0.10         0.008         0.066         5.69           12.28         25,010.1         263.7         0.20         0.008         0.067         5.69           12.29         25,010.1         263.7         0.21         0.008         0.067         5.69           12.29         25,611.2         263.7         0.19         0.008         0.067         5.69           12.30         25,579.9         265.7         0.19         0.008         0.066         5.69           12.33         25,579.9         265.7         0.20         0.008         0.066         5.69           12.34         25,641.2         261.8         0.20         0.008         0.066         5.69           12.34         25,642         261.3         0.20         0.008         0.066         5.69           12.34         25,641         0.19         0.008         0.068         0.066         5.69           12.34         25,744                                                                                                                                                                        | 23/23               | 12:24                         | 25,705.1              | 263.7            | 0.19             | 0.008                                | 0.085                                                                                         | 5.85            | 6.68             | 5.07            | 1.0               |
| (2.26)         26,003.6         265.4         0.20         0.006         0.066         5.95           12.27         25,766.5         264.7         0.18         0.008         0.083         5.75           12.29         26,016.1         282.7         0.20         0.008         0.087         5.97           12.29         26,017.1         287.7         0.21         0.008         0.087         5.97           12.30         25,617.2         26.61.2         283.7         0.20         0.008         0.087         5.81           12.31         25,651.2         26.1.7         0.19         0.008         0.086         5.99           12.32         25,651.2         261.3         0.21         0.008         0.086         5.99           12.34         25,734.6         261.3         0.20         0.008         0.086         5.99           12.34         25,746         261.8         0.208         0.086         5.96         5.94           12.35         25,746         261.9         0.008         0.086         5.96         5.94           12.35         25,746         261.9         0.008         0.096         5.96         5.94           12.36                                                                                                                                                                     | 23/23               | 12:25                         | 25,695.9              | 259.5            | 0.22             | 0.008                                | 0.087                                                                                         | 5.94            | 6.60             | 4.91            | 1.0               |
| 12.27         55,76.5         264.7         0.16         0.08         0.63         5.75           12.28         25,696.1         263.9         0.20         0.08         0.083         5.79           12.29         25,695.1         263.7         0.20         0.008         0.087         5.81           12.29         25,671.6         263.7         0.21         0.008         0.087         5.81           12.30         25,877.6         263.7         0.21         0.008         0.087         5.81           12.31         25,871.9         265.1         0.19         0.008         0.084         5.79           12.33         25,874.6         261.7         0.19         0.086         5.89         5.89           12.34         25,874.6         261.8         0.20         0.086         5.89         5.89           12.34         25,874.6         261.8         0.209         0.086         5.89         5.86           12.35         25,631.8         264.4         0.19         0.008         0.086         5.86           12.34         25,631.8         264.9         0.018         0.008         0.066         5.96           12.34         25,631.8                                                                                                                                                                     | 23/23               | 12:26                         | 26,003.6              | 265.4            | 0.20             | 0.008                                | 0.086                                                                                         | 5.95            | 6.67             | 4.84            | 1.0               |
| 12.28         25,695.1         283.9         0.20         0.006         0.063         5.79           12.29         26,010.1         282.7         0.21         0.006         0.087         5.97           12.20         25,671.2         263.7         0.21         0.006         0.085         5.81           12.31         25,527.9         261.7         0.19         0.006         0.085         5.81           12.32         25,661.2         261.7         0.19         0.006         0.086         5.91           12.33         25,564.2         261.3         0.21         0.006         0.086         5.96           12.34         25,694.2         261.8         0.20         0.006         0.086         5.96           12.34         25,694.2         261.8         0.20         0.006         0.086         5.86           12.35         25,694.8         261.0         0.006         0.086         5.84           12.37         26,631.8         0.221         0.006         0.086         5.84           12.36         25,631.8         264.4         0.21         0.006         0.086         5.84           12.39         25,631.8         265.1         0.22                                                                                                                                                               | 23/23               | 12:27                         | 25,786.5              | 264.7            | 0.18             | 0.008                                | 0.083                                                                                         | 5.75            | 6.42             | 5.02            | 1.0               |
| 12.29         26,010,1         282.7         0.21         0.008         0.067         5.67           12.30         25,877.6         283.7         0.20         0.008         0.065         5.68           12.31         25,877.6         284.7         0.19         0.008         0.064         5.61           12.32         25,661.2         281.7         0.19         0.008         0.066         5.68           12.32         25,661.2         281.7         0.21         0.008         0.066         5.69           12.33         25,601.2         281.7         0.20         0.008         0.066         5.89           12.34         25,602.7         261.9         0.20         0.008         0.066         5.89           12.35         25,613.8         264.4         0.19         0.008         0.066         5.89           12.34         25,667.1         282.1         0.20         0.008         5.69         5.69           12.40         25,867.1         266.1         0.20         0.008         5.69         5.69           12.41         25,867.1         266.1         0.20         0.008         5.69         5.69           12.42         25,867.1 <td>23/23</td> <td>12:28</td> <td>25,695.1</td> <td>263.9</td> <td>0.20</td> <td>0.008</td> <td>0.083</td> <td>5.79</td> <td>6.53</td> <td>4,96</td> <td>1.0</td> | 23/23               | 12:28                         | 25,695.1              | 263.9            | 0.20             | 0.008                                | 0.083                                                                                         | 5.79            | 6.53             | 4,96            | 1.0               |
| 12:30         25,877.6         26,37         0.20         0.006         6,88         5.8           12:31         25,877.6         26,47         0.19         0.008         0.044         5,81           12:32         25,651.2         26,11         26,57         0.20         0.008         0.044         5,81           12:33         25,651.2         26,13         0.21         0.008         0.066         5,89           12:33         25,645         26,18         0.20         0.008         0.066         5,89           12:35         25,645         26,18         0.20         0.008         0.066         5,89           12:36         25,645         26,11         0.20         0.008         0.066         5,89           12:36         25,652.7         265,1         0.008         0.066         5,89         5,86           12:37         25,645         264,1         0.19         0.008         0.066         5,89           12:41         26,81         0.28         0.19         0.008         0.066         5,84           12:41         25,94,6         26,11         0.29         0.008         0.066         5,81           12:42         2                                                                                                                                                                        | 23/23               | 12:29                         | 26,010.1              | 262.7            | 0.21             | . 0.008                              | 0.087                                                                                         | 5.97            | 6.71             | 4.89            | 1.0               |
| 12:31         25,82.9         264.7         0.19         0.08         0.084         5.81           12:32         25,651.2         261.7         0.19         0.008         0.084         5.79           12:33         25,739.9         265.7         0.21         0.008         0.086         5.99           12:34         25,804.2         261.3         0.21         0.008         0.086         5.89           12:35         25,804.2         261.6         0.20         0.008         0.086         5.89           12:35         25,804.1         261.0         0.20         0.008         0.085         5.84           12:36         25,754.8         261.1         0.19         0.008         0.085         5.84           12:37         25,657.1         26.1         0.20         0.008         0.086         5.86           12:38         25,667.1         265.1         0.008         0.086         5.84           12:39         25,667.1         265.1         0.008         0.086         5.86           12:41         26,611         0.21         0.008         0.086         5.84           12:42         25,753         261.1         0.21         0.008                                                                                                                                                                      | 23/23               | 12:30                         | 25,877.6              | 263.7            | 0.20             | 0.008                                | 0.085                                                                                         | 5.88            | 6.60             | 4.92            | 1.0               |
| 12:32         25,651.2         261.7         0.19         0.08         0.084         5.79           12:33         25,79.9         265.7         0.20         0.086         5.99         5.99           12:35         25,804.2         265.7         0.20         0.086         5.88         5.99           12:35         25,904.2         265.0         0.20         0.008         0.085         5.84           12:35         25,754.6         261.8         0.20         0.008         0.085         5.84           12:36         25,657.7         26,61         0.20         0.008         0.085         5.84           12:37         25,61         266.1         0.20         0.008         0.085         5.84           12:39         25,657.1         265.1         0.20         0.008         0.085         5.84           12:41         25,818.1         0.21         0.008         0.086         5.84           12:42         25,753         265.1         0.21         0.008         0.085         5.84           12:43         25,753         0.21         0.008         0.086         5.84         5.84           12:44         25,814         0.22 <t< td=""><td>23/23</td><td>12:31</td><td>25,822.9</td><td>264.7</td><td>0.19</td><td>0.008</td><td>0.084</td><td>5.81</td><td>6.49</td><td>4.94</td><td>1.0</td></t<>        | 23/23               | 12:31                         | 25,822.9              | 264.7            | 0.19             | 0.008                                | 0.084                                                                                         | 5.81            | 6.49             | 4.94            | 1.0               |
| 12:33         25,759.9         265.7         0.20         0.008         5.99           12:34         25,804.2         261.3         0.21         0.008         5.88           12:35         25,833.3         265.0         0.20         0.008         5.88           12:35         25,833.3         265.0         0.20         0.008         5.89           12:37         25,631.8         26,61.0         0.20         0.008         0.085         5.84           12:37         25,652.7         264.4         0.19         0.008         0.085         5.84           12:39         25,652.7         265.1         0.21         0.008         0.086         5.99           12:39         25,651.1         266.1         0.20         0.008         0.086         5.96           12:39         25,618.1         0.208         0.086         5.86         5.86           12:40         25,816.1         0.008         0.086         5.86         5.86           12:41         25,816.1         0.008         0.086         5.86         5.86           12:42         25,816.1         0.008         0.008         5.86         5.86           12:43         25,816.1 </td <td>23/23</td> <td>12:32</td> <td>25,651.2</td> <td>261.7</td> <td>0.19</td> <td>0.008</td> <td>0.084</td> <td>5.79</td> <td>6.53</td> <td>5.00</td> <td>1.0</td>  | 23/23               | 12:32                         | 25,651.2              | 261.7            | 0.19             | 0.008                                | 0.084                                                                                         | 5.79            | 6.53             | 5.00            | 1.0               |
| 12:34         25,804.2         26,13         0.21         0.006         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86         5.86                                                                                                   | 23/23               | 12:33                         | 25,759.9              | 265.7            | 0.20             | 0.008                                | 0.086                                                                                         | 5.99            | 6.71             | 4.88            | 1.0               |
| 12:35         25,923.3         265.0         0.20         0.006         6.95         5.84           12:36         25,754.6         261.8         0.20         0.006         0.085         5.84           12:37         25,631.8         26.1         0.19         0.006         0.085         5.84           12:37         25,631.8         26.61         0.20         0.008         0.085         5.84           12:39         25,652.7         282.5         0.21         0.008         0.086         5.84           12:39         25,661.8         225,661.1         0.21         0.008         0.086         5.95           12:40         25,867.1         266.1         0.21         0.008         0.086         5.95           12:41         25,818.1         265,918         0.22         0.008         0.086         5.95           12:42         25,918.1         265,918         0.008         0.008         5.86         5.95           12:43         25,934.6         0.23         0.0108         0.008         5.95         5.95           12:43         25,918.1         264.0         0.22         0.008         0.036         5.95           12:43         25,                                                                                                                                                               | 23/23               | 12:34                         | 25,804.2              | 261.3            | 0.21             | 0.008                                | 0.086                                                                                         | 5.88            | 6.64             | 4.96            | 1.0               |
| 12:36         25,754.6         261.8         0.20         0.006         0.085         5.84           12:37         25,631.8         264.4         0.19         0.008         0.084         5.88           12:37         25,652.7         265.1         265.1         0.20         0.008         5.86           12:39         25,652.7         265.1         0.21         0.008         0.085         5.86           12:39         25,665.1         265.1         0.21         0.008         0.086         5.95           12:40         25,667.1         265.1         0.21         0.008         0.086         5.95           12:41         25,618.1         265.1         0.22         0.008         0.086         5.95           12:42         25,518.1         265.31         0.19         0.008         0.086         5.95           12:42         25,518.1         264.0         0.22         0.008         0.086         5.95           12:42         25,594.6         0.21         0.008         0.086         5.95           12:43         25,94.6         264.0         0.22         0.008         0.086         5.92           Minimum         25,631.8         0.28                                                                                                                                                               | 23/23               | 12:35                         | 25,823.3              | 265.0            | 0.20             | 0.008                                | 0.085                                                                                         | 5.95            | 6.67             | 4.84            | 1.0               |
| 12:37         25,631.8         264.4         0.19         0.008         5.88           12:38         25,652.7         262.1         0.20         0.008         5.84         5.84           12:39         25,664.8         265.1         265.1         0.20         0.008         5.84         5.84           12:39         25,664.8         265.1         0.21         0.008         0.066         5.95           12:40         25,665.1         266.1         0.21         0.008         0.066         5.95           12:41         25,818.1         265.18         265.1         0.22         0.008         5.81           12:42         25,518.1         265.1         0.21         0.008         0.066         5.92           12:42         25,518.1         265.31         0.22         0.008         0.068         5.92           12:42         25,518.1         264.0         0.22         0.008         0.086         5.92           12:43         25,94.6         0.28         0.208         0.008         0.086         5.92           Minimum         25,631.8         0.22         0.008         0.008         0.085         5.89           Maxinum         25,631                                                                                                                                                               | 23/23               | 12:36                         | 25,754.6              | 261.8            | 0.20             | 0.008                                | 0.085                                                                                         | 5.84            | 6.53             | 4.97            | 1.0               |
| 12:38         25,652.7         262.1         0.20         0.085         5.84           12:39         25,664.8         262.5         0.21         0.085         5.84           12:39         25,664.8         266.1         0.27         0.086         5.95           12:40         25,667.1         266.1         0.21         0.086         6.00           12:41         25,816.1         266.1         0.27         0.086         6.00           12:42         25,753.2         261.2         0.27         0.086         5.91           12:42         25,753.2         261.2         0.22         0.086         5.92           12:43         25,94.6         264.0         0.22         0.088         5.92           12:43         25,94.6         264.0         0.22         0.088         5.92           Minimum         25,631.8         0.28         0.088         5.93         5.76           Minimum         25,631.8         0.286.3         0.208         0.085         5.76           Minimum         25,631.8         253.4         0.28         0.088         5.76           Maximum         25,631.8         0.28         0.088         0.085         5.                                                                                                                                                                       | 23/23               | 12:37                         | 25,631.8              | 264.4            | 0.19             | 0.008                                | 0.084                                                                                         | 5.88            | 6.60             | 4.92            | 1.0               |
| 12:39         25,664.8         262.5         0.21         0.08         5.95           12:40         25,867.1         266.1         0.21         0.086         6.00           12:41         25,818.1         266.1         0.21         0.086         6.00           12:42         25,816.1         266.1         0.21         0.08         0.086         6.00           12:42         25,753.2         261.2         0.19         0.08         0.086         5.92           12:42         25,753.2         261.2         0.22         0.008         0.086         5.92           12:43         25,994.6         264.0         0.22         0.008         0.087         5.92           Average         25,797.5         264.0         0.22         0.008         0.087         5.76           Minimum         25,631.8         0.286.3         0.20         0.008         0.085         5.76           Minimum         25,631.8         264.0         0.20         0.008         0.085         5.76           Minimum         25,631.8         263.5         0.18         0.008         0.085         5.76           Nimum         25,631.8         263.5         0.18                                                                                                                                                                        | 23/23               | 12:38                         | 25,652.7              | 262.1            | 0.20             | 0.008                                | 0.085                                                                                         | 5.84            | 6.53             | 5.01            | 1.0               |
| 12:40         25,867.1         266.1         0.21         0.08         6.00           12:41         25,818.1         25,818.1         26.33         0.19         0.08         6.00           12:42         25,753.2         25,173         261.2         0.22         0.008         5.81           12:42         25,753.2         261.2         0.22         0.008         5.92         5.92           12:43         25,994.6         264.0         0.22         0.008         0.087         5.92           12:43         25,994.6         264.0         0.22         0.008         0.087         5.92           Average         25,797.5         264.0         0.22         0.008         0.087         5.76           Minimum         25,631.8         0.28         0.08         0.085         5.76           Mainum         25,631.8         0.28         0.088         0.083         5.75           Mainum         25,631.8         0.286.3         0.18         0.008         0.083         5.75           Mainum         25,631.8         2.535.5         0.18         0.008         0.085         5.76           Mainum         25,631.3         2.533.3         4.23                                                                                                                                                                 | 23/23               | 12:39                         | 25,664.8              | 262.5            | 0.21             | 0.008                                | 0.086                                                                                         | 5.95            | 6,60             | 4.94            | 1.0               |
| 12:41         25,818.1         263.3         0.19         0.08         5,81         5,81           12:42         25,753.2         261.2         0.22         0.008         0.086         5,92           12:43         25,994.6         264.0         0.22         0.008         0.087         5,92           12:43         25,994.6         264.0         0.22         0.008         0.087         5,92           Average         25,797.5         263.5         0.20         0.008         0.087         5,75           Minimum         25,631.8         255.55         0.18         0.008         0.083         5,75           Madinum         25,631.8         255.34.3         4.23         0.008         0.083         5,75           Madinum         25,631.8         5,534.3         4.23         0.008         0.083         5,75           Madinum         26,010.1         266.3         0.168         1.790         123.75           Summation         541.748.4         5,534.3         4.23         0.168         1.790         123.75           Number of Data         21         21         21         21         21         21         21         21                                                                                                                                                                         | 23/23               | 12:40                         | 25,867.1              | 266.1            | 0.21             | 0.008                                | 0.086                                                                                         | 6.00            | 6.71             | 4.93            | 1.0               |
| 12:42         25,753.2         261.2         0.22         0.086         5.92           12:43         25,994.6         264.0         0.22         0.008         0.087         6.00           Average         25,797.5         264.0         0.22         0.008         0.087         6.00           Minimum         25,631.8         25,535         0.18         0.008         0.085         5.89           Maximum         25,631.8         2553.5         0.18         0.008         0.083         5.75           Maximum         25,631.8         259.5         0.18         0.008         0.083         5.75           Maximum         26,010.1         266.3         0.18         0.008         0.083         5.75           Summation         241,748.4         5,534.3         4.23         0.168         1.790         123.75           Number of Data         21         21         21         21         21         21                                                                                                                                                                                                                                                                                                                                                                                                              | 23/23               | 12:41                         | 25,818.1              | 263.9            | 0.19             | 0.008                                | 0.084                                                                                         | 5.81            | 6.53             | 4.99            | 1.0               |
| 12:43         25,994.6         264.0         0.22         0.008         0.087         6.00           Average         25,797.5         263.5         0.20         0.008         0.085         5.89           Minimum         25,631.8         259.5         0.18         0.008         0.083         5.75           Maximum         25,631.8         259.5         0.18         0.008         0.083         5.75           Maximum         26,010.1         266.3         0.18         0.008         0.083         5.75           Summation         541.748.4         5,534.3         4.23         0.168         1.790         123.75           Number of Data         21         21         21         21         21         21         21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23/23               | 12:42                         | 25,753.2              | 261.2            | 0.22             | 0.008                                | 0.086                                                                                         | 5.92            | 6.60             | 4.95            | 1.0               |
| 25,797.5         263.5         0.20         0.008         0.085         5.89           25,631.8         2563.18         259.5         0.18         0.008         0.083         5.75           25,631.8         256.3         0.18         0.008         0.083         5.75           25,61.3         266.3         0.18         0.008         0.083         5.75           541,748.4         5,534.3         4.23         0.168         1.790         123.75           21         21         21         21         21         21         21         21           21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21 <td>23/23</td> <td>12:43</td> <td>25,994.6</td> <td>264.0</td> <td>0.22</td> <td>0.008</td> <td>0.087</td> <td>6.00</td> <td>6.71</td> <td>4.87</td> <td>1.0</td>                       | 23/23               | 12:43                         | 25,994.6              | 264.0            | 0.22             | 0.008                                | 0.087                                                                                         | 6.00            | 6.71             | 4.87            | 1.0               |
| 25,631.8         259.5         0.18         0.008         0.083         5.75           26,010.1         266.3         0.12         0.008         0.087         6.00           541,748.4         5,534.3         4.23         0.168         1.790         123.75           21         21         21         21         21         21         21           21         21         21         21         21         21         21         21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                     | Average                       | 25,797.5              | 263.5            | 0.20             | 0.008                                | 0.085                                                                                         | 5.89            | 6.61             | 4.94            | 1.0               |
| Z6,010,1         266.3         0.22         0.008         0.067         6.00           541,748.4         5,534.3         4.23         0.168         1.790         123.75           21         21         21         21         21         21         21         21           21         21         21         21         21         21         21         21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | Minimum                       | 25,631.8              | 259.5            | 0.18             | 0.008                                | 0.083                                                                                         | 5.75            | 6.42             | 4.84            | 1.0               |
| 21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21         21<                                                                                                                                                                                   |                     | Maximum<br>Summation          | 26,010.1<br>541,748.4 | 266.3<br>5,534.3 | 0.22<br>4.23     | 0.008<br>0.168                       | 0.087<br>1.790                                                                                | 6.00<br>123.75  | 6.71<br>138.77   | 5.07<br>103.68  | 21.0              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Includ∈<br>「otal nu | d Data Points<br>mber of Data | 21                    | 33               | 21               | 21                                   | 21                                                                                            | 21              | 21               | 21              | 21                |

S = Substituted U = Startup C = Calibration T = Out Of Control \* = Suspect E = Exceedance M = Maintenance F = Unit Offline

Version 6.18

Report Generated: 05/23/23 12:47

GONPRODU/MEscarcega

D = Shutdown

I = Invalid

1 of 1

Report Period: 05/23/2023 12:50 Through 05/23/2023 13:10 Plant: ORMOND BEACH GEN STA Time Online Criteria: 1 minute(s) Average Data Interval: 1 Minute Type: Roll

SATA RUN #6

| Time Online Criteria: 1 minute(s)           Current<br>mediation         Control         Control           Carrent<br>(HSCFH)         Control         Control         Control           Carrent<br>(HSCFH)         Carrent<br>(MSCFH)         NHSFLOW         NHSFLOW         Control         Control           Carrent<br>(HSCFH)         Carrent<br>(MSCFH)         Carrent<br>(MSCFH)         NHSFLOW         NHSFLOW         NOXMMM         NOXMMM           Carrent<br>(HSCFH)         Carrent<br>(MSCFH)         Carrent<br>(MSCFH)         NHSFLOW         NOXMMM         NOXMMM           Carrent<br>(HSCFH)         Carrent<br>(MSCFH)         Carrent<br>(MSCFH)         NOXMMM         NOXMMM         NOXMMM           Carrent<br>(HSCFH)         Carrent<br>(MSCFH)         NHSFLOW         NHSFLOW         NOXMMM         NOXMMM           Carrent<br>(HSCFH)         Carrent<br>(MSCFH)         NHSFLOW         NHSFLOM         NOXMMM         NOXMMM           Carrent<br>(Carrent (MSCFH)         Carrent (Carrent (MSCFH)         NOXMMM         NOXMMM         NOXMMM           Carrent (MSCFH)         Carrent (MSCFH)         NOXMM         NOXMMM         NOXMMM         NOXMMM           Carrent (MSCFH)         Carrent (MSCFH)         Carrent (MSCFH)         NOXMM         NOXMM         NOXMMM           Carrent (MSCFH) <t< th=""><th></th><th></th><th></th><th></th><th>Report Peri</th><th>инегиан.<br/>Туре<br/>od: 05/23/2023 12</th><th>Type: Roll<br/>Type: Roll<br/>Report Period: 05/23/2023 12:50 Through 05/23/2023 13:10</th><th>2023 13:10</th><th>レイセン</th><th>かん</th><th>6</th></t<> |       |                    |                      |                  | Report Peri  | инегиан.<br>Туре<br>od: 05/23/2023 12 | Type: Roll<br>Type: Roll<br>Report Period: 05/23/2023 12:50 Through 05/23/2023 13:10 | 2023 13:10   | レイセン             | かん              | 6                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|--------------------|----------------------|------------------|--------------|---------------------------------------|--------------------------------------------------------------------------------------|--------------|------------------|-----------------|-------------------|
| CRECINAL         LOADMAN         NHSFLOW         CORR           GASTLOW         LOADMAN         NHSFLOW         NOX4MMA         NOX4MMA           (HSCFH)         (MN)         (GPM)         NOX4MMA         NOX4MMA           (HSCFH)         (MN)         (GPM)         (LAMMBTU)         (DX4MMA)           25,817         26,311         0.19         0.083         0.083           26,613         25,837         264,6         0.21         0.008         0.086           26,614         25,837         264,1         0.21         0.008         0.086           26,614         25,837         264,1         0.21         0.008         0.086           26,014         25,837         264,1         0.21         0.008         0.086           26,014         26,014         0.22         0.008         0.086         0.086           26,012         264,1         0.21         0.008         0.086         0.086           26,013         26,013         264,1         0.21         0.008         0.086           26,013         26,013         266,3         0.19         0.008         0.086           26,013         26,013         26,10         0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                                |       |                    |                      |                  |              | Time Online Cri                       | teria: 1 minute(s)                                                                   |              |                  |                 |                   |
| Tarteler         CASFLOW         LOADMAV         NH3FLOW         NOX#MM         NOX#MM         NOX#MM           12:50         25,919.2         263.1         0.006         0.008         0.008         0.008           12:51         26,061.8         264.6         0.21         0.008         0.008         0.006           12:52         26,061.8         264.6         0.21         0.008         0.008         0.006           12:54         25,598.2         264.6         0.21         0.008         0.008         0.006           12:54         25,698.2         264.1         0.21         0.008         0.006         0.066           12:55         26,104.9         265.32         265.1         0.22         0.008         0.066           12:56         26,104.0         27         0.22         0.008         0.066           12:56         26,104.0         265.32         266.3         0.19         0.008         0.066           12:56         26,104.0         27         0.22         0.008         0.066         0.066           13:00         266.93         27         0.22         0.008         0.066         0.066           13:00         266.93                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | Jurce              |                      |                  |              |                                       | ORB2                                                                                 |              |                  |                 |                   |
| 12:50         35,913         263.1         0.19         0.008         0.085           12:51         26,081.8         28.4.6         0.21         0.008         0.086           12:53         26,081.8         28.4.6         0.21         0.008         0.086           12:54         25,997.0         266.1         0.21         0.008         0.085           12:55         26,108.2         284.6         0.21         0.008         0.086           12:56         26,97.0         265.5         0.19         0.086         0.086           12:56         26,108.2         284.1         0.21         0.008         0.086           12:57         25,933.7         285.5         0.19         0.008         0.086           12:56         26,104.2         285.7         0.21         0.008         0.086           12:59         25,193.6         0.663         0.028         0.086         0.086           13:01         26,093.2         284.1         0.21         0.008         0.086           13:02         26,013.5         285.92         286.9         0.086         0.086           13:01         26,023.8         286.9         0.21         0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Par   | ameter<br>Jnit     | GASFLOW<br>(HSCFH)   | LOADMVV<br>(MVV) | (GPM)        | NOX#/MM<br>(LB/MMBTU)                 | NOX#/NMVV<br>(LB/NMVV)                                                               | (Mqq)        | NOXPPMC<br>(PPM) | 02<br>(PERCENT) | UNITOPHR<br>(MIN) |
| 12:51         26,08:2         28:27         0.21         0.068         0.066           17:52         26,091:8         26:46         0.21         0.068         0.066           12:53         25,98:2         26:01:1         0.221         0.008         0.065           12:55         25,98:2         26:54         0.21         0.008         0.065           12:55         25,104:3         25:57         0.21         0.008         0.065           12:56         25,104:3         26:5         0.19         0.068         0.064           12:57         25,93:37         26:7         0.21         0.008         0.064           12:59         25,194:6         26:7         0.21         0.008         0.066           12:59         26,195         26:1         0.22         0.068         0.066           12:59         25,913         26:1         0.22         0.068         0.066           13:01         26,025         26:1         0.22         0.068         0.066           13:02         26,032         26:3         0.21         0.008         0.066           13:01         26,032         26:3         0.21         0.008         0.066     <                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23/23 | 12:50              | 25,919.2             | 263.1            | 0.19         | 0.008                                 | 0.083                                                                                | 5.67         | 6.42             | 4.95            | 1.0               |
| 12:52         26,081.8         264.6         0.21         0.008         0.085           12:54         26,981.2         264.6         0.21         0.008         0.085           12:55         26,981.2         264.1         0.21         0.008         0.085           12:55         26,910.2         283.4         0.21         0.008         0.085           12:55         26,910.2         285.7         0.20         0.008         0.084           12:57         26,929.2         265.5         0.19         0.008         0.084           12:58         26,933.7         267.0         0.20         0.008         0.084           12:58         26,929.2         265.3         0.21         0.008         0.084           12:58         26,929.2         265.3         0.21         0.008         0.084           13:00         26,933.7         264.1         0.22         0.008         0.086           13:01         26,913.6         265.9         0.21         0.008         0.085           13:02         26,913.6         265.9         0.21         0.008         0.086           13:03         26,913.6         263.3         0.21         0.008 <t< td=""><td>23/23</td><td>12:51</td><td>26,082.2</td><td>262.7</td><td>0.21</td><td>0.008</td><td>0.086</td><td>5.84</td><td>6.49</td><td>4.88</td><td>1.0</td></t<>                                                                                                                                                                                                                                                                                          | 23/23 | 12:51              | 26,082.2             | 262.7            | 0.21         | 0.008                                 | 0.086                                                                                | 5.84         | 6.49             | 4.88            | 1.0               |
| 12:53         25,98.2         266.1         0.21         0.08         0.085           12:54         25,937.0         244.6         0.21         0.08         0.085           12:55         25,937.0         244.6         0.21         0.08         0.085           12:57         25,932.2         285.5         0.19         0.008         0.084           12:57         25,932.2         286.5         0.19         0.008         0.084           12:57         25,932.2         286.1         0.22         0.008         0.084           12:57         25,932.2         286.1         0.21         0.008         0.084           12:59         25,932         286.1         0.21         0.008         0.086           13:00         26,035         266.3         0.21         0.008         0.086           13:01         26,035         286.9         0.21         0.008         0.086           13:02         26,032         285.1         0.21         0.008         0.086           13:01         26,033         285.1         0.21         0.008         0.086           13:04         26,032         283.3         0.21         0.008         0.086                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 23/23 | 12:52              | 26,091.8             | 264.6            | 0.21         | 0.008                                 | 0.086                                                                                | 5.87         | 6.60             | 4.93            | 1.0               |
| 12:54         25,37,0         264,6         0.21         0.008         0.085           12:55         26,104.3         265.4         0.21         0.008         0.085           12:57         25,392.2         265.5         0.19         0.008         0.084           12:57         25,992.2         265.5         0.19         0.008         0.084           12:57         25,992.2         266.3         0.21         0.008         0.084           12:59         26,095         264.1         0.22         0.008         0.086           13:00         26,195         266.3         0.21         0.008         0.086           13:01         26,095         266.3         0.21         0.008         0.086           13:01         26,092         266.3         0.21         0.008         0.086           13:01         26,092         266.3         0.22         0.008         0.086           13:02         26,012.4         265.1         0.20         0.008         0.086           13:01         26,013.3         266.3         0.20         0.008         0.086           13:02         26,013.3         266.3         0.21         0.008         0.086 <td>23/23</td> <td>12:53</td> <td>25,988.2</td> <td>266.1</td> <td>0.21</td> <td>0.008</td> <td>0.085</td> <td>5.90</td> <td>6.64</td> <td>4.97</td> <td>1.0</td>                                                                                                                                                                                                                                                                                            | 23/23 | 12:53              | 25,988.2             | 266.1            | 0.21         | 0.008                                 | 0.085                                                                                | 5.90         | 6.64             | 4.97            | 1.0               |
| 12:55         26,108.2         263.4         0.21         0.006         0.066           12:56         26,104.3         262.7         0.20         0.064         0.064           12:57         25,929.2         266.5         0.19         0.008         0.064           12:59         26,079         266.5         0.19         0.008         0.064           12:59         26,079         26.63         0.21         0.008         0.064           12:59         26,079         266.3         0.21         0.008         0.066           13:00         26,092.6         266.3         0.21         0.008         0.066           13:01         26,002.6         265.0         0.21         0.008         0.066           13:02         26,013.5         266.3         0.21         0.008         0.066           13:05         26,013.5         266.3         0.21         0.008         0.066           13:05         26,013.5         266.3         0.21         0.008         0.066           13:05         26,013.5         26.03         0.28         0.008         0.068           13:06         26,013.5         26.03         0.21         0.008         0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23/23 | 12:54              | 25,937.0             | 264.6            | 0.21         | 0.008                                 | 0.085                                                                                | 5.83         | 6.53             | 4.97            | 1.0               |
| 12:56         26,104,9         26,2.7         0.20         0.008         0.084           12:57         25,923.7         265,5         0.19         0.008         0.083           12:57         25,923.7         265,5         0.19         0.008         0.084           12:59         26,792         266,5         0.19         0.008         0.084           13:00         26,199.6         266,3         0.21         0.008         0.086           13:01         26,059.2         266,0         0.19         0.008         0.086           13:01         26,02.6         266,0         0.21         0.008         0.086           13:03         26,02.6         266,1         0.20         0.008         0.086           13:04         26,013.5         266,2         263,3         0.21         0.008         0.086           13:05         26,013.5         263,3         0.21         0.008         0.086         0.087           13:06         26,013.5         263,3         264,9         0.21         0.008         0.086           13:06         26,013.5         263,3         264,9         0.21         0.008         0.087           13:06         26,                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23/23 | 12:55              | 26,108.2             | 263.4            | 0.21         | 0.008                                 | 0.085                                                                                | 5.81         | 6.45             | 4.83            | 1.0               |
| 12:57         25,929.2         266.5         0.19         0.008         0.083           12:58         25,993.7         287.0         0.20         0.008         0.084           12:59         26,79.2         284.1         0.22         0.008         0.084           12:59         26,79.2         284.1         0.22         0.008         0.086           13:00         26,199.6         266.3         0.21         0.008         0.086           13:01         26,026         265.0         0.21         0.008         0.086           13:02         25,912.0         265.0         0.21         0.008         0.086           13:02         25,912.0         266.2         0.21         0.008         0.086           13:03         26,003.5         26,013.5         263.3         0.22         0.008         0.086           13:06         26,073.9         266.2         0.22         0.008         0.086         0.087           13:01         26,073.9         266.1         0.21         0.008         0.086         0.087           13:02         26,073.9         266.2         0.22         0.008         0.086         0.087           13:08         2                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23/23 | 12:56              | 26,104.9             | 262.7            | 0.20         | 0.008                                 | 0.084                                                                                | 5.73         | 6.38             | 4.95            | 1.0               |
| 12:56         25,983.7         267.0         0.20         0.008         0.004           12:59         26,079.2         264.1         0.22         0.008         0.066         0.066           13:00         26,199.6         266.3         0.21         0.008         0.066         0.066           13:01         26,092.9         266.9         0.19         0.008         0.084           13:02         25,912.0         263.9         0.21         0.008         0.084           13:02         25,912.0         263.9         0.21         0.008         0.086           13:03         26,003.6         265.0         0.21         0.008         0.085           13:04         26,013.5         266.2         0.21         0.008         0.085           13:07         26,013.5         266.2         0.22         0.008         0.066           13:07         26,073.9         266.2         0.22         0.008         0.067           13:08         26,073.9         266.2         0.21         0.008         0.068           13:08         26,073.9         266.2         0.22         0.008         0.068           13:09         26,073.9         266.2         <                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 23/23 | 12:57              | 25,929.2             | 265.5            | 0.19         | 0.008                                 | 0.083                                                                                | 5.73         | 6.42             | 4.97            | 1,0               |
| 12:59         26,079.2         264.1         0.22         0.008         0.086           13:00         26,199.6         266.3         0.21         0.008         0.086           13:01         26,059.9         266.9         0.19         0.008         0.086           13:02         26,199.6         266.9         0.21         0.008         0.086           13:02         25,912.0         263.9         0.21         0.008         0.086           13:03         26,013.5         265.0         0.21         0.008         0.086           13:04         26,013.5         265.1         0.20         0.018         0.086           13:05         26,013.5         265.1         0.21         0.008         0.087           13:05         26,013.9         266.1         0.22         0.008         0.087           13:06         26,013.4         266.7         0.21         0.008         0.087           13:07         26,013.4         0.19         0.008         0.087           13:08         26,013.4         0.19         0.008         0.087           13:08         26,013.4         0.19         0.0108         0.087           13:09         2                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 23/23 | 12:58              | 25,993.7             | 267.0            | 0.20         | 0.008                                 | 0.084                                                                                | 5.85         | 6.60             | 4.88            | 1.0               |
| 13:00         26,13         0.21         0.006         0.066           13:01         26,059         266.3         0.19         0.066         0.086           13:02         25,912.0         266.3         0.21         0.008         0.086           13:02         25,912.0         265.0         0.26         0.019         0.066         0.086           13:02         25,912.0         265.0         0.21         0.008         0.086         0.086           13:03         26,002.6         265.1         0.21         0.008         0.086         0.086           13:04         26,013.5         263.8         0.21         0.208         0.086         0.086           13:05         26,013.6         266.2         0.264.9         0.21         0.008         0.086           13:06         26,073.9         266.1         0.21         0.008         0.086         0.087           13:07         26,073.9         265.1         0.21         0.008         0.086         0.087           13:08         26,073.9         265.1         0.22         0.008         0.086         0.087           13:09         26,012.4         264.4         0.19         0.008 <td< td=""><td>23/23</td><td>12:59</td><td>26,079.2</td><td>264.1</td><td>0.22</td><td>0.008</td><td>0.086</td><td>5.94</td><td>6.60</td><td>4.85</td><td>1.0</td></td<>                                                                                                                                                                                                                                                                                 | 23/23 | 12:59              | 26,079.2             | 264.1            | 0.22         | 0.008                                 | 0.086                                                                                | 5.94         | 6.60             | 4.85            | 1.0               |
| 13:01         26,059         266.9         0.19         0.008         0.084           13:02         25,912.0         265.9         0.21         0.008         0.085           13:03         26,002.6         265.0         0.21         0.008         0.086           13:04         26,013.5         265.1         0.21         0.008         0.086           13:05         26,013.5         265.1         0.21         0.008         0.086           13:05         26,013.5         265.1         0.21         0.008         0.086           13:05         26,073.9         266.2         0.24         0.21         0.008         0.087           13:06         26,073.9         265.1         0.21         0.008         0.086         0.087           13:07         26,073.9         265.1         0.21         0.008         0.086         0.085           13:08         26,073.9         265.1         0.22         0.21         0.008         0.085           13:09         26,012.4         264.4         0.19         0.008         0.085           13:10         26,012.3         264.4         0.19         0.008         0.085           13:10         26,0                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23/23 | 13:00              | 26,199.6             | 266.3            | 0.21         | 0.008                                 | 0.086                                                                                | 5.96         | 6.67             | 4.85            | 1.0               |
| 13:02         25,912.0         263.9         0.21         0.008         0.085           13:03         26,002.6         285.0         0.21         0.008         0.086           13:04         26,013.5         265.0         0.21         0.008         0.086           13:05         26,013.5         265.0         0.21         0.008         0.086           13:05         26,088.2         264.9         0.21         0.008         0.087           13:05         26,030.9         266.2         0.22         0.008         0.087           13:07         26,073.9         266.1         0.21         0.008         0.087           13:07         26,073.9         266.1         0.21         0.008         0.087           13:07         26,073.9         266.1         0.21         0.008         0.087           13:08         26,073.9         266.4         0.19         0.008         0.085           13:09         26,073.3         264.4         0.19         0.088         0.085           13:09         26,070.3         264.4         0.19         0.088         0.085           13:10         26,073.5         263.3         0.22         0.008 <t< td=""><td>23/23</td><td>13:01</td><td>26,059.9</td><td>266.9</td><td>0.19</td><td>0.008</td><td>0.084</td><td>5.80</td><td>6.53</td><td>4.95</td><td>1.0</td></t<>                                                                                                                                                                                                                                                                                          | 23/23 | 13:01              | 26,059.9             | 266.9            | 0.19         | 0.008                                 | 0.084                                                                                | 5.80         | 6.53             | 4.95            | 1.0               |
| 13:03         26,002.6         265.0         0.21         0.008         0.066           13:04         26,013.5         283.7         0.20         0.008         0.085           13:05         26,013.5         284.9         0.21         0.008         0.085           13:05         26,083.2         284.9         0.21         0.008         0.085           13:06         26,073.9         266.2         0.22         0.008         0.087           13:07         26,073.9         265.1         0.21         0.008         0.087           13:08         26,073.9         265.1         0.21         0.008         0.087           13:09         26,073.9         265.1         0.21         0.008         0.085           13:09         26,012.4         284.4         0.19         0.008         0.085           13:10         26,013         265.01         0.22         0.008         0.085           Marinum         26,013.6         263.3         0.22         0.008         0.085           Marinum         26,013.6         263.3         0.22         0.008         0.085           Marinum         26,015.2         263.3         0.22         0.008                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 23/23 | 13:02              | 25,912.0             | 263.9            | 0.21         | 0.008                                 | 0.085                                                                                | 5.87         | 6.60             | 4.94            | 1.0               |
| 13:04         26,013.5         283.7         0.20         0.008         0.085           13:05         26,068.2         264,9         0.21         0.008         0.085           13:06         26,538.3         266.2         0.22         0.008         0.085           13:07         26,073.9         266.1         0.22         0.008         0.087           13:07         26,073.9         265.1         0.21         0.008         0.087           13:08         26,073.9         265.1         0.21         0.008         0.087           13:09         26,073.9         265.1         0.21         0.008         0.085           13:09         26,012.4         284.4         0.19         0.008         0.085           13:10         26,070.3         263.3         0.22         0.008         0.085           Average         26,073.6         264.6         0.21         0.008         0.085           Maximum         26,015.2         263.3         0.22         0.008         0.085           Maximum         26,915.2         5,57.3         4.34         0.168         1.766                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 23/23 | 13:03              | 26,002.6             | 265.0            | 0,21         | 0.008                                 | 0.086                                                                                | 5.92         | 6.60             | 4.88            | 1.0               |
| 13.05       26,068.2       264.9       0.21       0.086       0.085         13.06       26,238.3       266.2       0.22       0.008       0.087         13.07       26,073.9       266.3       0.22       0.008       0.087         13.07       26,073.9       265.1       0.22       0.008       0.087         13.08       26,073.9       265.1       0.21       0.008       0.085         13.09       26,012.4       264.4       0.19       0.008       0.085         13.10       26,070.3       263.3       0.22       0.008       0.085         Average       26,070.3       263.3       0.22       0.008       0.085         Minimum       25,912.0       264.6       0.21       0.008       0.085         Maximum       26,293.3       0.21       0.008       0.035         Maximum       26,293.3       267.0       0.19       0.008       0.035         Maximum       26,915.2       5,57.3       4.34       0.168       1.786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 23/23 | 13:04              | 26,013.5             | 263.7            | 0.20         | 0.008                                 | 0.085                                                                                | 5.84         | 6.49             | 4.90            | 1.0               |
| 13:06         26,238.3         266.2         0.22         0.008         0.067           13:07         26,073.9         265.1         0.22         0.008         0.067           13:08         26,073.9         265.1         0.21         0.008         0.067           13:08         26,073.9         265.1         0.21         0.008         0.065           13:09         26,012.4         264.4         0.19         0.008         0.085           13:10         26,070.3         263.3         0.22         0.008         0.085           Average         26,070.3         263.3         0.22         0.008         0.085           Minimum         25,912.0         263.3         0.21         0.008         0.085           Maximum         26,293.3         267.0         0.19         0.008         0.083           Maximum         56,291.2         5,577.3         4.34         0.168         1.786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23/23 | 13:05              | 26,068.2             | 264.9            | 0.21         | 0.008                                 | 0.085                                                                                | 5.83         | 6.49             | 4.91            | 1.0               |
| 13:07         26,073.9         263.8         0.22         0.008         0.067           13:08         26,030.9         265.1         0.21         0.008         0.065           13:09         26,012.4         264.4         0.19         0.008         0.065           13:10         26,070.3         263.3         0.22         0.008         0.085           13:10         26,070.3         263.3         0.22         0.008         0.085           Average         26,070.3         263.3         0.22         0.008         0.085           Minimum         25,912.0         264.6         0.21         0.008         0.085           Maximum         26,293.3         0.21         0.008         0.085         0.035           Maximum         26,291.2         5,577.3         4.34         0.168         1.786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 23/23 | 13:06              | 26,238.3             | 266.2            | 0.22         | 0.008                                 | 0.087                                                                                | 6.00         | 6.71             | 4.90            | 1.0               |
| 13:08         26,030.9         265,1         0.21         0.008         0.065           13:09         26,012.4         264.4         0.19         0.008         0.083           13:10         26,012.4         264.4         0.19         0.008         0.083           13:10         26,070.3         263.3         0.22         0.008         0.086           Average         26,073.8         264.6         0.21         0.008         0.085           Minimum         25,912.0         264.6         0.21         0.008         0.085           Maximum         26,293.3         267.0         0.19         0.008         0.085           Maximum         26,291.2         5,577.3         4.34         0.168         1.786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23/23 | 13:07              | 26,073.9             | 263.8            | 0.22         | 0.008                                 | 0.087                                                                                | 5.92         | 6.60             | 4.94            | 1.0               |
| 13:09         26,012.4         264.4         0.19         0.008         0.083           13:10         26,070.3         263.3         0.22         0.008         0.086           Average         26,070.3         263.3         0.22         0.008         0.086           Average         26,070.3         263.5         0.22         0.008         0.086           Minimum         25,912.0         264.6         0.21         0.008         0.085           Maximum         26,293.3         267.0         0.19         0.008         0.087           Maximum         56,291.2         5,577.3         4.34         0.168         1.786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 23/23 | 13:08              | 26,030.9             | 265.1            | 0.21         | 0.008                                 | 0.085                                                                                | 5.82         | 6.49             | 4.95            | 1.0               |
| 13:10         26,070.3         263.3         0.22         0.008         0.086           Average         26,043.6         264.6         0.21         0.008         0.085           Minimum         25,912.0         262.7         0.19         0.008         0.085           Maximum         26.293.3         267.0         0.21         0.008         0.085           Maximum         26.293.3         267.0         0.23         0.008         0.087           Maximum         26.293.3         267.0         0.24         0.168         1.786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 23/23 | 13:09              | 26,012.4             | 264.4            | 0.19         | 0.008                                 | 0.083                                                                                | 5.72         | 6.38             | 4.93            | 1.0               |
| 26,043.6         264.6         0.21         0.008         0.085           25,912.0         262.7         0.19         0.008         0.083           26,233.3         267.0         0.22         0.008         0.083           56,215.1         546,915.2         5,557.3         4.34         0.168         1.786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 23/23 | 13:10              | 26,070.3             | 263.3            | 0.22         | 0.008                                 | 0.086                                                                                | 5.83         | 6.53             | 4.96            | 1.0               |
| 25,912.0 262.7 0.19 0.008 0.083<br>26,238.3 267.0 0.22 0.008 0.087<br>546,915.2 5,557.3 4.34 0.168 1.786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | Average            | 26,043.6             | 264.6            | 0.21         | 0.008                                 | 0.085                                                                                | 5.84         | 6.53             | 4.92            | 1.0               |
| 546,915.2 5,557.3 4.34 0.168 1.786                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       | Minimum<br>Maximum | 25,912.0<br>26,238.3 | 262.7<br>267.0   | 0.19<br>0.22 | 0.008<br>0.008                        | 0.083<br>0.087                                                                       | 5.67<br>6.00 | 6.38<br>6.71     | 4.83<br>4.97    | 1.0               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | Summation          | 546,915.2            | 5,557.3          | 4.34         | 0.168                                 | 1.786                                                                                | 122.68       | 137.22           | 103.29          | 21.0              |

D = Shutdown I = Invalid S = Substituted U = Startup C = Calibration Version 6.18 \* = Suspect T = Out Of Control E = Exceedance Report Generated: 05/23/23 13:11 M = Maintenance F = Unit Offline

GONPRODU/MEscarcega

55

55

55

53

52

55

ый

52

5 5

Included Data Points Total number of Data Points

Average Data Plant: ORMOND BEACH GEN STA Interval: 1 Minute

RATA RUN # 7

| Type: Roll | Report Period: 05/23/2023 13:22 Through 05/23/2023 13:42<br>Time Online Criteria: 1 minute(s) |  |
|------------|-----------------------------------------------------------------------------------------------|--|
| Type: Roll | Report Period: 05/23/2023 13:22 Through 05/23/2023 13:42<br>Time Online Criteria: 1 minute(s) |  |

| CaseLow         LoADMW           GASFLOW         LOADMW           (HSCFH)         (MW)           (HSCFH)         (MW)           25,903.9         264.3           25,878.4         265.3           25,878.4         266.4           26,021.0         264.1           26,021.0         266.4           25,887.3         264.4           26,021.0         266.4           26,021.0         266.4           26,021.0         266.4           26,021.0         266.4           25,922.5         265.1           25,910.6         265.5           25,910.6         265.5           25,910.6         265.5           25,910.7         265.6           25,910.6         265.5           25,910.7         265.5           25,910.8         265.5           25,910.8         265.5           25,910.8         265.5           26,028.0         265.5           26,030.3         265.5           26,048.3         265.5           26,058.8         265.5           26,058.8         265.5           25,618.8         265.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Time Online Criteria: 1 minute(s) | lime Online Criteria: 1 minute(s) |                |                |                  |                 |                   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------|----------------|----------------|------------------|-----------------|-------------------|
| GASFLOW         LOADMMV           (HSCFH)         LOADMMV           25,903.9         264.3           25,878.4         265.3           25,873.1         264.1           26,021.0         264.1           26,021.0         264.4           26,021.0         265.4           26,021.0         266.4           26,021.0         266.4           26,021.0         266.4           26,033.0         264.6           25,936.8         265.6           25,944.6         265.6           25,944.6         265.5           25,944.6         265.5           25,944.6         265.5           25,944.6         265.6           25,944.6         265.5           25,944.6         265.5           25,944.6         265.5           25,944.6         265.5           25,944.6         265.5           25,944.8         265.5           26,048         265.5           25,944.8         265.5           26,048         265.5           26,048         265.5           26,056.5         265.5           26,056.8         265.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   |                                   | ORB2           |                |                  |                 |                   |
| 25,903.9<br>25,814.4<br>25,813.1<br>26,005.6<br>26,005.6<br>25,922.5<br>25,887.3<br>25,887.3<br>25,944.6<br>25,934.6<br>25,944.6<br>25,934.6<br>25,934.6<br>25,934.6<br>25,934.3<br>25,944.3<br>25,944.3<br>25,934.6<br>25,934.3<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>25,936.5<br>26,936.5<br>26,936.5<br>26,936.5<br>26,936.5<br>26,936.5<br>26,936.5<br>26,955.5<br>26,955.5<br>26,955.5<br>26,955.5<br>26,955.5<br>26,955.5<br>26,955.5<br>26,955.5<br>26, | NH3FLOW<br>(GPM)                  | NOX#/MM<br>(LB/MMBTU)             | (LB/NMW)       | (Mdd)          | NOXPPMC<br>(PPM) | 02<br>(PERCENT) | UNITOPHR<br>(MIN) |
| 25,878.4<br>25,878.4<br>25,883.1<br>26,005.6<br>25,948.6<br>25,944.6<br>25,944.6<br>25,944.6<br>25,944.6<br>25,944.6<br>25,944.8<br>25,910.6<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,915.3<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25, | 0.20                              | 0.008                             | 0.085          | 5.84           | 6.49             | 4.94            | 1.0               |
| 25,883.1<br>26,021.0<br>26,005.6<br>25,922.5<br>25,944.6<br>25,944.6<br>25,944.6<br>25,944.6<br>25,944.6<br>25,944.6<br>25,944.8<br>25,944.3<br>25,910.6<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,915.3<br>25,915.3<br>25,915.3<br>25, | 0.19                              | 0.008                             | 0.084          | 5.83           | 6.49             | 4.91            | 1.0               |
| 26,021.0<br>26,005.6<br>25,922.5<br>25,924.6<br>25,944.6<br>25,944.6<br>25,944.6<br>25,944.6<br>25,941.3<br>25,910.6<br>25,9148.3<br>25,9148.3<br>25,9148.3<br>25,9148.3<br>25,9148.3<br>25,9148.3<br>25,9148.3<br>25,9148.3<br>25,9148.3<br>25,9148.3<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,9156.5<br>25,915                                                                   | 0.20                              | 0.008                             | 0.085          | 5.83           | 6.53             | 4.96            | 1.0               |
| 26,005.6<br>25,922.5<br>25,924.6<br>25,944.6<br>25,944.6<br>25,944.6<br>25,944.6<br>25,910.6<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,915.3<br>25,915.3<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25, | 0.21                              | 0.008                             | 0.086          | 6.02           | 6.67             | 4.84            | 1.0               |
| 25,922.5<br>25,944.6<br>25,944.6<br>25,944.6<br>25,944.6<br>25,910.6<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,915.3<br>25,915.3<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25,915.5<br>25, | 0.22                              | 0.008                             | 0.088          | 6.01           | 6.75             | 4.97            | 1.0               |
| 25,887.3<br>25,868.8<br>25,944.6<br>25,944.6<br>26,063.0<br>25,97.7<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,914.3<br>25,915.5<br>26,014.3<br>25,915.5<br>26,014.3<br>25,915.5<br>26,014.3<br>25,915.5<br>26,014.3<br>25,915.5<br>26,014.3<br>25,915.5<br>26,014.3<br>25,915.5<br>26,014.3<br>25,915.5<br>26,014.3<br>25,915.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,014.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,015.5<br>26,0 | 0.21                              | 0.008                             | 0.085          | 5.91           | 6.60             | 4.93            | 1.0               |
| 25,868.8<br>25,944.6<br>25,944.6<br>25,997.7<br>25,910.6<br>25,9148.3<br>25,9148.3<br>25,929.0<br>25,929.0<br>25,929.0<br>25,929.0<br>25,929.0<br>25,030.3<br>25,926.5<br>25,887.5<br>25,887.5<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,986.2<br>21,986.2<br>21,000,000,000,000,000,000,000,000,000,0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.20                              | 0.008                             | 0.085          | 5.85           | 6.49             | 4.94            | 1.0               |
| 25,944.6<br>26,083.0<br>25,997.7<br>25,910.6<br>25,9148.3<br>25,929.0<br>25,929.0<br>25,929.0<br>25,929.0<br>25,929.0<br>25,928.3<br>25,881.3<br>25,881.3<br>25,887.5<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,886.5<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>25,986.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26,086.2<br>26 | 0.20                              | 0.008                             | 0.085          | 5.89           | 6.60             | 4.90            | 1.0               |
| 26,083.0<br>25,997.7<br>25,910.6<br>26,004.8<br>25,914.3<br>25,914.3<br>25,929.0<br>26,048.3<br>26,048.3<br>26,048.3<br>26,048.3<br>26,048.3<br>26,048.3<br>26,048.3<br>26,048.3<br>25,887.5<br>25,887.5<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>26,086.2<br>21,233.0<br>21,233.0<br>21,233.0<br>22,245.0<br>24,048.2<br>25,956.5<br>21,233.0<br>25,888.8<br>26,086.2<br>21,233.0<br>21,233.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>22,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.0<br>24,245.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.21                              | 0.008                             | 0.085          | 5.82           | 6.49             | 4.92            | 1.0               |
| 25,997.7<br>25,910.6<br>25,910.6<br>25,914.3<br>25,929.0<br>26,048.3<br>26,048.3<br>26,048.3<br>25,881.3<br>25,881.3<br>25,881.3<br>25,887.5<br>25,887.5<br>25,888.8<br>25,888.8<br>25,888.8<br>25,886.2<br>25,886.2<br>21,986.2<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.21                              | 0.008                             | 0.085          | 5.86           | 6.60             | 4.87            | 1.0               |
| 25,910.6<br>26,004.8<br>25,914.3<br>25,929.0<br>26,048.3<br>26,048.3<br>26,048.3<br>26,048.3<br>25,881.3<br>25,881.3<br>25,881.3<br>25,887.5<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>25,886.2<br>24,086.2<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.20                              | 0.008                             | 0.084          | 5.80           | 6.49             | 4.89            | 1.0               |
| 26,004.8 .<br>25,914.3<br>25,929.0<br>26,048.3<br>26,048.3<br>26,048.3<br>26,048.3<br>25,887.5<br>25,887.5<br>25,887.5<br>25,887.5<br>25,888.8<br>25,888.8<br>26,086.2<br>24,086.2<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.20                              | 0.008                             | 0.084          | 5.86           | 6.60             | 4.92            | 1.0               |
| 25,914.3<br>25,929.0<br>26,048.3<br>26,048.3<br>26,048.3<br>26,048.3<br>25,881.3<br>25,887.5<br>25,887.5<br>25,888.8<br>25,888.8<br>25,888.8<br>25,888.8<br>26,086.2<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.19                              | 0.008                             | 0.084          | 5.81           | 6.45             | 4.84            | 1.0               |
| 25,929.0<br>26,048.3<br>26,048.3<br>26,030.3<br>26,030.3<br>25,881.3<br>25,881.3<br>25,887.5<br>25,888.8<br>25,858.8<br>26,038.0<br>26,038.0<br>24,086.2<br>24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.20                              | 0.008                             | 0.085          | 5.84           | 6.49             | 4.94            | 1.0               |
| 26,048.3<br>26,048.3<br>26,056.3<br>26,030.3<br>25,881.3<br>25,881.3<br>25,887.5<br>25,888.8<br>26,038.0<br>26,038.0<br>24,086.2<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.21                              | 0.008                             | 0.086          | 5.98           | 6.71             | 4.91            | 1.0               |
| 26,057.9<br>26,056.3<br>26,030.3<br>25,861.3<br>25,861.3<br>25,861.5<br>25,868.8<br>26,085.0<br>26,086.2<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.22                              | 0.008                             | 0.087          | 5.98           | 6.71             | 4.89            | 1.0               |
| 26,056.3<br>26,030.3<br>25,861.3<br>25,887.5<br>25,887.5<br>25,858.8<br>26,085.2<br>545,086.2<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.23                              | 0.008                             | 0.088          | 6.04           | 6.71             | 4.94            | 1.0               |
| 26,030.3<br>25,861.3<br>25,861.5<br>25,868.5<br>25,858.8<br>26,085.0<br>26,085.0<br>24<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.22                              | 0.008                             | 0.086          | 5.91           | 6.60             | 4.88            | 1.0               |
| 25,861.3<br>25,887.5<br>25,956.5<br>25,858.8<br>26,035.0<br>26,035.0<br>545,086.2<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.20                              | 0.008                             | 0.084          | 5.82           | 6.49             | 4.90            | 1.0               |
| 25,887.5<br>25,956.5<br>25,858.8<br>26,035.0<br>26,035.0<br>545,086.2<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.19                              | 0.008                             | 0.083          | 5.74           | 6.38             | 4.94            | 1.0               |
| 25,956.5<br>25,858.8<br>26,083.0<br>545,088.2<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.20                              | 0.008                             | 0.083          | 5.73           | 6.38             | 4.87            | 1.0               |
| 25,858.8<br>26,083.0<br>545,086.2<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.21                              | 0.008                             | 0.085          | 5.87           | 6.56             | 4.91            | 1.0               |
| 545,085.0<br>545,086.2<br>21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.19                              | 0.008                             | 0.083          | 5.73           | 6.38             | 4.84            | 1.0               |
| 21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.23<br>4.31                      | 0.008<br>0.168                    | 0.088<br>1.787 | 6.04<br>123.37 | 6.75<br>137.72   | 4.97<br>103.10  | 1.0<br>0.1<br>0.1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21                                | 21                                | 21             | 21             | 21               | 21              | 21                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 21                                | 21                                | 21             | 21             | 21               | 21              | 21                |

D = Shutdown I = Invalid S = Substituted U = Startup C = Calibration Version 6.18 M = Maintenance T = Out Of Control \* = Suspect E = Exceedance Report Generated: 05/23/23 14:20 F = Unit Offline

GONPRODU/MEscarcega

Report Period: 05/23/2023 13:49 Through 05/23/2023 14:09 Plant: ORMOND BEACH GEN STA Time Online Criteria: 1 minute(s) Average Data Interval: 1 Minute Type: Roll

ORMOND U-2 RATA RUN#8

|                  |                                 |                       |                  | Report Peric     | od: 05/23/2023 13:<br>Time Online Crit | Report Period: 05/23/2023 13:49 Through 05/23/2023 14:09<br>Time Online Criteria: 1 minute(s) | 2023 14:09     |                  |                 |                   |
|------------------|---------------------------------|-----------------------|------------------|------------------|----------------------------------------|-----------------------------------------------------------------------------------------------|----------------|------------------|-----------------|-------------------|
| Sot              | Source                          |                       |                  |                  |                                        | ORB2                                                                                          |                |                  |                 |                   |
| Paral<br>U       | Parameter<br>Unit               | GASFLOW<br>(HSCFH)    | LOADMW<br>(MW)   | NH3FLOW<br>(GPM) | NOX#/MM<br>(LB/MMBTU)                  | NOX#/NMWV)<br>(LB/NMWV)                                                                       | (MAP)<br>(MPA) | NOXPPMC<br>(PPM) | 02<br>(PERCENT) | UNITOPHR<br>(MIN) |
| <b>F</b> 2123/23 | 13:49                           | 25,966.1              | 263.6            | 0.21             | 0.008                                  | 0.085                                                                                         | 5.84           | 6,49             | 4,90            | 1.0               |
| 5123/23          | 13:50                           | 25,993.8              | 266.8            | 0.20             | 0.008                                  | 0.084                                                                                         | 5.85           | 6.49             | 4.90            | 1.0               |
| <b>G</b> 5/23/23 | 13:51                           | 26,003.5              | 264.3            | 0.21             | 0.008                                  | 0.086                                                                                         | 5.89           | 6.60             | 4.92            | 1.0               |
| 05/23/23         | 13:52                           | 25,968.3              | 265.1            | 0.21             | 0.008                                  | 0.086                                                                                         | 5.95           | 6.71             | 4.95            | 1.0               |
| 05/23/23         | 13:53                           | 25,896.6              | 262.3            | 0.21             | 0.008                                  | 0.086                                                                                         | 5.85           | 6.53             | 4.97            | 1.0               |
| 05/23/23         | 13:54                           | 25,892.4              | 265.4            | 0.21             | 0.008                                  | 0,084                                                                                         | 5.85           | 6.60             | 4.89            | 1.0               |
| 05/23/23         | 13:55                           | 25,996.6              | 263.9            | 0.21             | 0.008                                  | 0.085                                                                                         | 5,85           | 6.60             | 4.95            | 1.0               |
| 05/23/23         | 13:56                           | 25,963.0              | 265.4            | 0.21             | 0.008                                  | 0.085                                                                                         | 5.88           | 6.60             | 4.92            | 1.0               |
| 05/23/23         | 13:57                           | 26,031.4              | 264.0            | 0.22             | 0.008                                  | 0.086                                                                                         | 5.85           | 6.64             | 4.97            | 1.0               |
| 05/23/23         | 13:58                           | 25,929.7              | 266.2            | 0.20             | 0.008                                  | 0.083                                                                                         | 5.79           | 6.49             | 4.93            | 1.0               |
| 05/23/23         | 13:59                           | 26,002.7              | 263.8            | 0.21             | 0.008                                  | 0.085                                                                                         | 5.83           | 6.53             | 4.97            | 1.0               |
| 015/23/23        | 14:00                           | 26,005.3              | 265.6            | 0.20             | 0.008                                  | 0.085                                                                                         | 5.87           | 6.60             | 4.86            | 1.0               |
| 05/23/23         | 14:01                           | 25,922.4              | 263.5            | 0.21             | 0.008                                  | 0.085                                                                                         | 5.83           | 6.53             | 4.98            | 1.0               |
| 05/23/23         | 14:02                           | 25,980.1              | 266.1            | 0.21             | 0.008                                  | 0.085                                                                                         | 5.90           | 6.60             | 4.87            | 1.0               |
| 3/23             | 14:03                           | 26,068.3              | 263.3            | 0.21             | 0.008                                  | 0.086                                                                                         | 5.86           | 6.60             | 4.92            | 1.0               |
| 05/23/23         | 14:04                           | 25,996.8              | 264.8            | 0.21             | 0.008                                  | 0.085                                                                                         | 5.84           | 6.49             | 4.91            | 1.0               |
| 05/23/23         | 14:05                           | 26,139.6              | 266.1            | 0.21             | 0.008                                  | 0.086                                                                                         | 5.90           | 6.60             | 4.92            | 1.0               |
| 05/23/23         | 14:06                           | 26,011.9              | 266.1            | 0.21             | 0,008                                  | 0.085                                                                                         | 5.89           | 6.60             | 4.91            | 1.0               |
| 05/23/23         | 14:07                           | 26,011.7              | 264.0            | 0.22             | 0.008                                  | 0.086                                                                                         | 5.92           | 6.60             | 4.93            | 1.0               |
| 05/23/23         | 14:08                           | 25,960.7              | 265.6            | 0.21             | 0.008                                  | 0.086                                                                                         | 5.92           | 6.60             | 4.92            | 1.0               |
| 05/23/23         | 14:09                           | 25,867.4              | 262.8            | 0.22             | 0.008                                  | 0.086                                                                                         | 5.86           | 6,64             | 5.02            | 1.0               |
|                  | Averade                         | 25.981.3              | 264.7            | 0.21             | 0.008                                  | 0.085                                                                                         | 5.87           | 6<br>58          | 4 93            | 0                 |
|                  | Minimum                         | 25,867.4              | 262.3            | 0.20             | 0.008                                  | 0.083                                                                                         | 5.79           | 6.49             | 4.86            | <u>;</u> C        |
|                  | Maximum                         | 26,139.6<br>545,608.3 | 266.8<br>5.558.7 | 0.22             | 0.008                                  | 0.086                                                                                         | 5.95           | 6.71             | 5.02<br>103 81  | 0.1.6             |
| ncluded          | Included Data Points            | 21                    | 21               | 21               | 21                                     | 21                                                                                            | 10             | 5.5              | 2 2 2           | 212               |
| otal nui         | l otal number of Uata<br>Points | 17                    | 17               | 17               | 17                                     | 17                                                                                            | LZ             | 17               | 21              | 21                |

D = Shutdown I = Invalid S = Substituted U = Startup C = Calibration Version 6.18 \* = Suspect T = Out Of Control E = Exceedance Report Generated: 05/23/23 14:35 M = Maintenance F = Unit Offline

GONPRODU/MEscarcega

Points

Report Period: 05/23/2023 14:41 Through 05/23/2023 15:01 Time Online Criteria: 1 minute(s) Average Data Plant: ORMOND BEACH GEN STA Interval: 1 Minute Type: Roll

BRMGND U-2 RATA RUN#9

| ממר               | Source                |                    |                  |                  |                        | ORB2                   |                |                  |                 |                   |
|-------------------|-----------------------|--------------------|------------------|------------------|------------------------|------------------------|----------------|------------------|-----------------|-------------------|
| Parameter<br>Unit | neter<br>it           | GASFLOW<br>(HSCFH) | LOADMVV<br>(MVV) | NH3FLOW<br>(GPM) | NOX#//MM<br>(LB/MMBTU) | (TR/NMVV)<br>(LB/NMVV) | (MAP)<br>(MPM) | NOXPPMC<br>(PPM) | 02<br>(PERCENT) | UNITOPHR<br>(MIN) |
| 45/23/23          | 14:41                 | 26,046.0           | 263.8            | 0.20             | 0.008                  | 0.084                  | 5.75           | 6.49             | 4.91            | 1.0               |
|                   | 14:42                 | 25,984.1           | 264.3            | 0.20             | 0.008                  | 0.082                  | 5.66           | 6.38             | 4.93            | 1.0               |
|                   | 14:43                 | 26,081.9           | 265.5            | 0.19             | 0.008                  | 0.083                  | 5.72           | 6.34             | 4.85            | 1.0               |
| 05/23/23          | 14:44                 | 26,019.6           | 262.7            | 0.20             | 0.008                  | 0.083                  | 5.68           | 6.38             | 4.93            | 1.0               |
| 05/23/23          | 14:45                 | 26,153.0           | 265.6            | 0.21             | 0.008                  | 0.085                  | 5.90           | 6.56             | 4.81            | 1.0               |
|                   | 14:46                 | 26,082.1           | 263.3            | 0:20             | 0.008                  | 0.084                  | 5.76           | 6.49             | 4.89            | 1.0               |
|                   | 14:47                 | 25,975.0           | 266.1            | 0.20             | 0.008                  | 0.084                  | 5.81           | 6.49             | 4.88            | 1.0               |
|                   | 14:48                 | 26,063.8           | 265.2            | 0.20             | 0.008                  | 0.085                  | 5.87           | 6.60             | 4.87            | 1.0               |
| 05/23/23          | 14:49                 | 25,985.1           | 264.1            | 0.21             | 0.008                  | 0.086                  | 5.91           | 6.60             | 4.93            | 1.0               |
| 05/23/23          | 14:50                 | 25,994.2           | 264.2            | 0.21             | 0.008                  | 0.086                  | 5.97           | 6.71             | 4.87            | 1.0               |
|                   | 14:51                 | 25,957.9           | 264.6            | 0.22             | 0.008                  | 0.086                  | 5.93           | 6.64             | 4.96            | 1.0               |
|                   | 14:52                 | 26,066.8           | 266.5            | 0.21             | 0.008                  | 0.086                  | 5.96           | 6.71             | 4.86            | 1.0               |
|                   | 14:53                 | 26,012.5           | 263.9            | 0.22             | 0.008                  | 0.086                  | 5.91           | 6.60             | 4.95            | 1.0               |
|                   | 14:54                 | 25,992.6           | 264.8            | 0.22             | 0.008                  | 0.087                  | 5.96           | 6.71             | 4.94            | 1.0               |
| <b>G</b> 5/23/23  | 14:55                 | 26,099.5           | 265.7            | 0.22             | 0.008                  | 0.086                  | 5.92           | 6.60             | 4.87            | 1.0               |
|                   | 14:56                 | 25,967.5           | 264.1            | 0.21             | 0.008                  | 0.084                  | 5.77           | 6.53             | 4.97            | 1.0               |
| 05/23/23          | 14:57                 | 26,084.4           | 265.2            | 0.21             | 0.008                  | 0.084                  | 5.78           | 6.49             | 4.89            | 1.0               |
|                   | 14:58                 | 26,169.4           | 264.4            | 0.21             | 0.008                  | 0.085                  | 5.80           | 6.49             | 4.91            | 1.0               |
|                   | 14:59                 | 26,002.3           | 264.4            | 0.22             | 0.008                  | 0.085                  | 5.84           | 6.49             | 4.92            | 1.0               |
|                   | 15:00                 | 26,125.9           | 265.5            | 0.21             | 0.008                  | 0.085                  | 5.87           | 6.56             | 4.83            | 1.0               |
| 05/23/23          | 15:01                 | 26,099.2           | 263.0            | 0.22             | 0.008                  | 0.085                  | 5.80           | 6.53             | 4.95            | 1.0               |
|                   |                       | 0 20 20            | 9 F90            | 200              |                        |                        |                |                  |                 |                   |
|                   | Average               | 20,040.0           | 0,402            | 17:0             | 0.008                  | 0.065                  | 5.84           | 6.54             | 4.90            | 1.0               |
|                   | Minimum               | 25,957.9           | 262./<br>266.5   | 0.19             | 0.008                  | 0.082                  | 5.66           | 6.34             | 4.81            | 1.0               |
|                   | Summation             | 546,962.8          | 5,556.9          | 4.39             | 0.168                  | 1.781                  | 122.57         | 137.39           | 4.9/            | 0.1<br>010        |
| ncluded           | Included Data Points  | 21                 | 21               | 21               | 21                     | 21                     | 23             | 21               | 2               | 21                |
| otai nuri         | l otal number of Data | 17                 | 17               | 12               | 17                     | 21                     | 21             | 21               | 21              | 21                |

D = Shutdown I = Invalid S = Substituted U = Startup C = Calibration Version 6.18 \* = Suspect T = Òut Of Control E = Exceedance Report Generated: 05/23/23 15:09 M = Maintenance F = Unit Offline

GONPRODU/MEscarcega

### APPENDIX C CALCULATIONS



### Appendix C.1 General Emissions Calculations



### **GENERAL EMISSION CALCULATIONS**

- I. <u>Stack Gas Velocity</u>
  - A. Stack gas molecular weight, lb/lb-mole

 $MW_{drv} = 0.44 * \% CO_2 + 0.32 * \% O_2 + 0.28 * \% N_2$ 

MW  $_{wet}$  = MW  $_{dry}$  \* (1 - B  $_{wo}$ ) + 18 \* B  $_{wo}$ 

B. Absolute stack pressure, iwg

$$Ps = Pbar + \frac{Psg}{13.6}$$

C. Stack gas velocity, ft/sec

$$V_{s} = 2.9 * C_{p} * \sqrt{\Delta P} * \sqrt{T_{s}} * \sqrt{\frac{29.92 * 28.95}{P_{s} * MW_{wet}}}$$

- II. Moisture
  - A. Sample gas volume, dscf

$$V_{mstd} = 0.03342 * V_{m} * (P_{bar} + \frac{\Delta H}{13.6}) * \frac{T_{ref}}{T_{m}} * Y_{d}$$

B. Water vapor volume, scf

$$V_{wstd} = 0.0472 * V_{lc} * \frac{T_{ref}}{528 \ ^{\circ}R}$$

C. Moisture content, dimensionless

$$\mathsf{B}_{\mathsf{wo}} = \frac{\mathsf{V}_{\mathsf{wstd}}}{(\mathsf{V}_{\mathsf{mstd}} + \mathsf{V}_{\mathsf{wstd}})}$$

III. Stack gas volumetric flow rate

A. Actual stack gas volumetric flow rate, wacfm

$$Q = V_{s} * A_{s} * 60$$

B. Standard stack gas flow rate, dscfm

$$Q_{sd} = Q * (1 - B_{wo}) * \frac{T_{ref}}{T_s} * \frac{P_s}{29.92}$$



IV. Gaseous Mass Emission Rates, lb/hr

$$M = \frac{ppm * MW_{i} * Q_{sd} * 60}{SV * 10^{6}}$$

V. Emission Rates, Ib/MMBtu

$$\frac{lb}{MMBtu} = \frac{ppm * MW_{i} * F}{SV * 10^{6}} * \frac{20.9}{20.9 - \%O_{2}}$$

VI. <u>Percent Isokinetic</u>

$$I = \frac{17.32 \text{ x } T_{s} \text{ (V_mstd)}}{(1-\text{Bwo) } 0 \text{ x } \text{Vs } \text{x } \text{Ps } \text{x } \text{Dn2}} \text{ x } \frac{520^{\circ}\text{R}}{\text{T_{ref}}}$$

### VII. Particulate emissions

- (a) Grain loading, gr/dscf C =  $0.01543 (M_n/V_m \text{ std})$
- (b) Grain loading at 12% CO<sub>2</sub>, gr/dscf  $C_{12\%}$  CO<sub>2</sub> = C (12/% CO<sub>2</sub>)
- (c) Mass emissions, lb/hr  $M = C \times Qsd \times (60 \text{ min/hr})/(7000 \text{ gr/lb})$

(d) Particulate emission factor  

$$lb/10^6$$
 Btu = Cx  $\frac{1 lb}{7000 gr}$  x F x  $\frac{20.9}{20.9 - \% O_2}$ 



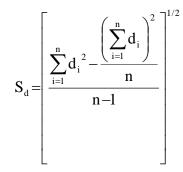
### Nomenclature:

| $\begin{array}{l} A_s \\ B_{wo} \\ C_{12\%CO2} \\ C \\ C_p \\ Dn \\ F \\ H \\ I \\ M_n \\ M_i \\ MW \\ M_{wi} \end{array}$ | <ul> <li>stack area, ft<sup>2</sup></li> <li>flue gas moisture content, dimensionless</li> <li>particulate grain loading, gr/dscf corrected to 12% CO<sub>2</sub></li> <li>particulate grain loading, gr/dscf</li> <li>pitot calibration factor, dimensionless</li> <li>nozzle diameter, in.</li> <li>fuel F-Factor, dscf/MMBtu @ 0% O<sub>2</sub></li> <li>orifice differential pressure, iwg</li> <li>% isokinetics</li> <li>mass of collected particulate, mg</li> <li>mass emission rate of specie i, lb/hr</li> <li>molecular weight of flue gas, lb/lb-mole</li> <li>molecular weight of specie i:</li> <li>SO<sub>2</sub>: 64</li> <li>NO<sub>x</sub>: 46</li> <li>CO: 28</li> <li>HC: 16</li> </ul> |
|----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>∆P<br>P <sub>bar</sub>                                                                                                | = sample time, min.<br>= average velocity head, iwg = $(\sqrt{\Delta P})^2$<br>= barometric pressure, inches Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Ps                                                                                                                         | = stack absolute pressure, inches Hg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| P <sub>sg</sub><br>Q                                                                                                       | <ul> <li>stack static pressure, iwb</li> <li>wet stack flow rate at actual conditions, wacfm</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Q <sub>sd</sub>                                                                                                            | = dry standard stack flow rate, dscfm                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| SV<br>T <sub>m</sub>                                                                                                       | = specific molar volume of an ideal gas at standard conditions, ft <sup>3</sup> /lb-mole<br>= meter temperature, °R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| T <sub>ref</sub>                                                                                                           | = reference temperature, °R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| T <sub>s</sub><br>Vs                                                                                                       | = stack temperature, °R<br>= stack gas velocity, ft/sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Vic                                                                                                                        | = volume of liquid collected in impingers, ml                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Vm                                                                                                                         | = uncorrected dry meter volume, dcf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| V <sub>mstd</sub><br>V <sub>wstd</sub>                                                                                     | <ul> <li>dry meter volume at standard conditions, dscf</li> <li>volume of water vapor at standard conditions, scf</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Y <sub>d</sub>                                                                                                             | = meter calibration coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |



### RATA SPECIFIC EMISSION CALCULATIONS

The following equations are used for Relative Accuracy Test Audit (RATA) Computational Procedures:


1. <u>Stack Gas Corrected Concentration</u>

a. 
$$C_{gas} = (\overline{C} - C_o) \frac{C_{ma}}{C_m - C_o}$$

- 2. Relative Accuracy Calculations
  - a. Average Difference

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$

b. Standard Deviation



c. Confidence Coefficient

$$CC =_{t0.975} \frac{S_d}{\sqrt{n}}$$

d. Relative Accuracy

$$RA = \frac{\left|\bar{d}\right| + |cc|}{\overline{RA}} \times 100$$

e. Reference Method Average

$$\overline{RM} = \frac{1}{n} \sum_{i=1}^{n} RM_i$$



### 3. Bias Adjustment Factor

| a. $BAF = 1 + \frac{1}{2}$ | <mark>d</mark>  <br>CEM |
|----------------------------|-------------------------|
|----------------------------|-------------------------|

### 4. <u>Nomenclature</u>

| $C_{\text{gas}}$            | = | Corrected Stack Gas Concentration, ppm dry            |
|-----------------------------|---|-------------------------------------------------------|
| $\overline{C}$              | = | Average Gas Concentration, ppm dry                    |
| Co                          | = | Average of the Initial and Final Zero Bias Check      |
| Cm                          | = | Average of the Initial and Final Upscale Bias Check   |
| $C_{ma}$                    | = | Actual Value of Upscale Calibration Gas Concentration |
| $\overline{d}$              | = | Arithmetic Mean                                       |
| Sd                          | = | Standard Deviation                                    |
| Ν                           | = | Number of Tests                                       |
| CC                          | = | Confidence Coefficient                                |
| RA                          | = | Relative Accuracy                                     |
| RM                          | = | Reference Method                                      |
| t <sub>0.975</sub>          | = | t Value                                               |
| $\left  \mathbf{d} \right $ | = | Absolute Value of the Mean Difference                 |



## Appendix C.2 Spreadsheet Summary



40 CFR PART 75 RATA DATA AND WORKSHEET NO<sub>x</sub> Ib/MMBtu

Performed By: MM, LO, LE, AE

Generating Station: Ormond Beach



| 6          | 5/23/2023 | 14:41            | 15:02     | NOX    | -    | 4 4.79         | +             | +     | 9 4./4      | 1 0.10 | $\vdash$           |            | -+    | -    | 4 5.73 | +                   | +    | 2 4.78              | 1 0 02         | ┢    |   | 5 5.72     |      | 0.008       | 0.008         | 0.000                 | 0.0%           | 8,710<br>264.6       |
|------------|-----------|------------------|-----------|--------|------|----------------|---------------|-------|-------------|--------|--------------------|------------|-------|------|--------|---------------------|------|---------------------|----------------|------|---|------------|------|-------------|---------------|-----------------------|----------------|----------------------|
| L          | 5/2       |                  | _         | °<br>0 | ω    | 4.54           | $\Rightarrow$ | +     | 4.02        | 0.01   | $\vdash$           | +          | 4.94  | _    | 4.94   | +                   | +    | 4.52                | -0<br>-0       | +    | - | 4.95       | 4.97 |             |               |                       |                |                      |
|            | 5/23/2023 | 23/2023<br>13:49 | 14:10     | o<br>N | 9.13 | 4.79           |               |       | 4, / 4      | 0.10   | 4.80               |            | 5.72  | 5.73 | 5.79   |                     | 2    | 4.75                | 0 0            | 4.75 |   | 5.75       | 5.79 | 0.008       | 0.008         | 0.000                 | 0.0%           | 8,710<br>264.7       |
|            | 5/23      | 13               | 14        | °2     | 8.94 | 4.54           | 200           | -0.0- | 4.00        | 0.01   | 4.52               |            | 5.08  | 5.03 | 5.01   | 200                 | 0.0  | 4.53                | -0 01          | 4.53 |   | 5.04       | 5.06 | 0.0         | 0.0           | 0.0                   | 0.0            | 8,7<br>26            |
|            | 2023      | 22               | 43        | Nox    | 9.13 | 4.79           |               | 0.02  | t.'t        | 0.09   | 4.79               | i          | 5.71  | 5.71 | 5.79   |                     | 2.0  | 4.80                | 0.02           | 4.75 |   | 5.74       | 5.75 | 08          | 08            | 00                    | %              | 10<br>1.9            |
| 2          | 5/23/2023 | 13:22            | 13:43     | °2     | 8.94 | 4.54           |               | -0.0  | 4.00        | 0.01   | 4.52               | 4          | 5.08  | 5.00 | 5.01   | 200                 | 5.5  | 4.52                | -0.01          | 4.53 |   | 5.03       | 5.05 | 0.008       | 0.008         | 0.000                 | 0.0%           | 8,710<br>264.9       |
|            | 2023      | 50               | 11        | NOx    | 9.13 | 4.79           |               | 20.UZ | 4.75        | 0.09   | 4.84               |            | 5.66  | 5.74 | 5.76   |                     | 20.0 | 4.79                | 0.02           | 4.74 |   | 5.72       | 5.70 | 8           | 8             | 0                     | %              | ဝဖ                   |
| Q          | 5/23/2023 | 12:50            | 13:       | 02     | 8.94 | 4.54           | 2             |       | 4.02        | 0.01   | 4.52               |            | 5.08  | 5.01 | 4.98   | 20                  | 5    | 4.52                | -0.01          | 4.53 |   | 5.02       | 5.05 | 0.008       | 0.008         | 0.000                 | 0.0%           | 8,710<br>264.6       |
|            | 023       | 23               | 4         | NOx    | 9.13 | 4.79           | 2             | 20.0  | 5.1         | 0.08   | 4.76               |            | 5.72  | 5.76 | 5.79   |                     | 20.0 | 4.84                | 0.02           | +    |   | 5.76       | 5.76 | 8           | 8             | 0                     | %              | οu                   |
| 5J         | 5/23/2023 | 12:23            | 12:44     | 02     | 8.94 | 4.54           | 2             |       | 2<br>2<br>7 | 0.01   | 4.52               |            | 5.10  | 5.03 | 5.03   | 50                  | 5.5  | 4.52                | -0.01          | 4.53 |   | 5.05       | _    | 0.008       | 0.008         | 0.000                 | 0.0            | 8,710<br>263.5       |
|            | 023       | 56               | 7         | NOx    | 9.13 | 4.79           | 6             | +     | 2           | 0.05   | 4.75               | [          | 5.5/  | 5.73 | 5.79   |                     |      | 4.76                | 0.02           | ÷    |   | 5.70       | 5.75 | 8           | 8             | 0                     | %              | οw                   |
| 4          | 5/23/2023 | 11:56            | 12:17     | 02     | 8.94 | 4.54           | 2             | -0.0- | 3           | 0.00   | 4.51               |            | 5.10  | 5.01 | 4.99   | 5                   |      | 4.52                | -0.01          | 4.53 |   | -          | 5.06 | 0.008       | 0.008         | 0.000                 | 0.0%           | 8,710<br>263.5       |
|            | 023       | 0                | 11        | NOx    | 9.13 | 4.79           | 6             | 312   | 1.14        | 0.06   | 4.74               |            | 5.69  | 5.70 | 5.73   | 200                 | 22.2 | 4.75                | 0.02           | 4.73 |   | 5.71       | 5.77 | 8           | 8             | 0                     | %              | <u> </u>             |
| n          | 5/23/2023 | 11:20            | 11:41     | 02     | 8.94 | 4.54           |               | 0.00  | 3.          | 0.01   | 4.52               |            | 5.12  | 5.07 | 5.01   |                     | 2.2  | 4.51                | -0.01          | 4.53 |   | 5.07       | 5.09 | 0.008       | 0.008         | 0.000                 | 0.0%           | 8,710<br>262.9       |
|            | 023       | 00               | -         | NOx    | 9.13 | 4.79           |               | 20.0  | 1.14        | 0.05   | 4.77               |            | 2.1.2 | 5.75 | 5.72   | 200                 | 3    | 4.74                | 0.02           | 4.73 |   | 5.73       | 5.79 | 8           | 8             | 0                     | %              | οw                   |
| 2          | 5/23/2023 | 10:50            | 11:11     | 02     | 8.94 | 4.54           |               | 0.00  | 3           | 0.00   | 4.51               |            | 5.10  | 5.06 | 5.02   | 0 01                | 5    | 4.52                | -0.01          | 4.53 |   | 5.06       | 5.09 | 0.008       | 0.008         | 0.000                 | 0.0%           | 8,710<br>262.5       |
|            | 2023      | 50               | 4         | NOx    | 9.13 | 4.79           | 000           | 20.0  | 4           | 0.03   | 4.73               | 1<br> <br> | 5.75  | 5.80 | 5.79   | 0.05                | 3    | 4.77                | 0.02           | 4.73 |   | 5.78       | 5.84 | 80          | 38            | 0                     | %              | <u>o</u> ø:          |
| -          | 5/23/2023 | 10:20            | 10:41     | 02     | 8.94 | 4.54           |               | 7 23  | 20.7        | 0.01   | 4.51               |            | 5.04  | 4.98 | 4.95   | 000                 |      | 4.51                | -0.01          | 4.53 |   | 4.99       | 5.02 | 0.008       | 0.008         | 0.000                 | 0.0%           | 8,710<br>262.8       |
| Run Number | Test Date | Start Time       | Stop Time |        | -    | Span Gas Value | Bro Toot Zoro | +-    | +-          | ╞═╡    | Pre-Test Span Bias | đ          |       | _    | Pt 1   | Doct Tact Zaro Biac | +    | Post-Test Span Bias | Post-Test Zero |      |   | RM Average |      | RM Ib/MMBtu | CEMS Ib/MMBtu | Difference (lb/MMBtu) | Difference (%) | F-Factor<br>Load, MW |

### APPENDIX D QUALITY ASSURANCE



### Appendix D.1 Quality Assurance Program Summary



### QUALITY ASSURANCE PROGRAM SUMMARY

As part of Montrose Air Quality Services, LLC (Montrose) ASTM D7036-04 certification, Montrose is committed to providing emission related data which is complete, precise, accurate, representative, and comparable. Montrose quality assurance program and procedures are designed to ensure that the data meet or exceed the requirements of each test method for each of these items. The quality assurance program consists of the following items:

- Assignment of an Internal QA Officer
- Development and use of an internal QA Manual
- Personnel training
- Equipment maintenance and calibration
- Knowledge of current test methods
- Chain-of-custody
- QA reviews of test programs

<u>Assignment of an Internal QA Officer</u>: Montrose has assigned an internal QA Officer who is responsible for administering all aspects of the QA program.

Internal Quality Assurance Manual: Montrose has prepared a QA Manual according to the requirements of ASTM D7036-04 and guidelines issued by EPA. The manual documents and formalizes all of Montrose's QA efforts. The manual is revised upon periodic review and as Montrose adds capabilities. The QA manual provides details on the items provided in this summary.

<u>Personnel Testing and Training</u>: Personnel testing and training is essential to the production of high quality test results. Montrose training programs include:

- A requirement for all technical personnel to read and understand the test methods performed
- A requirement for all technical personnel to read and understand the Montrose QA manual
- In-house testing and training
- Quality Assurance meetings
- Third party testing where available
- Maintenance of training records.

<u>Equipment Maintenance and Calibration</u>: All laboratory and field equipment used as a part of Montrose's emission measurement programs is maintained according to manufacturer's recommendations. A summary of the major equipment maintenance schedules is summarized in Table 1. In addition to routine maintenance, calibrations are performed on all sampling equipment according to the procedures outlined in the applicable test method. The calibration intervals and techniques for major equipment components is summarized in Table 2. The calibration technique may vary to meet regulatory agency requirements.

<u>Knowledge of Current Test Methods</u>: Montrose maintains current copies of EPA, ARB, and SCAQMD Source Test Manuals and Rules and Regulations.



<u>Chain-of-Custody</u>: Montrose maintains chain-of-custody documentation on all data sheets and samples. Samples are stored in a locked area accessible only to Montrose source test personnel. Data sheets are kept in the custody of the originator, program manager, or in locked storage until return to Montrose office. Electronic field data is duplicated for backup on secure storage media. The original data sheets are used for report preparation and any additions are initialed and dated.

<u>QA Reviews:</u> Periodic field, laboratory, and report reviews are performed by the in-house QA coordinator. Periodically, test plans are reviewed to ensure proper test methods are selected and reports are reviewed to ensure that the methods were followed and any deviations from the methods are justified and documented.

#### ASTM D7036-04 Required Information

#### Uncertainty Statement

Montrose is qualified to conduct this test program and has established a quality management system that led to accreditation with ASTM Standard D7036-04 (Standard Practice for Competence of Air Emission Testing Bodies). Montrose participates in annual functional assessments for conformance with D7036-04 which are conducted by the American Association for Laboratory Accreditation (A2LA). All testing performed by Montrose is supervised on site by at least one Qualified Individual (QI) as defined in D7036-04 Section 8.3.2. Data quality objectives for estimating measurement uncertainty within the documented limits in the test methods are met by using approved test protocols for each project as defined in D7036-04 Sections 7.2.1 and 12.10. Additional quality assurance information is presented in the report appendices.

#### Performance Data

Performance data are available for review.

#### Qualified Personnel

A qualified individual (QI), defined by performance on a third party or internal test on the test methods, is present on each test event.

#### Plant Entry and Safety Requirements

#### Plant Entry

All test personnel are required to check in with the guard at the entrance gate or other designated area. Specific details are provided by the facility and project manager.



### Safety Requirements

All personnel shall have the following personal protective equipment (PPE) and wear them where designated:

- Hard Hat
- Safety Glasses
- Steel Toe Boots
- Hearing Protection
- Gloves
- High Temperature Gloves (if required)
- Flame Resistant Clothing (if required)

The following safety measures are followed:

- Good housekeeping
- SDS for all on-site hazardous materials
- Confine selves to necessary areas (stack platform, mobile laboratory, CEMS data acquisition system, control room, administrative areas)
- Knowledge of evacuation procedures

Each facility will provide plant specific safety training.



| Equipment                     | Acceptance Limits                                                                                            | Frequency of Service           | Methods of Service                                                                                                       |
|-------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Pumps                         | <ol> <li>Absence of leaks</li> <li>Ability to draw<br/>manufacturers required<br/>vacuum and flow</li> </ol> | As recommended by manufacturer | <ol> <li>1. Visual inspection</li> <li>2. Clean</li> <li>3. Replace parts</li> <li>4. Leak check</li> </ol>              |
| Flow Meters                   | 1. Free mechanical movement                                                                                  | As recommended by manufacturer | <ol> <li>Visual inspection</li> <li>Clean</li> <li>Calibrate</li> </ol>                                                  |
| Sampling Instruments          | <ol> <li>Absence of malfunction</li> <li>Proper response to zero<br/>span gas</li> </ol>                     | As recommended by manufacturer | As recommended by manufacturer                                                                                           |
| Integrated Sampling<br>Tanks  | 1. Absence of leaks                                                                                          | Depends on nature of use       | 1. Steam clean<br>2. Leak check                                                                                          |
| Mobile Van Sampling<br>System | 1. Absence of leaks                                                                                          | Depends on nature of use       | <ol> <li>Change filters</li> <li>Change gas dryer</li> <li>Leak check</li> <li>Check for system contamination</li> </ol> |
| Sampling Lines                | 1. Sample degradation less than 2%                                                                           | After each test series         | 1. Blow dry, inert gas through line until dry                                                                            |

# TABLE 1EQUIPMENT MAINTENANCE SCHEDULE



| Sampling Equipment                                         | Calibration Frequency             | Calibration Procedure                                                   | Acceptable Calibration<br>Criteria              |
|------------------------------------------------------------|-----------------------------------|-------------------------------------------------------------------------|-------------------------------------------------|
| Continuous Analyzers                                       | Before and After Each<br>Test Day | 3-point calibration error test                                          | < 2% of analyzer range                          |
| Continuous Analyzers                                       | Before and After Each<br>Test Run | 2-point sample system<br>bias check                                     | < 5% of analyzer range                          |
| Continuous Analyzers                                       | After Each Test Run               | 2-point analyzer drift determination                                    | < 3% of analyzer range                          |
| CEMS System                                                | Beginning of Each Day             | leak check                                                              | < 1 in. Hg decrease in 5<br>min. at > 20 in. Hg |
| Continuous Analyzers                                       | Semi-Annually                     | 3-point linearity                                                       | < 1% of analyzer range                          |
| NO <sub>x</sub> Analyzer                                   | Daily                             | NO <sub>2</sub> -> NO converter<br>efficiency                           | > 90%                                           |
| Differential Pressure<br>Gauges (except for<br>manometers) | Semi-Annually                     | Correction factor based on<br>5-point comparison to<br>standard         | ± 5%                                            |
| Differential Pressure<br>Gauges (except for<br>manometers) | Bi-Monthly                        | 3-point comparison to<br>standard, no correction<br>factor              | ± 5%                                            |
| Barometer                                                  | Semi-Annually                     | Adjusted to mercury-in-<br>glass or National Weather<br>Service Station | ± 0.1 inches Hg                                 |
| Dry Gas Meter                                              | Semi-Annually                     | Calibration check at 4 flow<br>rates using a NIST<br>traceable standard | ± 2%                                            |
| Dry Gas Meter                                              | Bi-Monthly                        | Calibration check at 2 flow<br>rates using a NIST<br>traceable standard | ± 2% of semi-annual factor                      |
| Dry Gas Meter Orifice                                      | Annually                          | 4-point calibration for $\Delta H@$                                     |                                                 |
| Temperature Sensors                                        | Semi-Annually                     | 3-point calibration vs.<br>NIST traceable standard                      | ± 1.5%                                          |

# TABLE 2MAJOR SAMPLING EQUIPMENT CALIBRATION REQUIREMENTS

Note: Calibration requirements that meet applicable regulatory agency requirements are used.



### Appendix D.2 STAC Certification







### Appendix D.3 Individual QI Certificates



| CERTIFICATE OF COMPLETION<br>Matt McCune | This document certifies that this individual has passed a comprehensive examination and is now a Qualified<br>Individual (QI) as defined in Section 8.3 of ASTM D7036-04 for the following method(s):<br>Source Evaluation Society Group 1: <i>EPA Manual Gas Volume and Flow Measurements and Isokinetic</i><br><i>Particulate Sampling Methods</i> |                                 | DATE OF<br>ISSUE: 9/19/18<br>DATE OF<br>EXPIRATION: 9/19/23<br>EXPIRATION: 9/19/23<br>RONMENTAL |
|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|-------------------------------------------------------------------------------------------------|
| CERTIFICATE                              | This document certifies that this individual has p<br>Individual (QJ) as defined in Section 8.3<br>Source Evaluation Society Group 1: <i>EPA Manu</i>                                                                                                                                                                                                | Certificate Number: 002-2018-50 | Tate Strickler, Accreditation Director                                                          |



| CERTIFICATE OF COMPLETION | Matt McCune | This document certifies that this individual has passed a comprehensive examination and is now a Qualified<br>Individual (QI) as defined in Section 8.3 of ASTM D7036-04 for the following method(s): | Source Evaluation Society Group 3: EPA Gaseous Pollutants Instrumental Methods |                                 | DATE OF ISSUE: 9/18/18 | DATE OF<br>EXPIRATION: 9/18/23         | N V I R O N M E N T A L |
|---------------------------|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|---------------------------------|------------------------|----------------------------------------|-------------------------|
| CERTIFICAT                | Ma          | This document certifies that this individual has<br>Individual (QI) as defined in Section (                                                                                                           | Source Evaluation Society Group 3:                                             | Certificate Number: 002-2018-51 | Like Starte            | Tate Strickler, Accreditation Director | E N VI                  |



# THIS IS THE LAST PAGE OF THIS DOCUMENT

If you have any questions, please contact one of the following individuals by email or phone.

| Name:   | Mr. Matt McCune          |
|---------|--------------------------|
| Title:  | Regional Vice President  |
| Region: | West                     |
| Email:  | MMccune@montrose-env.com |
| Phone:  | (714) 279-6777           |



**V-CONE CALIBRATION REPORT** 

# GENON Ormond Beach Station LLC

# Unit 1

## V-Cone Calibration Report

Calibration Date: October 11, 2023



616 South El Camino Real #G-4 San Clemente, CA. 92672-3822 Phone: (949) 413-8550

### Ormond Beach Generating Station Unit #1 V-Cone System Information October 11, 2023

### **Flow Computer Data**

| Manufacturer          | ITT Barton   |
|-----------------------|--------------|
| Model Number          | 1131 Scanner |
| Serial Number         | 002118       |
| Board ID Number       | 10114204     |
| Unit Node Name        | OBGS_1       |
| Software Version      | NFlo M4.3.6R |
| ATOD System Voltage   | 4.99985      |
| Input Battery Voltage | 24.010       |

### Flow Element Data

| Туре              | V-Cone            |  |
|-------------------|-------------------|--|
| Manufacturer      | Ketema McCrometer |  |
| Tag Name / Number | 1FE6500           |  |
| Serial Number     | 92032631          |  |
| Pipe Diameter D   | 29.250            |  |
| Cone Diameter d   | 24.769            |  |
| Beta              | 0.532             |  |
| М                 | V0030             |  |

### **Transmitter Data**

| Tag Name                | 1TT-8331  | 1PT-8344  | 1FT-8350C | 1FT-8350B | 1FT-8350A |
|-------------------------|-----------|-----------|-----------|-----------|-----------|
| Resource                | A05       | A06       | A07       | A08       | A09       |
| <b>Engineering Unit</b> | Degrees F | Psig      | Inches WC | Inches WC | Inches WC |
| <b>Calibration Rang</b> | 15 - 115  | 0 - 100   | 0 - 125   | 0 - 24    | 0 - 4     |
| Manufacturer            | Rosemount | Rosemount | Rosemount | Rosemount | Rosemount |
| Model Number            | 3144D1NA  | 3051CG-4A | 3051CD-2A | 3051CD-1A | 3051CD-1A |
| Serial Number           | 288665    | 667576    | 667574    | 667579    | 667578    |

### **Temperature Element Data**

| Manufacturer       | ThermoElect     |  |
|--------------------|-----------------|--|
| Туре               | J               |  |
| Tag Number         | 1TE-8331        |  |
| Model Number       | SL-10655 U4 1/2 |  |
| Serial Number      | None            |  |
| T/C Element Ser. # | None            |  |

### NIST Traceable Instrument Used: Control Number 23C1558

| ID#                    | Serial #              | Model #                       | Cal Date   | <b>Due Date</b> | Description     |  |
|------------------------|-----------------------|-------------------------------|------------|-----------------|-----------------|--|
| CIC-7601               | 77601                 | 760-6D                        | 11/30/22   | 05/29/24        | 0 - 166.00 "H2O |  |
| <b>Calibration Sta</b> | andard Use            | ed:                           |            |                 |                 |  |
| 01-726902-0000         | Ruska Instru          | uments, Model (               | 6211-801-C |                 |                 |  |
| 02-472474-0000         | Ruska Instru          | uments, Model 2               | 2465-725   |                 |                 |  |
| CL-088757-0000         | Ruska Instru          | Ruska Instruments, Model 2462 |            |                 |                 |  |
| CL-471247-0000         | Vaisala, Model DL2000 |                               |            |                 |                 |  |
| CIC-7681               | 77681                 | 760-18D                       | 11/30/22   | 05/29/24        | 0 - 498.00 "H2O |  |
| <b>Calibration Sta</b> | andard Use            | ed:                           |            |                 |                 |  |
| CL-017275-0000         | Ainsworth,            | Model 1254M                   |            |                 |                 |  |

| 02-472474-0000                                     | Ruska Instruments, Model 2465-725 |
|----------------------------------------------------|-----------------------------------|
| 02-472474-0000<br>CL-088757-0000<br>CL-471247-0000 | Ruska Instruments, Model 2462     |
| CL-471247-0000                                     | Vaisala, Model DL2000             |

CIC-9756 69756 760-200G 11/30/22 05/29/24 0 - 200 PSIG

### **Calibration Standard Used:**

CL-088757-0000 Ruska Instruments, Model 2462

- CL-387004-0000 Ruska Instruments, Model 2645-727
- CL-408461-0000 Ruska Instruments, Model 2460-903
- CL-471247-0000 Vaisala, Model DL2000

CIC-4283 A14283 1504/5610 12/02/22 05/31/24 0 to 100 Degree C

### **Calibration Standard Used:**

22-007978-0000 Fluke, Model 1595A

CL-470663-0000 Vaisala, Model SP-2000-20R

 CIC-8019
 1378019
 Fluke 8245A
 11/22/22
 05/21/24
 Digital DMM

 Calibration Standard Used:
 CL-470177-0000
 Vaisala, Model DL-2000
 Fluke, Model 5725A



Calibration Traceable to the National Institute of Standards and Technology (N.I.S.T.) Actual calibration certificates are on file with Certified Instrument Calibrations Company and copies may be obtained by request.

Downloaded at : Wednesday, October 11, 2023 at 07:56 (ML). Downloaded from : OBGS\_1 Unit Serial Number : 002118 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Verification started: Wednesday, October 11, 2023 at 07:20 (ML). Verification completed: Wednesday, October 11, 2023 at 07:56 (ML). Verification done by: Non-Login

This input has been assigned to: Node : OBGS\_1, Flowrun #01 (OBGS\_1)

Channel location : Node OBGS\_1, Slot A, Resource #23Channel categoryDifferential PressureChannel text1FT-8350AXmitter zero0.000Unit TemperatureCelsiusNumber of verification points: 5 (Up/Down)

| Verification Point<br>Inch WC | As Found<br>Inch WC | Direction  | Percent Accuracy<br>(% of Full-Scale) |
|-------------------------------|---------------------|------------|---------------------------------------|
| 0.000                         | 0.001               | Start      | 0.025                                 |
| 2.000                         | 2.011               | Ascending  | 0.275                                 |
| 4.000                         | 3.997               | Ascending  | -0.075                                |
| 3.000                         | 3.010               | Descending | 0.250                                 |
| 1.000                         | 1.002               | Descending | 0.050                                 |

Downloaded at : Wednesday, October 11, 2023 at 08:55 (ML). Downloaded from : OBGS\_1 Unit Serial Number : 002118 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Verification started: Wednesday, October 11, 2023 at 08:28 (ML). Verification completed: Wednesday, October 11, 2023 at 08:55 (ML). Verification done by: Non-Login

This input has been assigned to: Node : OBGS 1, Flowrun #01 (OBGS\_1)

Channel location : Node OBGS\_1, Slot A, Resource #21Channel categoryDifferential PressureChannel text1FT-8350BXmitter zero0.000Mitter fullscale24.000Unit TemperatureCelsiusNumber of verification points: 5 (Up/Down)

| Verification Point<br>Inch WC | As Found<br>Inch WC | Direction  | Percent Accuracy<br>(% of Full-Scale) |
|-------------------------------|---------------------|------------|---------------------------------------|
| 0.000                         | 0.004               | Start      | 0.017                                 |
| 12.000                        | 12.004              | Ascending  | 0.017                                 |
| 24.000                        | 23.957              | Ascending  | -0.179                                |
| 18.000                        | 17.974              | Descending | -0.108                                |
| 6.000                         | 6.027               | Descending | 0.113                                 |

Downloaded at : Wednesday, October 11, 2023 at 09:57 (ML). Downloaded from : OBGS\_1 Unit Serial Number : 002118 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Verification started: Wednesday, October 11, 2023 at 09:31 (ML). Verification completed: Wednesday, October 11, 2023 at 09:57 (ML). Verification done by: Non-Login

This input has been assigned to: Node : OBGS\_1, Flowrun #01 (OBGS\_1)

Channel location : Node OBGS\_1, Slot A, Resource #19Channel categoryDifferential PressureChannel text1FT-8350CXmitter zero0.000Inch WCXmitter fullscale125.000Unit TemperatureCelsiusNumber of verification points: 5 (Up/Down)

| Verification Point<br>Inch WC | As Found<br>Inch WC | Direction  | Percent Accuracy<br>(% of Full-Scale) |
|-------------------------------|---------------------|------------|---------------------------------------|
| 0.000                         | 0.034               | Start      | 0.027                                 |
| 62.500                        | 62.409              | Ascending  | -0.073                                |
| 125.000                       | 125.092             | Ascending  | 0.074                                 |
| 93.750                        | 93.751              | Descending | 0.001                                 |
| 31.250                        | 31.285              | Descending | 0.028                                 |

Downloaded at : Wednesday, October 11, 2023 at 10:56 (ML). Downloaded from : OBGS\_1 Unit Serial Number : 002118 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Verification started: Wednesday, October 11, 2023 at 10:33 (ML). Verification completed: Wednesday, October 11, 2023 at 10:56 (ML). Verification done by: Non-Login

This input has been assigned to: Node : OBGS\_1, Flowrun #01 (OBGS\_1)

Channel location : Node OBGS\_1, Slot A, Resource #15Channel categoryStatic PressureChannel text1PT-8344Xmitter zero0.000 psi(a)Xmitter fullscale100.000 psi(a)Unit TemperatureCelsiusNumber of verification points: 5 (Up/Down)

| Verification Point<br>psi(a) | As Found<br>psi(a) | Direction  | Percent Accuracy<br>(% of Full-Scale) |
|------------------------------|--------------------|------------|---------------------------------------|
| 0.000                        | 0.135              | Start      | 0.135                                 |
| 50.000                       | 50.131             | Ascending  | 0.131                                 |
| 100.000                      | 100.095            | Ascending  | 0.095                                 |
| 75.000                       | 75.105             | Descending | 0.105                                 |
| 25.000                       | 25.132             | Descending | 0.132                                 |

Downloaded at : Wednesday, October 11, 2023 at 13:32 (ML). Downloaded from : OBGS\_1 Unit Serial Number : 002118 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Verification started: Wednesday, October 11, 2023 at 11:24 (ML). Verification completed: Wednesday, October 11, 2023 at 13:32 (ML). Verification done by: Non-Login

This input has been assigned to: Node : OBGS\_1, Flowrun #01 (OBGS\_1)

Channel location : Node OBGS\_1, Slot A, Resource #17Channel categoryTemperatureChannel text1TT-8331Xmitter zero15.000 FahrenheitXmitter fullscale115.000 FahrenheitUnit TemperatureCelsiusNumber of verification points: 5 (Up)

| Verification Point<br>Fahrenheit | As Found<br>Fahrenheit | Direction | Percent Accuracy<br>(% of Full-Scale) |
|----------------------------------|------------------------|-----------|---------------------------------------|
| 15.000                           | 14.858                 | Start     | -0.142                                |
| 40.000                           | 39.841                 | Ascending | -0.159                                |
| 65.000                           | 64.925                 | Ascending | -0.075                                |
| 90.000                           | 89.942                 | Ascending | -0.058                                |
| 115.000                          | 115.139                | Ascending | 0.139                                 |

Downloaded at : Wednesday, October 11, 2023 at 08:28 (ML). Downloaded from : OBGS\_1 Unit Serial Number : 002118 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Calibration started: Wednesday, October 11, 2023 at 07:56 (ML). Calibration completed: Wednesday, October 11, 2023 at 08:28 (ML). Calibration done by: Non-Login

This input has been assigned to: Node : OBGS\_1, Flowrun #01 (OBGS\_1)

Channel location : Node OBGS\_1, Slot A, Resource #23Channel categoryDifferential PressureChannel text1FT-8350AXmitter zero0.000Mitter fullscale4.000Number of calibration points: 5 (Up/Down)

| As Found<br>Inch WC | As Left<br>Inch WC                | Calibration<br>Percent Accuracy                                                                                                                  |  |
|---------------------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--|
| -0.001              | 0.000                             | 0.000                                                                                                                                            |  |
| 2.003               | 2.001                             | 0.025                                                                                                                                            |  |
| 3.982               | 4.000                             | 0.000                                                                                                                                            |  |
| 2.994               | 2.998                             | -0.050                                                                                                                                           |  |
| 1.007               | 1.004                             | 0.100                                                                                                                                            |  |
|                     | -0.001<br>2.003<br>3.982<br>2.994 | Inch WC         Inch WC           -0.001         0.000           2.003         2.001           3.982         4.000           2.994         2.998 |  |

| High Pressure Zero  | :        | 2.9541 mV (As Found)         |
|---------------------|----------|------------------------------|
|                     | :        | 0.8111 mV (As Left)          |
| Span Compensation I | Factor : | 0.0000 % / MPag ( As Found ) |
|                     | :        | 0.0000 % / MPag ( As Left )  |

Downloaded at : Wednesday, October 11, 2023 at 09:31 (ML). Downloaded from : OBGS\_1 Unit Serial Number : 002118 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Calibration started: Wednesday, October 11, 2023 at 08:55 (ML). Calibration completed: Wednesday, October 11, 2023 at 09:31(ML). Calibration done by: Non-Login

This input has been assigned to: Node : OBGS\_1, Flowrun #01 (OBGS\_1)

Channel location : Node OBGS\_1, Slot A, Resource #21Channel categoryDifferential PressureChannel text1FT-8350BXmitter zero0.000Inch WCXmitter fullscale24.000Number of calibration points: 5 (Up/Down)

| Calibration Point<br>Inch WC | As Found<br>Inch WC | As Left<br>Inch WC | Calibration<br>Percent Accuracy |
|------------------------------|---------------------|--------------------|---------------------------------|
| 0.000                        | 0.005               | 0.000              | 0.000                           |
| 12.000                       | 12.042              | 12.010             | 0.042                           |
| 24.000                       | 23.957              | 24.000             | 0.000                           |
| 18.000                       | 17.974              | 17.998             | -0.008                          |
| 6.000                        | 6.006               | 5.994              | -0.025                          |

High Pressure Zero : 1.1533 mV (As Found) : -0.3067 mV (As Left) Span Compensation Factor : 0.0000 % / MPag (As Found) : 0.0000 % / MPag (As Left)

Downloaded at : Wednesday, October 11, 2023 at 10:33 (ML). Downloaded from : OBGS\_1 Unit Serial Number : 002118 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Calibration started: Wednesday, October 11, 2023 at 09:57 (ML). Calibration completed: Wednesday, October 11, 2023 at 10:33 (ML). Calibration done by: Non-Login

This input has been assigned to: Node : OBGS 1, Flowrun #01 (OBGS\_1)

Channel location : Node OBGS\_1, Slot A, Resource #19Channel categoryDifferential PressureChannel text1FT-8350CXmitter zero0.000Mitter fullscale125.000Number of calibration points: 5 (Up/Down)

| Calibration Point<br>Inch WC | As Found<br>Inch WC | As Left<br>Inch WC | Calibration<br>Percent Accuracy |
|------------------------------|---------------------|--------------------|---------------------------------|
| 0.000                        | 0.027               | 0.000              | 0.000                           |
| 62.500                       | 62.536              | 62.493             | -0.006                          |
| 125.000                      | 125.096             | 125.000            | 0.000                           |
| 93.750                       | 93.051              | 93.777             | 0.022                           |
| 31.250                       | 31.265              | 31.285             | 0.028                           |
| High Pressure Zero           |                     | (As Found)         |                                 |
|                              | : -0.2525 mV        |                    |                                 |
| Span Compensation            |                     | 0%/MPag(Asl        |                                 |
|                              | : 0.0000            | % / MPag (As Lo    | ett)                            |

Downloaded at : Wednesday, October 11, 2023 at 11:24 (ML). Downloaded from : OBGS\_1 Unit Serial Number : 002118 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Calibration started: Wednesday, October 11, 2023 at 10:57 (ML). Calibration completed: Wednesday, October 11, 2023 at 11:24 (ML). Calibration done by: Non-Login

This input has been assigned to: Node : OBGS\_1, Flowrun #01 (OBGS\_1)

Channel location : Node OBGS\_1, Slot A, Resource #15Channel categoryStatic PressureChannel text1PT-8344Xmitter zero0.000 psi(a)Xmitter fullscale100.000 psi(a)Number of calibration points: 5 (Up/Down)

| Calibration Point<br>psi(a) | As Found<br>psi(a) | As Left<br>psi(a) | Calibration<br>Percent Accuracy |  |
|-----------------------------|--------------------|-------------------|---------------------------------|--|
| 0.000                       | 0.028              | 0.000             | 0.000                           |  |
| 50.000                      | 50.012             | 49.993            | -0.007                          |  |
| 100.000                     | 100.090            | 100.000           | 0.000                           |  |
| 75.000                      | 75.012             | 75.007            | 0.007                           |  |
| 25.000                      | 25.034             | 25.003            | 0.003                           |  |

Downloaded at : Wednesday, October 11, 2023 at 16:15 (ML). Downloaded from : OBGS\_1 Unit Serial Number : 002118 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Calibration started: Wednesday, October 11, 2023 at 13:32 (ML). Calibration completed: Wednesday, October 11, 2023 at 16:15 (ML). Calibration done by: Non-Login

This input has been assigned to: Node : OBGS\_1, Flowrun #01 (OBGS\_1)

Channel location : Node OBGS\_1, Slot A, Resource #17Channel categoryTemperatureChannel text1TT-8331Xmitter zero15.000 FahrenheitXmitter fullscale115.000 FahrenheitNumber of calibration points: 5 (Up)

| Calibration Point<br>Fahrenheit | As Found<br>Fahrenheit | As Left<br>Fahrenheit | Calibration<br>Percent Accuracy |  |
|---------------------------------|------------------------|-----------------------|---------------------------------|--|
| 15.000                          | 14.825                 | 15.000                | 0.000                           |  |
| 40.000                          | 39.913                 | 40.000                | 0.000                           |  |
| 65.000                          | 64.975                 | 65.000                | 0.000                           |  |
| 90.000                          | 89.983                 | 90.000                | 0.000                           |  |
| 115.000                         | 115.039                | 115.000               | 0.000                           |  |

# GenOn Ormond Beach 6635 South Edison Drive Oxnard, CA. 93033 Unit 1 V-Cone Boroscope Inspection October 04, 2023

V-Cone Mfg: McCrometer Serial Number: 92032631 Pipe Diameter 29.250 inch Cone Diameter 24.769 inch



Strut and Start of Flow Conditioner

|                                | Carterion. |        |       | + · · · · · · · · · · · · · · · · · · · |  |
|--------------------------------|------------|--------|-------|-----------------------------------------|--|
| Visual Contaminants & Surface  | Clean      | Slight | Heavy | Physical Damage                         |  |
| Point #1 Beta Edge             | X          | -      |       | None Noted                              |  |
| Point #2 Rear Cone Face        | X          |        |       | None Noted                              |  |
| Point #3 Cone Suspension Strut |            | X      |       | None Noted                              |  |
| Point #4 Flow Conditioner Face |            | X      |       | None Noted                              |  |
| Point #5 Upstream Port         | X          |        |       | None Noted                              |  |
| Point #6 Downstream Port       | x          |        |       | None Noted                              |  |
|                                |            |        |       |                                         |  |

Inspection Start Time: 07:45 ML DST Inspection Completion Time: 16:50 ML DST

### COMMENTS:

Inspection showed slight contaminants on the front strut with sporadic spot areas on the flow conditioner. The Beta region appears clean and clear. V-Cone element shows no physical damage, excessive corrosion or obstructions. Inside pipe wall reveals light areas of contaminants, these spots should not effect the overall differential flow measurement. Sensing ports are clear and thermowell is intact and clean. Welded rear cone sections are intact and secure. Spiral wound upstream flange gasket shows slight damage but not unattached from gasket itself.

### **RECOMMENDATIONS:**

Notified station about potential leakage from the braided sensing lines (external) corrosion and damage located just above the V-Cone element.



10/04/2023 **Lespected** by Date 616 South El Camino Real Suite G-4 San Clemente, Ca. 92672-3822 Phone (949) 413-8550

Rear Cone Face

# GENON Ormond Beach Station LLC

## Unit 2

V-Cone Calibration Report

Calibration Date: October 12, 2023



616 South El Camino Real #G-4 San Clemente, CA. 92672-3822 Phone: (949) 413-8550

### Ormond Beach Generating Station Unit #2 V-Cone System Information October 12, 2023

### **Flow Computer Data**

| Manufacturer          | ITT Barton   |
|-----------------------|--------------|
| Model Number          | 1131 Scanner |
| Serial Number         | 002119       |
| Board ID Number       | 10114195     |
| Unit Node Name        | OBGS 2       |
| Software Version      | NFlo M4.3.6R |
| ATOD System Voltage   | 5.00082      |
| Input Battery Voltage | 24.000       |

### **Flow Element Data**

| Туре              | V-Cone            |
|-------------------|-------------------|
| Manufacturer      | Ketema McCrometer |
| Tag Name / Number | 2FE6500           |
| Serial Number     | 92032632          |
| Pipe Diameter D   | 29.250            |
| Cone Diameter d   | 24.769            |
| Beta              | 0.535             |
| M                 | V0030             |

### **Transmitter Data**

| Tag Name         | 2TT-8331  | 2PT-8344  | 2FT-8350C | 2FT-8350B | 2FT-8350A |
|------------------|-----------|-----------|-----------|-----------|-----------|
| Resource         | A05       | A06       | A07       | A08       | A09       |
| Engineering Unit | Degrees F | Psig      | Inches WC | Inches WC | Inches WC |
| Calibration Rang | 15 - 115  | 0 - 100   | 0 - 125   | 0 - 24    | 0 - 4     |
| Manufacturer     | Rosemount | Rosemount | Rosemount | Rosemount | Rosemount |
| Model Number     | 3144D1NA  | 3051CG-4A | 3051CD-2A | 3051CD-1A | 3051CD-1A |
| Serial Number    | 288666    | 667577    | 667575    | 667580    | 1236482   |

### **Temperature Element Data**

| Manufacturer       | Telmar            |  |  |
|--------------------|-------------------|--|--|
| Туре               | "J"               |  |  |
| Tag Number         | 2TE-8331          |  |  |
| Model Number       | 570166            |  |  |
| Serial Number      | 10 06 01908       |  |  |
| T/C Element Ser. # | MI7573JUL6X12PM30 |  |  |

## NIST Traceable Instrument Used: Control Number 23C1558

| ID#                                 | Serial #       | Model #         | Cal Date   | Due Dete | D                 |   |
|-------------------------------------|----------------|-----------------|------------|----------|-------------------|---|
| CIC-7601                            | 77601          | 760-6D          | 11/30/22   | 05/29/24 | Description       |   |
| Calibration S                       | tandard Use    | d:              | 11/30/22   | 03/29/24 | 0 - 166.00 "H2O   |   |
| 01-726902-0000                      |                | ments, Model 6  | 5211-801-C |          |                   |   |
| 02-472474-0000                      | Ruska Instru   | ments, Model 2  | 2465-725   |          |                   |   |
| CL-088757-0000                      |                | ments, Model 2  |            |          |                   |   |
| CL-471247-0000                      | Vaisala, Moo   |                 |            |          |                   |   |
|                                     |                |                 |            |          |                   |   |
| CIC-7681                            | 77681          | 760-18D         | 11/30/22   | 05/29/24 | 0 - 498.00 "H2O   |   |
| Calibration St                      |                | d:              |            | 00125121 | 0-498.00 H2O      |   |
| CL-017275-0000                      | Ainsworth, N   | lodel 1254M     |            |          |                   |   |
| 02-472474-0000                      | Ruska Instru   | nents, Model 24 | 465-725    |          |                   |   |
| CL-088757-0000                      | Ruska Instrum  | nents, Model 24 | 462        |          |                   |   |
| CL-471247-0000                      | Vaisala, Mod   | el DL2000       |            |          |                   |   |
| CTC ATTA                            |                |                 |            |          |                   |   |
| CIC-9756                            | 69756          | 760-200G        | 11/30/22   | 05/29/24 | 0 - 200 PSIG      | _ |
| Calibration St                      |                |                 |            |          |                   |   |
| CL-088757-0000                      |                | nents, Model 24 |            |          |                   |   |
| CL-387004-0000                      |                | nents, Model 20 |            |          |                   |   |
| CL-408461-0000                      | Ruska Instrun  | nents, Model 24 | 60-903     |          |                   |   |
| CL-471247-0000                      | Vaisala, Mode  | el DL2000       | A          |          |                   |   |
| CIC-4283                            |                |                 |            |          |                   |   |
| and the second second second second | A14283         | 1504/5610       | 12/02/22   | 05/31/24 | 0 to 100 Degree C |   |
| Calibration Sta                     |                |                 |            |          | 6                 |   |
| 22-007978-0000                      | Fluke, Model   |                 |            |          |                   |   |
| CL-470663-0000                      | Vaisala, Mode  | 1 SP-2000-20R   |            |          |                   |   |
| CIC-8019                            | 1378019        |                 | 11/00/00   |          |                   |   |
| Calibration Sta                     |                | Fluke 8245A     | 11/22/22   | 05/21/24 | Digital DMM       |   |
| CL-470177-0000                      |                |                 |            |          |                   |   |
| CL-451043-0000                      | Vaisala, Model |                 |            |          |                   |   |
|                                     | Fluke, Model 5 | /25A            |            |          |                   |   |



Calibration Traceable to the National Institute of Standards and Technology (N.I.S.T.) Actual calibration certificates are on file with Certified Instrument Calibrations Company and copies may be obtained by request.

Downloaded at : Thursday, October 12, 2023 at 08:44 (ML) Downloaded from : OBGS\_2 Unit Serial Number : 002119 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Verification started : Thursday, October 12, 2023 at 08:15 (ML) Verification completed: Thursday, October 12, 2023 at 08:44 (ML) Verification done by: Cert-Inst-Cals

This input has been assigned to: Node : OBGS\_2, Flowrun #01 (OBGS\_2)

Channel locationNode OBGS\_2, Slot A, Resource #23Channel categoryDifferential PressureChannel text2FT-8350AXmitter zero0.000 Inch WCXmitter fullscale4.000 Inch WCNumber of verification points: 5

| Verification Point<br>Inch WC | As Found<br>Inch WC | Direction  | Percent Accuracy<br>(% of Full-Scale) |
|-------------------------------|---------------------|------------|---------------------------------------|
| 0.000                         | -0.018              | Start      | -0.450                                |
| 2.000                         | 1.990               | Ascending  | -0.250                                |
| 4.000                         | 3.991               | Ascending  | -0.225                                |
| 3.000                         | 2.995               | Descending | -0.125                                |
| 1.000                         | 1.000               | Descending | 0.000                                 |

Downloaded at : Thursday, October 12, 2023 at 09:50 (ML) Downloaded from : OBGS\_2 Unit Serial Number : 002119 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Verification started: Thursday, October 12, 2023 at 09:19 (ML) Verification completed: Thursday, October 12, 2023 at 09:50 (ML) Verification done by: Cert-Inst-Cals

This input has been assigned to: Node : OBGS\_2, Flowrun #01 (OBGS\_2)

Channel locationNode OBGS\_2, Slot A, Resource #21Channel categoryDifferential PressureChannel text2FT-8350BXmitter zero0.000Xmitter fullscale24.000Number of verification points: 5

| Verification Point<br>Inch WC |        |            | Percent Accuracy<br>(% of Full-Scale) |
|-------------------------------|--------|------------|---------------------------------------|
| 0.000                         | 0.022  | Start      | 0.092                                 |
| 12.000                        | 12.021 | Ascending  | 0.088                                 |
| 24.000                        | 24.029 | Ascending  | 0.121                                 |
| 18.000                        | 18.035 | Descending | 0.146                                 |
| 6.000                         | 6.026  | Descending | 0.108                                 |

Downloaded at : Thursday, October 12, 2023 at 10:57 (ML) Downloaded from : OBGS\_2 Unit Serial Number : 002119 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Verification started: Thursday, October 12, 2023 at 10:22 (ML) Verification completed: Thursday, October 12, 2023 at 10:57 (ML) Verification done by: Cert-Inst-Cals

This input has been assigned to: Node : OBGS\_2, Flowrun #01 (OBGS\_2)

Channel locationNode OBGS\_2, Slot A, Resource #19Channel categoryDifferential PressureChannel text2FT-8350CXmitter zero0.000Xmitter fullscale125.000Number of verification points: 5

| Verification Point<br>Inch WC | As Found<br>Inch WC | Direction  | Percent Accuracy<br>(% of Full-Scale) |  |
|-------------------------------|---------------------|------------|---------------------------------------|--|
| 0.000                         | 0.057               | Start      | 0.046                                 |  |
| 62.500                        | 62.655              | Ascending  | 0.124                                 |  |
| 125.000                       | 125.040             | Ascending  | 0.032                                 |  |
| 93.750                        | 93.759              | Descending | 0.007                                 |  |
| 31.250                        | 31.304              | Descending | 0.043                                 |  |

Downloaded at : Thursday, October 12, 2023 at 11:48 (ML) Downloaded from : OBGS\_2 Unit Serial Number : 002119 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Verification started: Thursday, October 12, 2023 at 11:22 (ML) Verification completed: Thursday, October 12, 2023 at 11:48 (ML) Verification done by: Cert-Inst-Cals

This input has been assigned to: Node : OBGS\_2, Flowrun #01 (OBGS\_2)

Channel locationNode OBGS\_2, Slot A, Resource #15Channel categoryStatic PressureChannel text2PT-8344Xmitter zero0.000 psi(a)Xmitter fullscale100.000 psi(a)Number of verification points: 5

| Verification Point<br>psi(a) | As Found<br>psi(a) | Direction  | Percent Accuracy<br>(% of Full-Scale) |
|------------------------------|--------------------|------------|---------------------------------------|
|                              |                    |            |                                       |
| 0.000                        | -0.042             | Start      | -0.042                                |
| 50.000                       | 49.959             | Ascending  | -0.041                                |
| 100.000                      | 99.959             | Ascending  | -0.041                                |
| 75.000                       | 74.983             | Descending | -0.017                                |
| 25.000                       | 24.968             | Descending | -0.032                                |

Downloaded at : Thursday, October 12, 2023 at 14:25 (ML) Downloaded from : OBGS\_2 Unit Serial Number : 002119 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Verification started: Thursday, October 12, 2023 at 12:13 (ML) Verification completed: Thursday, October 12, 2023 at 14:25 (ML) Verification done by: Cert-Inst-Cals

This input has been assigned to: Node : OBGS\_2, Flowrun #01 (OBGS\_2)

Channel locationNode OBGS\_2, Slot A, Resource #17Channel categoryTemperatureChannel text2TT-8331Xmitter zero15.000 FahrenheitXmitter fullscale115.000 FahrenheitNumber of verification points: 5

| Verification Point<br>Fahrenheit | As Found<br>Fahrenheit | Direction | Percent Accuracy<br>(% of Full-Scale) |
|----------------------------------|------------------------|-----------|---------------------------------------|
| 15.000                           | 15.022                 | Start     | 0.022                                 |
| 40.000                           | 40.075                 | Ascending | 0.075                                 |
| 65.000                           | 65.036                 | Ascending | 0.036                                 |
| 90.000                           | 89.979                 | Ascending | -0.021                                |
| 115.000                          | 115.011                | Ascending | 0.011                                 |

Downloaded at : Thursday, October 12, 2023 at 09:19 (ML) Downloaded from : OBGS\_2 Unit Serial Number : 002119 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Calibration started: Thursday, October 12, 2023 at 08:44 (ML) Calibration completed: Thursday, October 12, 2023 at 09:19 (ML) Calibration done by: Cert-Inst-Cals

This input has been assigned to: Node : OBGS\_2, Flowrun #01 (OBGS\_2)

Channel locationNode OBGS\_2, Slot A, Resource #23Channel categoryDifferential PressureChannel text2FT-8350AXmitter zero0.000Mitter fullscale4.000Number of calibration points: 5 (Up/Down)

| Calibration Point<br>Inch WC | As Found<br>Inch WC | As Left<br>Inch WC | Calibration<br>Percent Accuracy |
|------------------------------|---------------------|--------------------|---------------------------------|
| 0.000                        | -0.009              | 0.000              | 0.000                           |
| 2.000                        | 2.001               | 1.999              | -0.025                          |
| 4.000                        | 3.998               | 4.000              | 0.000                           |
| 3.000                        | 2.999               | 2.998              | -0.050                          |
| 1.000                        | 1.009               | 1.008              | 0.200                           |

| High Pressure Zero | :        | - 0.5231 mV (As Found)       |
|--------------------|----------|------------------------------|
|                    | :        | 5.0789 mV (As Left)          |
| Span Compensation  | Factor : | 0.0000 % / MPag ( As Found ) |
|                    | :        | 0.0000 % / MPag ( As Left )  |

: Thursday, October 12, 2023 at 10:22 (ML) Downloaded at Downloaded from : OBGS 2 Unit Serial Number: 002119 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Calibration started: Thursday, October 12, 2023 at 09:50 (ML) Calibration completed: Thursday, October 12, 2023 at 10:22 (ML) Calibration done by: Cert-Inst-Cals

This input has been assigned to: Node : OBGS\_2, Flowrun #01 (OBGS 2)

Node OBGS\_2, Slot A, Resource #21 Channel location Channel category Differential Pressure Channel text 2FT-8350B Xmitter zero 0.000 Inch WC Xmitter fullscale 24.000 Inch WC Number of calibration points: 5 (Up/Down)

| Calibration Point<br>Inch WC | As Found<br>Inch WC | As Left<br>Inch WC               | Calibration<br>Percent Accuracy |
|------------------------------|---------------------|----------------------------------|---------------------------------|
| 0.000                        | 0.025               | 0.000                            | 0.000                           |
| 12.000                       | 12.032              | 12.001                           | 0.004                           |
| 24.000                       | 24.032              | 24.000                           | 0.000                           |
| 18.000                       | 18.023              | 17.996                           | -0.017                          |
| 6.000                        | 6.037               | 6.005                            | 0.021                           |
| High Pressure Zero           |                     | nV ( As Found )<br>V ( As Left ) |                                 |
| Span Compensation I          |                     | % / MPag ( As Fo                 | ound)                           |
|                              |                     | % / MPag ( As Lef                |                                 |

0.0000 % / MPag (As Left)

Downloaded at : Thursday, October 12, 2023 at 11:21 (ML) Downloaded from : OBGS\_2 Unit Serial Number : 002119 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Calibration started: Thursday, October 12, 2023 at 10:57 (ML) Calibration completed: Thursday, October 12, 2023 at 11:21 (ML) Calibration done by: Cert-Inst-Cals

This input has been assigned to: Node : OBGS\_2, Flowrun #01 (OBGS\_2)

Channel locationNode OBGS\_2, Slot A, Resource #19Channel categoryDifferential PressureChannel text2FT-8350CXmitter zero0.000 Inch WCXmitter fullscale125.000 Inch WCNumber of calibration points: 5 (Up/Down)

| Calibration Point<br>Inch WC | As Found<br>Inch WC | As Left<br>Inch WC | Calibration<br>Percent Accuracy |
|------------------------------|---------------------|--------------------|---------------------------------|
| 0.000                        | 0.050               | 0.000              | 0.000                           |
| 62.500                       | 62.621              | 62.507             | 0.006                           |
| 125.000                      | 125.040             | 125.000            | 0.000                           |
| 93.750                       | 93.788              | 93.749             | -0.001                          |
| 31.250                       | 31.520              | 31.248             | -0.002                          |

High Pressure Zero : -0.0362 mV (As Found) : -0.8129 mV (As Left) Span Compensation Factor : 0.0000 % / MPag (As Found) : 0.0000 % / MPag (As Left)

Downloaded at : Thursday, October 12, 2023 at 12:13 (ML) Downloaded from : OBGS\_2 Unit Serial Number : 002119 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Calibration started: Thursday, October 12, 2023 at 11:48 (ML) Calibration completed: Thursday, October 12, 2023 at 12:13 (ML) Calibration done by: Cert-Inst-Cals

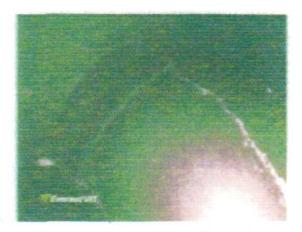
This input has been assigned to: Node : OBGS\_2, Flowrun #01 (OBGS\_2)

Channel locationNode OBGS\_2, Slot A, Resource #15Channel categoryStatic PressureChannel text2PT-8344Xmitter zero0.000 psi(a)Xmitter fullscale100.000 psi(a)Number of calibration points: 5 (Up/Down)

| Calibration Point<br>psi(a) | As Found<br>psi(a) | As Left<br>psi(a) | Calibration<br>Percent Accuracy |
|-----------------------------|--------------------|-------------------|---------------------------------|
| 0.000                       | -0.042             | 0.000             | 0.000                           |
| 50.000                      | 49.959             | 49.993            | -0.007                          |
| 100.000                     | 99.980             | 100.000           | 0.000                           |
| 75.000                      | 74.968             | 75.001            | 0.001                           |
| 25.000                      | 24.973             | 25.006            | 0.006                           |

Downloaded at : Thursday, October 12, 2023 at 17:15 (ML) Downloaded from : OBGS\_2 Unit Serial Number : 002119 Software Version : NFlo M4.3.6R ScanWin Version : B2.2.6W

Calibration started: Thursday, October 12, 2023 at 14:25 (ML) Calibration completed: Thursday, October 12, 2023 at 17:15 (ML) Calibration done by: Cert-Inst-Cals


This input has been assigned to: Node : OBGS\_2, Flowrun #01 (OBGS\_2)

Channel locationNode OBGS\_2, Slot A, Resource #17Channel categoryTemperatureChannel text2TT-8331Xmitter zero15.000 FahrenheitXmitter fullscale115.000 FahrenheitNumber of calibration points: 5 (Up)

| Calibration Point<br>Fahrenheit | As Found<br>Fahrenheit | As Left<br>Fahrenheit | Calibration<br>Percent Accuracy |
|---------------------------------|------------------------|-----------------------|---------------------------------|
| 15.000                          | 15.005                 | 15.000                | 0.000                           |
| 40.000                          | 40.012                 | 40.000                | 0.000                           |
| 65.000                          | 65.035                 | 65.000                | 0.000                           |
| 90.000                          | 89.959                 | 90.000                | 0.000                           |
| 115.000                         | 115.005                | 115.000               | 0.000                           |

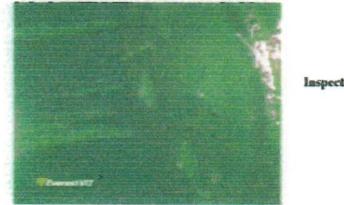
# GenOn Ormond Beach 6635 South Edison Drive Oxnard, CA. 93033 Unit 2 V-Cone Boroscope Inspection October 05, 2023

V-Cone Mfg: McCrometer Serial Number: 92032632 Pipe Diameter 29.250 inch Cone Diameter 24.769 inch



Strut and Start of Flow Conditioner

| Visual Contaminants & Surface  | Clean | Slight | Heavy | Physical Damage |
|--------------------------------|-------|--------|-------|-----------------|
| Point #1 Beta Edge             | X     |        |       | None Noted      |
| Point #2 Rear Cone Face        |       | X      |       | None Noted      |
| Point #3 Cone Suspension Strut |       | X      |       | None Noted      |
| Point #4 Flow Conditioner Face |       | X      |       | None Noted      |
| Point #5 Upstream Port         | · x   |        |       | None Noted      |
| Point #6 Downstream Port       | Х     | 1      |       | None Noted      |


Inspection Start Time: 08:00 ML DST Inspection Completion Time: 15:45 ML DST

### COMMENTS:

Inspection showed valve grease (white) on the front strut, flow conditioner and internal pipe walls. These areas of valve grease have been shredded before the Beta Region. The element shows no notable physical damage, corrosion or obstructions. The rear cone face revealed areas of grease spots including inside lower ring lip ledge. Beta region is clear with the exception of streaks of grease residual on the pipe wall and through the trailing edge of rear cone face. Welds found intact and secure, sensing lines also found clear and clean.

### **RECOMMENDATIONS:**

Continue to monitor grease accumulation in vital areas as a concern. Grease accumulation not significantly greater since last year. Next year the element should be rolled out for hand cleaning of the grease if outage time allows.



Date: 10/05/2023 Inspected by Phone (949) 413-8550

**Rear Cone Face** 

## LINEARITY REPORT

Plant: ORMOND BEACH GEN STA

Report Period: 07/01/2023 00:00 Through 08/30/2023 23:59

Test End Date/Time: 08/30/23 09:40

Test Number: XML (016-Q3-2023-1) / EDR (1)

| System IE<br>Component IE<br>Span Value<br>Span Scale Code |           | Reason for Test: Periodic Quality Assurance         Test Result: Pass         Abbreviated?: No |            |           |                                |  |
|------------------------------------------------------------|-----------|------------------------------------------------------------------------------------------------|------------|-----------|--------------------------------|--|
|                                                            | Reference | Measured                                                                                       |            | % of      | Reference Mean: 5.500          |  |
| Injection Time                                             | Value     | Value                                                                                          | Difference | Reference | Measured Mean: 5.567           |  |
| Low-Level                                                  |           |                                                                                                |            |           | Level Error: 1.2               |  |
| 08/30/23 09:24                                             | 5.500     | 5.500                                                                                          | 0.000      | 0.0       | APS Indicator: False           |  |
| 08/30/23 09:30                                             | 5.500     | 5.600                                                                                          | -0.100     | 1.8       | Gas Type Code: BALN,O2         |  |
| 08/30/23 09:36                                             | 5.500     | 5.600                                                                                          | -0.100     | 1.8       | Vendor Identifier: B32019      |  |
|                                                            |           |                                                                                                |            |           | Cylinder #: CC195272           |  |
|                                                            |           |                                                                                                |            |           | Cylinder Exp. Date: 07/23/2027 |  |
|                                                            | Reference | Measured                                                                                       |            | % of      | Reference Mean: 11.100         |  |
| Injection Time                                             | Value     | Value                                                                                          | Difference | Reference | Measured Mean: 11.067          |  |
| Mid-Level                                                  |           |                                                                                                |            |           | Level Error: 0.3               |  |
| 08/30/23 09:26                                             | 11.100    | 11.000                                                                                         | 0.100      | 0.9       | APS Indicator: False           |  |
| 08/30/23 09:32                                             | 11.100    | 11.100                                                                                         | 0.000      | 0.0       | Gas Type Code: BALN,O2         |  |
| 08/30/23 09:38                                             | 11.100    | 11.100                                                                                         | 0.000      | 0.0       | Vendor Identifier: B32019      |  |
|                                                            |           |                                                                                                |            |           | Cylinder #: CC338195           |  |
|                                                            |           |                                                                                                |            |           | Cylinder Exp. Date: 08/05/2027 |  |
|                                                            | Reference | Measured                                                                                       |            | % of      | Reference Mean: 18.100         |  |
| Injection Time                                             | Value     | Value                                                                                          | Difference | Reference | Measured Mean: 18.200          |  |
| High-Level                                                 |           |                                                                                                |            |           | Level Error: 0.6               |  |
| 08/30/23 09:28                                             | 18.100    | 18.200                                                                                         | -0.100     | 0.6       | APS Indicator: False           |  |
| 08/30/23 09:34                                             | 18.100    | 18.200                                                                                         | -0.100     | 0.6       | Gas Type Code: BALN,O2         |  |
| 08/30/23 09:40                                             | 18.100    | 18.200                                                                                         | -0.100     | 0.6       | Vendor Identifier: F22020      |  |
|                                                            |           |                                                                                                |            |           | Cylinder #: SA11523            |  |
|                                                            |           |                                                                                                |            |           | Cylinder Exp. Date: 12/09/2028 |  |

Source: ORB1

Parameter: O2HI

Report Version 4.0

### Plant: ORMOND BEACH GEN STA

Report Period: 07/01/2023 00:00 Through 08/30/2023 23:59

Test End Date/Time: 08/30/23 10:48

Test Number: XML (015-Q3-2023-1) / EDR (1)

| System II<br>Component II<br>Span Value<br>Span Scale Code                         | Reason for Test: Periodic Quality Assurance         Test Result: Pass         Abbreviated?: No |                                                    |                                          |                                        |                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------|------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Injection Time<br>Low-Level<br>08/30/23 10:16<br>08/30/23 10:28<br>08/30/23 10:40  | Reference<br>Value<br>59.600<br>59.600<br>59.600                                               | Measured<br>Value<br>59.700<br>60.400<br>60.200    | Difference<br>-0.100<br>-0.800<br>-0.600 | % of<br>Reference<br>0.2<br>1.3<br>1.0 | Reference Mean: 59.600<br>Measured Mean: 60.100<br>Level Error: 0.8<br>APS Indicator: False<br>Gas Type Code: BALN,NO,NOX<br>Vendor Identifier: B32018<br>Cylinder #: CC215900<br>Cylinder Exp. Date: 12/19/2026   |
| Injection Time<br>Mid-Level<br>08/30/23 10:20<br>08/30/23 10:32<br>08/30/23 10:44  | Reference<br>Value<br>128.400<br>128.400<br>128.400                                            | Measured<br>Value<br>129.200<br>130.200<br>129.200 | Difference<br>-0.800<br>-1.800<br>-0.800 | % of<br>Reference<br>0.6<br>1.4<br>0.6 | Reference Mean: 128.400<br>Measured Mean: 129.533<br>Level Error: 0.9<br>APS Indicator: False<br>Gas Type Code: BALN,NO,NOX<br>Vendor Identifier: B32019<br>Cylinder #: CC91055<br>Cylinder Exp. Date: 04/19/2027  |
| Injection Time<br>High-Level<br>08/30/23 10:24<br>08/30/23 10:36<br>08/30/23 10:48 | Reference<br>Value<br>223.000<br>223.000<br>223.000                                            | Measured<br>Value<br>223.000<br>223.300<br>223.800 | Difference<br>0.000<br>-0.300<br>-0.800  | % of<br>Reference<br>0.0<br>0.1<br>0.4 | Reference Mean: 223.000<br>Measured Mean: 223.367<br>Level Error: 0.2<br>APS Indicator: False<br>Gas Type Code: BALN,NO,NOX<br>Vendor Identifier: F22020<br>Cylinder #: CC244312<br>Cylinder Exp. Date: 10/06/2028 |

Source: ORB1

Parameter: NOXHI

Report Version 4.0

Plant: ORMOND BEACH GEN STA

Report Period: 07/01/2023 00:00 Through 07/20/2023 23:59

Test End Date/Time: 07/20/23 10:19

Test Number: XML (026-Q3-2023-1) / EDR (1)

| Injection Time         Reference<br>Value         Measured<br>Value         Measured<br>Difference         % of<br>Reference         Reference         Reference         Measured Mean:         5.500           Low-Level         07/20/23 10:04         5.500         5.500         0.100         1.8         APS Indicator:         False         Gas Type Code:         BALN,02           07/20/23 10:13         5.500         5.500         0.000         0.00         0.00         0.00         Vendor Identifier:         B32019         Cylinder #: CC195272         Cylinder #: C195272         Cylinder #: C195273         Cylinder #: C2033195         Cylinder #: C2033195 | System II<br>Component II<br>Span Value<br>Span Scale Code |        | Reason for Test: Periodic Quality Assurance         Test Result: Pass         Abbreviated?: No |            |           |                                |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|--------|------------------------------------------------------------------------------------------------|------------|-----------|--------------------------------|--|
| Injection Time         Itake         Fakes         Pakes                                                                                                                                                                                                                          |                                                            |        |                                                                                                |            |           | Reference Mean: 5.500          |  |
| 07/20/23 09:55       5.500       5.400       0.100       1.8         07/20/23 10:04       5.500       5.500       0.000       0.0         07/20/23 10:13       5.500       5.500       0.000       0.0         07/20/23 10:13       5.500       5.500       0.000       0.0         07/20/23 10:13       5.500       5.500       0.000       0.0         Injection Time       Reference       Measured       % of         Value       Difference       Reference       Measured Mean: 11.100         07/20/23 09:58       11.100       11.000       0.100       0.9         07/20/23 10:07       11.100       11.000       0.100       0.9         07/20/23 10:16       11.100       11.000       0.100       0.9         07/20/23 10:16       11.100       11.000       0.100       0.9         Vendor Identifie: B32019       Cylinder #: CC338195       Cylinder #: CC338195         Cylinder Exp. Date: 08/05/2027       Cylinder Exp. Date: 08/05/2027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | •                                                          | Value  | Value                                                                                          | Difference | Reference | Measured Mean: 5.467           |  |
| 07/20/23 10:04         5.500         5.500         0.000         0.0           07/20/23 10:13         5.500         5.500         0.000         0.0           07/20/23 10:13         5.500         5.500         0.000         0.0           07/20/23 10:13         5.500         5.500         0.000         0.0           Injection Time         Reference         Measured         Value                                                                                                                                                                                                                                                     |                                                            |        |                                                                                                |            |           | Level Error: 0.6               |  |
| 07/20/23 10:13       5.500       5.500       0.000       0.0         Vendor Identifier: B32019       Cylinder #: CC195272         Cylinder Exp. Date: 07/23/2027         Mid-Level       Difference       Reference         07/20/23 09:58       11.100       11.000       0.100       0.9         07/20/23 10:07       11.100       11.000       0.100       0.9         07/20/23 10:07       11.100       11.000       0.100       0.9         07/20/23 10:07       11.100       11.000       0.100       0.9         07/20/23 10:07       11.100       11.000       0.100       0.9         07/20/23 10:16       11.100       11.000       0.100       0.9         Vendor Identifier: B32019       Cylinder #: CC338195       Cylinder #: CC338195         Cylinder Exp. Date: 08/05/2027       Cylinder Exp. Date: 08/05/2027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |        |                                                                                                |            |           | APS Indicator: False           |  |
| Cylinder #: CC195272<br>Cylinder Exp. Date: 07/23/2027           Injection Time         Reference<br>Value         Measured<br>Value         % of<br>Reference           Mid-Level         07/20/23 09:58         11.100         11.000         0.100         0.9           07/20/23 10:07         11.100         11.000         0.100         0.9         APS Indicator: False           07/20/23 10:07         11.100         11.000         0.100         0.9         APS Indicator: False           07/20/23 10:16         11.100         11.000         0.100         0.9         APS Indicator: False           Gas Type Code: BALN,O2         Vendor Identifier: B32019         Cylinder #: CC338195         Cylinder Exp. Date: 08/05/2027           Injection Time         Neasured         % of         Reference         Measured           Value         Difference         % of         Reference           Neasured         Mode         Mode         Mode           Value         Difference         % of         Reference           High-Level         Value         Difference         % of         Reference           07/20/23 10:01         18.100         0.000         0.00         Mode         Measured Mean: 18.100           07/20/23 10:19         18.100         1                                                                                                                                                                                                           | 07/20/23 10:04                                             | 5.500  | 5.500                                                                                          | 0.000      | 0.0       | Gas Type Code: BALN,O2         |  |
| Cylinder Exp. Date: 07/23/2027           Injection Time         Reference         Measured         % of<br>Reference           Mid-Level         07/20/23 09:58         11.100         11.000         0.100         0.9           07/20/23 10:07         11.100         11.000         0.100         0.9         APS Indicator: False           07/20/23 10:07         11.100         11.000         0.100         0.9         APS Indicator: False           07/20/23 10:16         11.100         11.000         0.100         0.9         APS Indicator: False           Gas Type Code: BALN,02         Vendor Identifie: B32019         Cylinder #: CC338195         Cylinder Exp. Date: 08/05/2027           Injection Time         Reference         Measured         % of         Reference           High-Level         07/20/23 10:01         18.100         18.100         0.000         0.0           07/20/23 10:10         18.100         18.100         0.000         0.0         APS Indicato: False           07/20/23 10:19         18.100         18.100         0.000         0.0         APS Indicato: False           07/20/23 10:19         18.100         18.100         0.000         0.0         APS Indicato: False           07/20/23 10:19         18.100                                                                                                                                                                                                                     | 07/20/23 10:13                                             | 5.500  | 5.500                                                                                          | 0.000      | 0.0       |                                |  |
| Injection Time         Reference<br>Value         Measured<br>Value         % of<br>Difference         Reference           Mid-Level         07/20/23 09:58         11.100         11.000         0.100         0.9           07/20/23 10:07         11.100         11.000         0.100         0.9           07/20/23 10:07         11.100         11.000         0.100         0.9           07/20/23 10:16         11.100         11.000         0.100         0.9           07/20/23 10:16         11.100         11.000         0.100         0.9           07/20/23 10:16         11.100         11.000         0.100         0.9           Vendor Identifier: B32019         Cylinder #: CC338195         Cylinder #: CC338195           Cylinder Exp. Date: 08/05/2027         Cylinder Exp. Date: 08/05/2027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                            |        |                                                                                                |            |           |                                |  |
| Injection Time         Value         Value         Difference         Reference           Mid-Level         07/20/23 09:58         11.100         11.000         0.100         0.9         APS Indicator: False           07/20/23 10:07         11.100         11.000         0.100         0.9         Gas Type Code: BALN,O2           07/20/23 10:16         11.100         11.000         0.100         0.9         Gas Type Code: BALN,O2           07/20/23 10:16         11.100         11.000         0.100         0.9         Vendor Identifier: B32019           Cylinder #: CC338195         Cylinder #: CC338195         Cylinder Exp. Date: 08/05/2027         Cylinder Exp. Date: 08/05/2027           Injection Time         Reference         Measured         % of         Reference           High-Level         07/20/23 10:01         18.100         0.000         0.0           07/20/23 10:10         18.100         18.100         0.000         0.0           07/20/23 10:19         18.100         18.100         0.000         0.0           07/20/23 10:19         18.100         18.100         0.000         0.0           07/20/23 10:19         18.100         0.000         0.0         0.0                                                                                                                                                                                                                                                                             |                                                            |        |                                                                                                |            |           |                                |  |
| Mid-Level       Midade       Difference       Measured       Measured       Measured       Measured       Measured       Measured       Measured       Measured       Level Error:       0.9       APS Indicator:       False         07/20/23 10:07       11.100       11.000       0.100       0.9       APS Indicator:       False       Gas Type Code:       BALN,02         07/20/23 10:16       11.100       11.000       0.100       0.9       Vendor Identifier:       B32019         Cylinder #: CC338195       Cylinder #: CC338195       Cylinder #: CC338195       Cylinder Exp. Date:       08/05/2027         Injection Time       Measured       Difference       % of       Reference       Measured Mean:       18.100         High-Level       07/20/23 10:01       18.100       0.000       0.0       0.0       APS Indicator:       False         07/20/23 10:10       18.100       18.100       0.000       0.0       0.0       APS Indicator:       False         07/20/23 10:19       18.100       18.100       0.000       0.0       Cylinder #: SA11523                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                            |        |                                                                                                | 5.4        |           | Reference Mean: 11.100         |  |
| 07/20/23 09:58       11.100       11.000       0.100       0.9       APS Indicator: False         07/20/23 10:07       11.100       11.000       0.100       0.9       Gas Type Code: BALN,02         07/20/23 10:16       11.100       11.000       0.100       0.9       Gas Type Code: BALN,02         07/20/23 10:16       11.100       11.000       0.100       0.9       Cylinder #: CC338195         Cylinder #: CC338195       Cylinder #: CC338195       Cylinder Exp. Date: 08/05/2027       Cylinder Exp. Date: 08/05/2027         Measured Value       Difference       % of Reference         High-Level         07/20/23 10:01       18.100       18.100       0.000       0.0         07/20/23 10:10       18.100       18.100       0.000       0.0       APS Indicator: False         07/20/23 10:19       18.100       18.100       0.000       0.0       Gas Type Code: BALN,02       Vendor Identifie: F22020         07/20/23 10:19       18.100       18.100       0.000       0.0       0.0       Vendor Identifie: F22020         07/20/23 10:19       18.100       18.100       0.000       0.0       0.0       Vendor Identifie: F22020         07/20/23 10:19       18.100       18.100       0.000 </td <td></td> <td>Value</td> <td>Value</td> <td>Difference</td> <td>Reference</td> <td>Measured Mean: 11.000</td>                                                                                                                                                         |                                                            | Value  | Value                                                                                          | Difference | Reference | Measured Mean: 11.000          |  |
| 07/20/23 10:07       11.100       11.000       0.100       0.9         07/20/23 10:16       11.100       11.000       0.100       0.9         07/20/23 10:16       11.100       11.000       0.100       0.9         Gas Type Code: BALN,02         Vendor Identifier: B32019         Cylinder #: CC338195         Cylinder Exp. Date: 08/05/2027         Reference         Value       Difference         Reference       Measured         Value       Difference         Reference       Measured         07/20/23 10:01       18.100         18.100       18.100         07/20/23 10:10       18.100         07/20/23 10:19       18.100         07/20/23 10:19       18.100         07/20/23 10:19       18.100         07/20/23 10:19       18.100         07/20/23 10:19       18.100         07/20/23 10:19       18.100         08.100       0.000         0.000       0.0         0.000       0.0         0.000       0.0         0.000       0.0         0.000       0.0         0.000       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                            |        |                                                                                                |            |           | Level Error: 0.9               |  |
| 07/20/23 10:16       11.100       11.000       0.100       0.9       Vendor Identifier: B32019         Vendor Identifier: B32019       Cylinder #: CC338195       Cylinder Exp. Date: 08/05/2027         Injection Time       Measured       % of         Value       Difference       Reference         Migh-Level       Evel       07/20/23 10:01       18.100         07/20/23 10:10       18.100       18.100       0.000       0.0         07/20/23 10:19       18.100       18.100       0.000       0.0         07/20/23 10:19       18.100       18.100       0.000       0.0         07/20/23 10:19       18.100       18.100       0.000       0.0         07/20/23 10:19       18.100       18.100       0.000       0.0         07/20/23 10:19       18.100       18.100       0.000       0.0         07/20/23 10:19       18.100       18.100       0.000       0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |        |                                                                                                |            |           |                                |  |
| Reference<br>Injection Time         Measured<br>Value         % of<br>Difference         Reference         Reference <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td></th<>                    |                                                            |        |                                                                                                |            |           |                                |  |
| Reference<br>Injection Time         Measured<br>Value         % of<br>Difference         Reference         Reference Mean: 18.100           High-Level         07/20/23 10:01         18.100         18.100         0.000         0.0           07/20/23 10:10         18.100         18.100         0.000         0.0         APS Indicator: False           07/20/23 10:19         18.100         18.100         0.000         0.0         Cylinder #: SA11523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 07/20/23 10:16                                             | 11.100 | 11.000                                                                                         | 0.100      | 0.9       |                                |  |
| Reference<br>Injection Time         Measured<br>Value         % of<br>Difference         Reference           High-Level         07/20/23 10:01         18.100         18.100         0.000         0.0           07/20/23 10:10         18.100         18.100         0.000         0.0         APS Indicator: False           07/20/23 10:19         18.100         18.100         0.000         0.0         Cylinder #: SA11523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                            |        |                                                                                                |            |           |                                |  |
| Injection Time         Value         Difference         Reference         Measured Mean: 18.100           High-Level         07/20/23 10:01         18.100         18.100         0.000         0.0         APS Indicator: False           07/20/23 10:10         18.100         18.100         0.000         0.0         Gas Type Code: BALN,02           07/20/23 10:19         18.100         18.100         0.000         0.0         Cylinder #: SA11523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                            |        |                                                                                                |            |           | Cylinder Exp. Date: 08/05/2027 |  |
| High-Level         Level Error: 0.0           07/20/23 10:01         18.100         0.000         0.0           07/20/23 10:10         18.100         18.100         0.000           07/20/23 10:10         18.100         18.100         0.000           07/20/23 10:10         18.100         18.100         0.000           07/20/23 10:19         18.100         18.100         0.000           07/20/23 10:19         18.100         18.100         0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Injection Time                                             |        |                                                                                                | Difference |           |                                |  |
| 07/20/23 10:01         18.100         18.100         0.000         0.0         APS Indicator: False           07/20/23 10:10         18.100         18.100         0.000         0.0         Gas Type Code: BALN,02           07/20/23 10:19         18.100         18.100         0.000         0.0         Vendor Identifier: F22020           07/20/23 10:19         18.100         18.100         0.000         0.0         Vendor Identifier: F22020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                          | value  | value                                                                                          | Dillerence |           |                                |  |
| 07/20/23 10:10       18.100       18.100       0.000       0.0       Gas Type Code: BALN,O2         07/20/23 10:19       18.100       18.100       0.000       0.0       Vendor Identifier: F22020         Cylinder #: SA11523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                          | 40.40- | 40.40-                                                                                         |            |           |                                |  |
| 07/20/23 10:19 18.100 18.100 0.000 0.0 Vendor Identifier: F22020<br>Cylinder #: SA11523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            |        |                                                                                                |            |           |                                |  |
| Cylinder #: SA11523                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                            |        |                                                                                                |            |           |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 07/20/23 10:19                                             | 18.100 | 18.100                                                                                         | 0.000      | 0.0       |                                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                            |        |                                                                                                |            |           | -                              |  |

Source: ORB2

Parameter: O2HI

Plant: ORMOND BEACH GEN STA

Report Period: 07/01/2023 00:00 Through 07/20/2023 23:59

Test End Date/Time: 07/20/23 11:57

| Parameter: NOXHI<br>System ID: 201<br>Component ID: 025<br>Span Value: 250.000<br>Span Scale Code: H |                                                     | Test Number: XML (025-Q3-2023-1) / EDR (1)<br>Reason for Test: Periodic Quality Assurance<br>Test Result: Pass<br>Abbreviated?: No |                                          |                                        |                                                                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Injection Time<br>Low-Level<br>07/20/23 11:33<br>07/20/23 11:42<br>07/20/23 11:51                    | Reference<br>Value<br>59.600<br>59.600<br>59.600    | Measured<br>Value<br>59.900<br>60.600<br>60.600                                                                                    | Difference<br>-0.300<br>-1.000<br>-1.000 | % of<br>Reference<br>0.5<br>1.7<br>1.7 | Reference Mean: 59.600<br>Measured Mean: 60.367<br>Level Error: 1.3<br>APS Indicator: False<br>Gas Type Code: BALN,NO,NOX<br>Vendor Identifier: B32018<br>Cylinder #: CC215900<br>Cylinder Exp. Date: 12/19/2026   |
| Injection Time<br>Mid-Level<br>07/20/23 11:36<br>07/20/23 11:45<br>07/20/23 11:54                    | Reference<br>Value<br>128.400<br>128.400<br>128.400 | Measured<br>Value<br>129.200<br>129.600<br>129.500                                                                                 | Difference<br>-0.800<br>-1.200<br>-1.100 | % of<br>Reference<br>0.6<br>0.9<br>0.9 | Reference Mean: 128.400<br>Measured Mean: 129.433<br>Level Error: 0.8<br>APS Indicator: False<br>Gas Type Code: BALN,NO,NOX<br>Vendor Identifier: B32019<br>Cylinder #: CC91055<br>Cylinder Exp. Date: 04/19/2027  |
| Injection Time<br>High-Level<br>07/20/23 11:39<br>07/20/23 11:48<br>07/20/23 11:57                   | Reference<br>Value<br>223.000<br>223.000<br>223.000 | Measured<br>Value<br>222.800<br>223.300<br>223.500                                                                                 | Difference<br>0.200<br>-0.300<br>-0.500  | % of<br>Reference<br>0.1<br>0.1<br>0.2 | Reference Mean: 223.000<br>Measured Mean: 223.200<br>Level Error: 0.1<br>APS Indicator: False<br>Gas Type Code: BALN,NO,NOX<br>Vendor Identifier: F22020<br>Cylinder #: CC244312<br>Cylinder Exp. Date: 10/06/2028 |

Source: ORB2

Report Version 4.0