February 9, 2022

Ventura County Air Pollution Control District 4567 Telephone Road, 2nd Floor Ventura, California 93003 805-303-4005

Mr. Matt Salazar Air Enforcement Office US EPA, Region IX 75 Hawthorne Street San Francisco, CA 94105

Initial 40 CFR 63, Subpart AAAA Semi-Annual Report Simi Valley Landfill and Recycling Center, Simi Valley, California

Dear Mr. Keith Macias.

Pursuant to Title 40 Code of Federal Regulations 63.1981(h), Waste Management of California. Inc. is submitting the Initial Semi-Annual Report for the Simi Valley Landfill and Recycling Center (SVLRC). This report covers the period from September 27, 2021 (the effective date of the rule) to December 31, 2021.

If you have any questions or comments regarding this document, please call Collin Pavelchik at (510) 714-6098 (cpavelch@wm.com).

I certify that I have knowledge of the facts herein set forth, that the same are true, accurate and complete to the best of my knowledge and belief, and that all information not identified by me as confidential in nature shall be treated by the Ventura County Air Pollution Control District as public record.

Sincerely,

Mark Grady

District Manager

Mr. Christian Colline, Waste Management

Ms. Jayna Morgan, Waste Management

Mr. Dustin Colyar, Waste Management

Mr. Matthew Darr, Waste Management

v.

#### **EXECUTIVE SUMMARY**

The Simi Valley Landfill and Recycling Center (SVLRC) is a municipal solid waste (MSW) landfill located in Ventura, California in Ventura County and is owned/operated by Waste Management of California, Inc. The facility is subject to the requirements of the United States Environmental Protection Agency's (USEPA) *Standards of Performance for Municipal Solid Waste Landfills*; 40 Code of Federal Regulations (CFR) Part 63, Subpart AAAA and as such is submitting this NESHAP AAAA Report.

Updates to 40 CFR Part 62, Subpart F, Plan for the Control of Designated Pollutants from Existing Facility (Section 111(D) Plan) became effective on June 21, 2021. SVLRC is subject to this rule. New provisions under 40 CFR 63, Subpart AAAA, National Emission Standards for Hazardous Air Pollutants: Municipal Solid Waste Landfills, took effect on September 27, 2021. SVLRC is also subject to this rule, and in accordance with 40 CFR 62 Subpart F the facility is complying with the Subpart AAAA requirements in lieu of the incorporated OOO sections of Subpart F requirements as of that effective date.

In accordance with 63.1981, SVLRC is certifying prior submission of respective NESHAP AAAA reports under 40 CFR part 60 subpart WWW; 40 CFR part 60, subpart XXX; federal plan or EPA-approved and effective State Plan that implements either subpart Cc or Cf. This includes initial and amended (as applicable): design capacity report, NMOC emission rate report, collection and control system Design Plan as well as the initial performance test report.

## **TABLE OF CONTENTS**

| 1.0 40 CFR | 63.1981(H) SEMI-ANNUAL REPORT 1                                               |
|------------|-------------------------------------------------------------------------------|
| 1.1 Exc    | ceedance of Applicable Parameters §63.1981(h)(1)1                             |
| 1.1.1      | Wells Operating Under Positive Pressure §63.1958(b) 1                         |
| 1.1.2      | Wells with Temperatures >145°F or HOV §63.1958(c) 4                           |
| 1.1.3      | Surface Emissions Monitoring §63.1958(d)5                                     |
| 1.1.4      | Treatment System Monitoring §63.1981(h)(1)(iii)                               |
| 1.2 Ga     | s Stream Diversion §63.1981(h)(2)                                             |
| 1.3 Co     | ntrol or Treatment System Downtime Events §63.1981(h)(3)6                     |
| 1.4 Co     | llection System Downtime Events §63.1981(h) (4)                               |
| 1.5 Su     | rface Emissions Monitoring §63.1981(h)(5)9                                    |
| 1.6 Sys    | stem Expansion §63.1981(h)(6)10                                               |
| 1.7 Ro     | ot Cause / Corrective Action Analyses §40 CFR 63.1981(h)(7)11                 |
| 1.8 En     | hanced Monitoring §40 CFR 63.1981(h)(8)12                                     |
| 1.8.1      | Enhanced Monitoring for Wellhead Temperature Exceedances                      |
| 1.8.2      | Summary Trend Analyses for Wells Subject to Enhanced Monitoring  Requirements |
| 1.8.3      | Visual Observations for Wells to Enhanced Monitoring Requirements 12          |
| 1.9 En     | closed Combustor Monitoring §63.1983(c)                                       |
| Appendix A | SEM Data                                                                      |
| Annendiy R | GCCS Man                                                                      |

## 1.0 40 CFR 63.1981(h) SEMI-ANNUAL REPORT

SVLRC is submitting this Report because the existing MSW landfill owns and/or operates an active landfill gas collection and control system. The following summarizes the report requirements pursuant to §63.1981(h). This report covers from September 27, 2021 through December 31, 2021.

## 1.1 Exceedance of Applicable Parameters §63.1981(h)(1)

§63.1981(h)(1) Number of times that applicable parameters monitored under §63.1958(b), (c), and (d) were exceeded and when the gas collection and control system was not operating under §63.1958(e), including periods of SSM. For each instance, report the date, time, and duration of each exceedance.

(i) Where an owner or operator subject to the provisions of this subpart seeks to demonstrate compliance with the temperature and nitrogen or oxygen operational standards in introductory paragraph §63.1958(c), provide a statement of the wellhead operational standard for temperature and oxygen you are complying with for the period covered by the report. Indicate the number of times each of those parameters monitored under §63.1961(a)(3) were exceeded. For each instance, report the date, time, and duration of each exceedance.

(ii) Where an owner or operator subject to the provisions of this subpart seeks to demonstrate compliance with the operational standard for temperature in §63.1958(c)(1), provide a statement of the wellhead operational standard for temperature and oxygen you are complying with for the period covered by the report. Indicate the number of times each of those parameters monitored under §63.1961(a)(4) were exceeded. For each instance, report the date, time, and duration of each exceedance.

(iii) Beginning no later than September 27, 2021, number of times the parameters for the site-specific treatment system in §63.1961(g) were exceeded.

#### 1.1.1 Wells Operating Under Positive Pressure §63.1958(b)

§63.1958(b) Operate the collection system with negative pressure at each wellhead except under the following conditions:

(1) A fire or increased well temperature. The owner or operator must record instances when positive pressure occurs in efforts to avoid a fire. These records must be submitted with the semi-annual reports as provided in §63.1981(h);

(2) Use of a geomembrane or synthetic cover. The owner or operator must develop acceptable pressure limits in the design plan;

(3) A decommissioned well. A well may experience a static positive pressure after shut down to accommodate for declining flows. All design changes must be approved by the Administrator as specified in §63.1981(d)(2);

SVLRC operated in compliance with all wellhead monitoring standards listed in §63.1958(b) during the reporting period. All instances of positive pressure were corrected within applicable Subpart AAAA timelines.

On a monthly basis operations and maintenance personnel measure the gauge pressure, temperature, and oxygen concentration at each well head. The gauge pressure taken at the wellhead is used in determining the presence of vacuum at the collector. Measurements are taken with a portable meter which is calibrated per the manufacturer's specifications.

Wells that were found to be operating at positive pressures are summarized in the following table.

#### **Wells Operating Under Positive Pressure**

|          | Initial Rea | ading           |                              | 5-Day                | Final Rea | ading           |                    |
|----------|-------------|-----------------|------------------------------|----------------------|-----------|-----------------|--------------------|
| Name     | Date        | Value<br>("H₂0) | Corrective<br>Action<br>Date | Corrective<br>Action | Date      | Value<br>("H₂0) | Duration<br>(days) |
| SIH02113 | 11/3/21     | 0.03            | 11/3/21                      | Inc. Flow/Vac.       | 11/3/21   | -0.02           | <1                 |
| SIH2001B | 11/1/21     | 0.0             | 11/1/21                      | Inc. Flow/Vac        | 11/1/21   | -0.2            | <1                 |
| SIH2001B | 12/1/21     | 0.0             | 12/1/21                      | Inc. Flow/Vac        | 12/1/21   | -0.3            | <1                 |
| SIM1572S | 11/2/21     | 0.0             | 11/2/21                      | Inc. Flow/Vac        | 11/2/21   | -0.4            | <1                 |
| SIM1778S | 10/21/21    | 2.1             | 10/21/21                     | Inc. Flow/Vac        | 10/21/21  | -21.0           | <1                 |
| SIM1793S | 12/13/21    | 0.46            | 12/13/21                     | Inc. Flow/Vac        | 12/13/21  | -4.3            | <1                 |
| SIM1924S | 12/1/21     | 0.1             | 12/1/21                      | Inc. Flow/Vac        | 12/1/21   | -0.6            | <1                 |
| SIM1931S | 10/4/21     | 0.0             | 10/4/21                      | Inc. Flow/Vac        | 10/4/21   | -0.4            | <1                 |
| SIM1933S | 10/4/21     | 0.0             | 10/4/21                      | Inc. Flow/Vac        | 10/7/21   | -0.3            | 3                  |
| SIM1933S | 11/1/21     | 0.0             | 11/1/21                      | Inc. Flow/Vac        | 11/1/21   | -0.4            | <1                 |

## Wells Operating Under Positive Pressure

| Initial Reading |          | ading           |                              | 5-Day                | Final Rea | ading           | D                  |
|-----------------|----------|-----------------|------------------------------|----------------------|-----------|-----------------|--------------------|
| Name            | Date     | Value<br>("H₂0) | Corrective<br>Action<br>Date | Corrective<br>Action | Date      | Value<br>("H₂0) | Duration<br>(days) |
| SIM1933S        | 11/2/21  | 0.0             | 11/2/21                      | Inc. Flow/Vac        | 11/2/21   | -2.0            | <1                 |
| SIM2052S        | 12/1/21  | 0.1             | 12/1/21                      | Inc. Flow/Vac        | 12/1/21   | -0.3            | <1                 |
| SIM2061D        | 10/14/21 | 5.6             | 10/14/21                     | Inc. Flow/Vac        | 10/14/21  | -33.3           | <1                 |
| SIM2101S        | 9/23/21  | 0.03            | 9/23/21                      | Inc. Flow/Vac        | 10/8/21   | -0.35           | 15                 |
| SIM2104S        | 10/27/21 | 0.4             | 10/27/21                     | Inc. Flow/Vac        | 10/27/21  | -10.6           | <1                 |
| SIMW0031        | 12/1/21  | 24.6            | 12/1/21                      | Inc. Flow/Vac        | 12/1/21   | -1.1            | <1                 |
| SIMW0808        | 12/8/21  | 0.06            | 12/8/21                      | Inc. Flow/Vac        | 12/8/21   | -0.22           | <1                 |
| SIMW1101        | 12/1/21  | 3.8             | 12/1/21                      | Inc. Flow/Vac        | 12/1/21   | -0.7            | <1                 |
| SIMW1776        | 12/1/21  | 4.9             | 12/1/21                      | Inc. Flow/Vac        | 12/1/21   | -2.2            | <1                 |
| SIMW1811        | 12/7/21  | 0.43            | 12/7/21                      | Inc. Flow/Vac        | 12/7/21   | -2.43           | <1                 |
| SIMW1815        | 10/20/21 | 3.4             | 10/20/21                     | Inc. Flow/Vac        | 10/20/21  | -16.4           | <1                 |
| SIMW2005        | 10/20/21 | 1.2             | 10/20/21                     | Inc. Flow/Vac        | 10/20/21  | -9.2            | <1                 |
| SIMW2009        | 11/2/21  | 0.14            | 11/2/21                      | Inc. Flow/Vac        | 11/2/21   | -0.31           | <1                 |
| SIMW2009        | 12/3/21  | 0.0             | 12/3/21                      | Inc. Flow/Vac        | 12/3/21   | -0.1            | <1                 |
| SIMW2047        | 11/1/21  | 0.49            | 11/1/21                      | Inc. Flow/Vac        | 11/1/21   | -1.04           | <1                 |
| SIMW2065        | 10/25/21 | 0.0             | 10/25/21                     | Inc. Flow/Vac        | 10/27/21  | -1.0            | <1                 |
| SIMW2065        | 11/4/21  | 0.0             | 11/4/21                      | Inc. Flow/Vac        | 11/10/21  | -1.3            | 6                  |
| SIMW2076        | 10/4/21  | 0.7             | 10/4/21                      | Inc. Flow/Vac        | 10/7/21   | -8.3            | 3                  |
| SIMW2076        | 11/9/21  | 0.15            | 11/9/21                      | Inc. Flow/Vac        | 11/9/21   | -3.32           | <1                 |

#### 1.1.2 Wells with Temperatures >145°F or HOV §63.1958(c)

 $\S63.1958(c)$  Operate each interior wellhead in the collection system as specified in 40 CFR 60.753(c), until the landfill owner or operator elects to meet the operational standard for temperature in paragraph (c)(1) of this section.

- (1) Beginning no later than September 27, 2021, operate each interior wellhead in the collection system with a landfill gas temperature less than 62.8 degrees Celsius (145 degrees Fahrenheit).
- (2) The owner or operator may establish a higher operating temperature value at a particular well. A higher operating value demonstration must be submitted to the Administrator for approval and must include supporting data demonstrating that the elevated parameter neither causes fires nor significantly inhibits anaerobic decomposition by killing methanogens. The demonstration must satisfy both criteria in order to be approved (i.e., neither causing fires nor killing methanogens is acceptable).

The applicable standard for temperature and oxygen during this reporting period was §63.1958(c)(1), [62.8°C (145°F) or higher operating value (HOV), no oxygen limits]. SVLRC operated in compliance with all wellhead monitoring standards listed in §63.1958(c) during the reporting period. There were no instances of temperatures greater than 145°F (or HOV).

Each landfill gas collector is equipped with an access port allowing for measuring temperature at each wellhead. On a monthly basis operations and maintenance personnel measure the gauge pressure, temperature, and oxygen concentration at each well head. Measurements are taken with a portable meter which is calibrated per the manufacturer's specifications.

#### Wells with Landfill Gas Temperature Greater than 145°F or HOV

| Nama | Initial Re | eading       | 5-Day                | Final Re | eading       |                 |
|------|------------|--------------|----------------------|----------|--------------|-----------------|
| Name | Date       | Temp<br>(°F) | Corrective<br>Action | Date     | Temp<br>(°F) | Duration (days) |
|      |            |              | N/A                  |          |              |                 |

A list of all current HOVs (greater than 145°F) is presented in the following table:

#### Wells with Temperature HOVs

| Device   | Date      | HOV |
|----------|-----------|-----|
| SIM1778D | 6/18/2021 | 150 |
| SIMW1779 | 6/18/2021 | 150 |

| Device   | Date      | ноч |
|----------|-----------|-----|
| SIMW1232 | 6/18/2021 | 150 |
| SIMW1233 | 6/18/2021 | 150 |

<sup>\*</sup>SVLRC also has seventy-two (72) existing HOVs for temperatures equal or greater than 131°F and equal or less than 145°F.

#### 1.1.3 Surface Emissions Monitoring §63.1958(d)

§63.1958(d)(1) Operate the collection system so that the methane concentration is less than 500 parts per million (ppm) above background at the surface of the landfill. To determine if this level is exceeded, the owner or operator must conduct surface testing around the perimeter of the collection area and along a pattern that traverses the landfill at no more than 30-meter intervals and where visual observations indicate elevated concentrations of landfill gas, such as distressed vegetation and cracks or seeps in the cover. The owner or operator may establish an alternative traversing pattern that ensures equivalent coverage. A surface monitoring design plan must be developed that includes a topographical map with the monitoring route and the rationale for any site-specific deviations from the 30-meter intervals. Areas with steep slopes or other dangerous areas may be excluded from the surface testing.

- (2) Beginning no later than September 27, 2021, the owner or operator must:
  - (i) Conduct surface testing using an organic vapor analyzer, flame ionization detector, or other portable monitor meeting the specifications provided in §63.1960(d).
  - (ii) Conduct surface testing at all cover penetrations. Thus, the owner or operator must monitor any cover penetrations that are within an area of the landfill where waste has been placed and a gas collection system is required.
  - (iii) Determine the latitude and longitude coordinates of each exceedance using an instrument with an accuracy of at least 4 meters. The coordinates must be in decimal degrees with at least five decimal places.

Surface emissions monitoring is discussed in Section 1.5.

#### 1.1.4 Treatment System Monitoring §63.1981(h)(1)(iii)

§63.1981(h)(1) (iii) Beginning no later than September 27, 2021, number of times the parameters for the site-specific treatment system in §63.1961(g) were exceeded.

§63.1959(b)(2)(iii)(C) using a landfill gas treatment system must calibrate, maintain, and operate according to the manufacturer's specifications a device that records flow to the treatment system and bypass of the treatment system (if applicable). Beginning no later than September 27, 2021, each owner or operator must maintain and operate all monitoring systems associated with the treatment system in accordance with the site-specific treatment system monitoring plan required in §63.1983(b)(5)(ii). The owner or operator must:

(1) Install, calibrate, and maintain a gas flow rate measuring device that records the flow to the treatment system at least every 15 minutes; and

(2) Secure the bypass line valve in the closed position with a car-seal or a lock-and-key type configuration. A visual inspection of the seal or closure mechanism must be performed at least once every month to ensure that the valve is maintained in the closed position and that the gas flow is not diverted through the bypass line.

SVLRC does not operate a treatment system and therefore, is not subject to the requirements of §63.1981(h)(1)(iii).

## 1.2 Gas Stream Diversion §63.1981(h)(2)

§63.1981(h)(2) Description and duration of all periods when the gas stream was diverted from the control device or treatment system through a bypass line or the indication of bypass flow as specified under §63.1961.

The gas collection system is not designed nor equipped to bypass the control device(s); therefore §63.1981(h)(2) is not applicable.

## 1.3 Control or Treatment System Downtime Events §63.1981(h)(3)

§63.1981(h)(3) Description and duration of all periods when the control device or treatment system was not operating and length of time the control device or treatment system was not operating.

Control device and treatment system downtime events were recorded in compliance with §63.1981(h)(1) and (3) during the reporting period. The following tables summarize all the periods when the control devices and/or treatment system were not operating.

### **Enclosed Flare No. 3 Downtime Events**

| Shutdown       | Startup        | Duration<br>(hours)                                            | Reason                                                                 |
|----------------|----------------|----------------------------------------------------------------|------------------------------------------------------------------------|
| 10/7/21 11:30  | 10/7/21 12:30  | 1.0                                                            | Biogas System Signal Malfunction                                       |
| 10/8/21 0:20   | 10/8/21 4:35   | 4.25                                                           | Biogas System Signal Malfunction                                       |
| 10/8/21 6:20   | 10/8/21 7:30   | 1.17                                                           | Biogas System Signal Malfunction                                       |
| 10/20/21 7:40  | 10/20/21 10:45 | 3.08                                                           | Biogas System Troubleshooting                                          |
| 10/22/21 7:10  | 10/22/21 10:35 | 3.42                                                           | Sump Failure Sump 4                                                    |
| 10/26/21 5:50  | 10/26/21 13:45 | 7.92                                                           | Sump Clean Out                                                         |
| 11/11/21 14:05 | 11/11/21 15:15 | 1.17                                                           | Vibration Test Combustion Air<br>Blower (CAB)                          |
| 11/17/21 12:10 | 11/17/21       | 0.83                                                           | Blower Seal Replacement BL-<br>103/BL-104                              |
| 11/18/21 8:30  | 11/18/21 18:10 | 9.67                                                           | Blower-105 Install                                                     |
| 11/18/21 19:05 | 11/19/21 12:50 | 17.75                                                          | Blower-105 Install                                                     |
| 11/25/21 4:40  | 11/26/21 13:45 | 33.08                                                          | Power Outage                                                           |
| 12/6/21 8:40   | 12/6/21 14:55  | Replacement Bear<br>55 6.25 Blower-104 installe<br>Breakthroug |                                                                        |
| 12/16/21 11:05 | 12/17/21 9:40  | 22.58                                                          | CAB Flare 4 Restart                                                    |
| 12/23/21 7:55  | 12/23/21 8:15  | 0.33                                                           | Biogas System Signal Malfunction                                       |
| 12/24/21 5:35  | 12/24/21 14:50 | 9.25                                                           | High Burner Temperature/Surging Due to Condensate Build Up in H2S Tank |

## **Enclosed Flare No. 4 Downtime Events**

| Shutdown      | Startup       | Duration<br>(hours) | Reason                           |
|---------------|---------------|---------------------|----------------------------------|
| 10/1/21 18:55 | 10/2/21 6:50  | 11.92               | High O2 affected the Gas Line    |
| 10/7/21 11:30 | 10/7/21 12:25 | 0.92                | Biogas System Signal Malfunction |
| 10/8/21 0:20  | 10/8/21 4:25  | 4.08                | Biogas System Signal Malfunction |
| 10/8/21 6:20  | 10/8/21 7:25  | 1.08                | Biogas System Signal Malfunction |

| 10/14/21 8:05  | 10/14/21 9:10  | 1.08    | High O2 affected the Gas Line    |
|----------------|----------------|---------|----------------------------------|
| 10/20/21 7:45  | 10/20/21 10:45 | 3.0     | Biogas System Troubleshooting    |
| 10/22/21 7:10  | 10/22/21 10:15 | 3.08    | Sump Failure Sump 4              |
| 10/26/21 5:50  | 10/26/21 13:35 | 7.75    | Sump Cleanout                    |
| 10/27/21 19:15 | 12/23/21 10:05 | 1358.83 | Combustion Air Blower Failure    |
| 12/23/21 10:10 | 12/23/21 10:15 | 0.08    | Biogas System Signal Malfunction |

### 1.4 Collection System Downtime Events §63.1981(h) (4)

§63.1981(h)(4) All periods when the collection system was not operating.

§63.1958(e) Operate the system as specified in § 60.753(e) of this chapter, except:

(1) Beginning no later than September 27, 2021, operate the system in accordance to §63.1955(c) such that all collected gases are vented to a control system designed and operated in compliance with \$63.1959(b)(2)(iii). In the event the collection or control system is not operating:

(i) The gas mover system must be shut down and all valves in the collection and control system contributing to venting of the gas to the atmosphere must be closed within 1 hour of the collection or control system not operating; and

(ii) Efforts to repair the collection or control system must be initiated and completed in a manner such that downtime is kept to a minimum, and the collection and control system must be returned to operation.

The gas collection system was operated in accordance with §63.1955(c) during the reporting period to in a manner consistent with safety and good air pollution control practices to minimize emissions and downtime. All collected gases were vented to a control system design and operated in compliance with §63.1959(b)(2)(iii). In the event of collection or control system downtime the gas mover system is shut down and all valves in the collection and control system contributing to the venting of gas to the atmosphere are closed within 1 hour of the collection or control system not operating. Efforts to repair the collection or control system are initiated and completed pursuant to the work practice standards of Section 112(h) of the Clean Air Act such that downtime is kept to a minimum, and the collection and control system is returned to operation.

#### **Collection System Downtime Events**

| Shutdown   | Startup    | Duration<br>(hours)                                               | Reason                                                                         |
|------------|------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 10/7/2021  | 10/7/2021  | 0.92                                                              | Biogas System Signal<br>Malfunction                                            |
| 10/8/2021  | 10/8/2021  | 5.16                                                              | Biogas System Signal<br>Malfunction                                            |
| 10/20/2021 | 10/20/2021 | 3.0                                                               | Biogas System Signal  Malfunction                                              |
| 10/22/2021 | 10/22/2021 | 3.08                                                              | Sump failure sump 4                                                            |
| 10/26/2021 | 10/26/2021 | 7.75                                                              | Sump cleanout                                                                  |
| 11/11/2021 | 11/11/2021 | 1.17                                                              | Flare 4 offline due to Combustion Air Blower (CAB) failure; CAB Vibration test |
| 11/17/2021 | 11/17/2021 | 0.83                                                              | Flare 4 offline due to CAB<br>failure; blower seal<br>replacement              |
| 11/18/2021 | 11/18/2021 | 9.67                                                              | Flare 4 offline due to CAB failure; new blower install                         |
| 11/18/2021 | 11/19/2021 | 17.75                                                             | Flare 4 offline due to CAB failure; new blower installed                       |
| 11/25/2021 | 11/26/2021 | 33.08                                                             | Flare 4 offline due to CAB failure; power outage                               |
| 12/6/2021  | 12/6/2021  | Flare 4 offline due to<br>6.25 failure; replace bearing<br>blower |                                                                                |
| 12/16/2021 | 12/17/2021 | 22.58                                                             | Flare 4 offline due to CAB failure; CAB restart                                |
| 12/23/2021 | 12/23/2021 | 0.33                                                              | Biogas System Signal<br>Malfunction                                            |
| 12/24/2021 | 12/24/2021 | 9.25                                                              | High Burner Temp/Surging Due to Condensate Build Up In H2S Tank                |

## 1.5 Surface Emissions Monitoring §63.1981(h)(5)

§63.1981(h)(5) The location of each exceedance of the 500-ppm methane concentration as provided in §63.1958(d) and the concentration recorded at each location for which an exceedance was recorded in the previous month. Beginning no later than September 27, 2021,

for location, you record the latitude and longitude coordinates of each exceedance using an instrument with an accuracy of at least 4 meters. The coordinates must be in decimal degrees with at least five decimal places.

Surface emissions monitoring was completed in compliance with §63.1960(c) during the reporting period. Monitoring included the perimeter of the landfill, the serpentine path with a 30-meter spacing, penetration and openings monitoring and per Method 21 requirements areas where visual observations indicate possible elevated concentrations of landfill gas, such as distressed vegetation and cracks or seeps in the cover are monitored.

Monitoring for the Fourth Quarter 2021 was completed during the reporting period. There were eleven (11) locations with recorded methane concentrations greater than 500 ppm as methane. All locations were remediated within §63.1960(c)(4) timelines. The location information plus initial and final remediated methane concentrations are presented in the following table. Applicable monitoring data is presented in Appendix A.

Surface Emissions Monitoring - Areas over 500 ppmv

| Initial Monitoring Event |          |             |             |                     | 10-Day Rem | onitoring           | 1-Mo<br>Remon |                     |
|--------------------------|----------|-------------|-------------|---------------------|------------|---------------------|---------------|---------------------|
| Flag                     | Date     | Loca        | ation       | CH <sub>4</sub>     | Date       | CH <sub>4</sub>     | Dete          | CH <sub>4</sub>     |
| Number                   | Date     | Longitude   | Latitude    | (ppm <sub>v</sub> ) | Date       | (ppm <sub>v</sub> ) | Date          | (ppm <sub>v</sub> ) |
| 1                        | 10/11/21 | -118.794695 | 34.29738102 | 4211                | 10/21/21   | 90                  | 11/10/21      | 7                   |
| 21                       | 10/11/21 | -118.794776 | 34.29862297 | 576                 | 10/21/21   | 8                   | 11/10/21      | 15                  |
| 22                       | 10/11/21 | -118.79543  | 34.29844603 | 2056                | 10/21/21   | 12                  | 11/10/21      | 11                  |
| 31                       | 10/11/21 | -118.793394 | 34.29783097 | 1500                | 10/21/21   | 58                  | 11/10/21      | 19                  |
| 32                       | 10/11/21 | -118.79623  | 34.29903997 | 3800                | 10/21/21   | 15                  | 11/10/21      | 10                  |
| 33                       | 10/11/21 | -118.796943 | 34.2986497  | 3000                | 10/21/21   | 24                  | 11/10/21      | 13                  |
| 34                       | 10/11/21 | -118.792307 | 34.30078902 | 2000                | 10/21/21   | 102                 | 11/10/21      | 16                  |
| 35                       | 10/11/21 | -118.793443 | 34.30015401 | 2200                | 10/21/21   | 74                  | 11/10/21      | 5                   |
| 36                       | 10/11/21 | -118.793893 | 34.30047797 | 2500                | 10/21/21   | 56                  | 11/10/21      | 7                   |
| 41                       | 10/11/21 | -118.796052 | 34.29686797 | 1700                | 10/21/21   | 28                  | 11/10/21      | 9                   |
| 42                       | 10/11/21 | -118.796924 | 34.29560398 | 700                 | 10/21/21   | 60                  | 11/10/21      | 4                   |

## 1.6 System Expansion §63.1981(h)(6)

§63.1981(h)(6) The date of installation and the location of each well or collection system expansion added pursuant to §63.1960(a)(3) and (4), (b), and (c)(4).

SVLRC complied with the requirements of §63.1960(a)(3) and (4), (b), and (c)(4).

SVLRC continually looks for ways to optimize the collection system and additional wells or collectors are installed on an as needed basis maintain collection efficiency. The following table summarizes the locations of the wells added to the collection system during the reporting period. Locations of the wells are shown on the GCCS Map included in Appendix B.

#### Wellfield Expansions to Comply with §63.1960(a)(3) (Pressure Exceedances)

| Well ID                   | Startup Date                            |
|---------------------------|-----------------------------------------|
| N/A no expansions were re | equired to correct pressure exceedances |

#### Wellfield Expansions to Comply with §63.1960(a)(4) (Temperature Exceedances)

| Well ID                             | Startup Date                    |  |  |  |  |
|-------------------------------------|---------------------------------|--|--|--|--|
| N/A, no expansions were required to | correct temperature exceedances |  |  |  |  |

### Wellfield Expansions to Comply with §63.1960(b) (Collection System Coverage)

| Well ID                          | Startup Date                           |  |  |  |  |
|----------------------------------|----------------------------------------|--|--|--|--|
| N/A, no expansions were required | to increase collection system coverage |  |  |  |  |

#### Wellfield Expansions to Comply with §63.1960(c)(4) (Surface Emissions)

| Well ID                             | Startup Date                           |
|-------------------------------------|----------------------------------------|
| N/A, no expansions were required to | o correct surface emissions exceedance |

## 1.7 Root Cause / Corrective Action Analyses §40 CFR 63.1981(h)(7)

§63.1981(h)(7) For any corrective action analysis for which corrective actions are required in §63.1960(a)(3)(i) or (a)(5) and that take more than 60 days to correct the exceedance, the root cause analysis conducted, including a description of the recommended corrective action(s), the date for corrective action(s) already completed following the positive pressure or high temperature reading, and, for action(s) not already completed, a schedule for implementation, including proposed commencement and completion dates.

SVLRC complied with the requirements of §63.1960(a)(3)(i) and (a)(5). No root cause or corrective action analyses were required during the reporting period. During the reporting period all wells with positive pressures or temperatures greater than 145°F (or applicable HOV) were corrected within 0 to 60 days.

### 1.8 Enhanced Monitoring §40 CFR 63.1981(h)(8)

§63.1981(h)(8) Each owner or operator required to conduct enhanced monitoring in §63.1961(a)(5) and (6) must include the results of all monitoring activities conducted during the period.

- (i) For each monitoring point, report the date, time, and well identifier along with the value and units of measure for oxygen, temperature (wellhead and downwell), methane, and carbon monoxide.
- (ii) Include a summary trend analysis for each well subject to the enhanced monitoring requirements to chart the weekly readings over time for oxygen, wellhead temperature, methane, and weekly or monthly readings over time, as applicable for carbon monoxide.
- (iii) Include the date, time, staff person name, and description of findings for each visual observation for subsurface oxidation event.

#### 1.8.1 Enhanced Monitoring for Wellhead Temperature Exceedances §63.1961(a)(5)

The enhanced monitoring requirements of §63.1961(a)(5) for temperature exceedances were not applicable during the reporting period.

#### 1.8.2 Summary Trend Analyses for Wells Subject to Enhanced Monitoring Requirements

No wells were subject to the enhanced monitoring requirements of §63.1961(a)(5) during the reporting period.

#### 1.8.3 Visual Observations for Wells to Enhanced Monitoring Requirements

No wells were subject to the enhanced monitoring requirements of §63.1961(a)(5) during the reporting period.

### 1.9 Enclosed Combustor Monitoring §63.1983(c)

§63.1983(c) Except as provided in §63.1981(d)(2), each owner or operator of a controlled landfill subject to the provisions of this subpart must keep for 5 years up-to-date, readily accessible continuous records of the equipment operating parameters specified to be monitored in

§63.1961 as well as up-to-date, readily accessible records for periods of operation during which the parameter boundaries established during the most recent performance test are exceeded.

(1) The following constitute exceedances that must be recorded and reported under §63.1981(h):

(i) For enclosed combustors except for boilers and process heaters with design heat input capacity of 44 megawatts (150 million Btu per hour) or greater, all 3-hour periods of operation during which the average temperature was more than 28 degrees Celsius (82 degrees Fahrenheit) below the average combustion temperature during the most recent performance test at which compliance with §63.1959(b)(2)(iii) was determined.

(ii) For boilers or process heaters, whenever there is a change in the location at which the vent stream is introduced into the flame zone as required under paragraph (b)(3) of this section.

The SVLRC operated in compliance with all enclosed combustor monitoring standards listed in 63.1983(c) during the reporting period. There were no reportable exceedances under 63.1983(c)(1)(i).

SVLRC operates two enclosed combustors in accordance with the Part 70 Title V Permit No. 01395 and the Temporary Permit to Operate (TPTO) No. 1395-351, issued by the Ventura County Air Pollution Control District (VCAPCD). As required, the enclosed combustors are equipped with thermocouple(s) that serve as the temperature monitoring device(s). The thermocouples send temperature monitoring data to the digital data recorder. Temperature data is continuously monitored and recorded at least once every 15 minutes.

The enclosed combustors are equipped with flow meters which monitor flow to the enclosed combustors. The flow meters send the data to the digital data recorder, which must record flow rate at least once every 15 minutes.

The enclosed flares are subject to a minimum operating temperature of 28°C (50°F) below the average combustion temperature during the most recent source test (3-hr block averages). The following thresholds apply to the enclosed flares during the reporting period:

# Applicable 3-hr Block Average Temperature Limits Flare No. 3

| Parameter                       | June 29, 2021<br>Source Test Report |
|---------------------------------|-------------------------------------|
| Avg. Test Temperature           | 1,554 °F                            |
| 3-hr Min Combustion Temperature | 1,504°F                             |

### Flare No. 4

| Parameter                       | April 16, 2021<br>Source Test Report |  |  |  |  |
|---------------------------------|--------------------------------------|--|--|--|--|
| Avg. Test Temperature           | 1,551 °F                             |  |  |  |  |
| 3-hr Min Combustion Temperature | 1,501°F                              |  |  |  |  |

Appendix A
SEM Data

#### **WASTE MANAGEMENT**



January 27, 2022

172 98th Avenue Oakland, CA 94603 (510) 430-8509

Mr. Mark Grady 2801 Madera Road Simi Valley, California 93065

## Fourth Quarter 2021 Surface Emissions and Component Leak Monitoring Report for the Simi Valley Landfill and Recycling Center

Dear Mr. Tignac:

This monitoring report for the "Simi Valley Landfill and Recycling Center (SVLRC)" contains the results of the Fourth Quarter 2021 Integrated and Instantaneous Surface Emissions Monitoring (SEM) and Component Leak Monitoring. Initial surface emissions monitoring was performed by Roberts Environmental Services, LLC. (RES). Re-monitoring of site-wide surface emissions and component leak monitoring was also conducted by RES personnel.

#### APPLICABLE REQUIREMENTS

The monitoring discussed in this report was conducted in accordance with the following requirements:

#### **Surface Emission Monitoring (SEM)**

- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).
- New Source Performance Standard (NSPS), Title 40 of the Code of Federal Regulations (CFR) §60.755 (c) and (d), 40 CFR 60, Appendix A Method 21; and updated Title 40 CFR part 63, Subpart AAAA (63.1960), promulgated by the United States Environmental Protection Agency (USEPA).
- Ventura County Air Pollution Control District (VCAPCD) Rule 74.17.1 (Municipal Solid Waste Landfills)

#### **Component Leak**

• California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).

#### **SVLRC Plan and Alternative Compliance Measures**

An Alternative Compliance Option (ACO) Request was submitted to the California Air Resources Board (CARB) on May 24, 2011. A response from the CARB was not received to the ACO Request within 120 days from the date of submittal, therefore SVLRC assumes that the alternative compliance measures, monitoring requirements, and test measures and procedures were deemed acceptable as of September 21, 2011, per CCR Title 17 §95468(c).

All monitoring and reporting was completed in accordance with the 2011 SVLRC AB-32 SEM Plan.

#### **PROCEDURES**

#### General

The surface of the SVLRC disposal area has been divided into one-hundred eighty-five (185), (approximately) 50,000 square foot monitoring grids. The entire landfill surface is monitored with the exception of active portions of the Landfill, slope areas, and as requested in the approved ACO, areas containing only asbestos-containing waste, inert waste and/or non-decomposable waste which are excluded for safety as allowed by CCR Title 17 §95466.

Field personnel walked the surface of the landfill following the walking pattern as depicted the 2011 SVLRC AB-32 SEM Plan, which traverses each monitoring grid. Additionally, in accordance with the provisions of 40 CFR 60.753(d) and 60.755(c)(1-3) and 63.1960, the entire perimeter of the landfill surface was monitored. During the event, special attention was given to monitoring unusual cover conditions (stressed vegetation, cracks, seeps, etc.) and any areas with unusual odors. In addition, penetrations were monitoring per Title 40 CFR part 63, Subpart AAAA (63.1960).

#### **Instantaneous Surface Emissions Monitoring**

The Instantaneous SEM was conducted using a Toxic Vapor Analyzer (TVA) 1000 flame ionization detector (FID), which was calibrated to 500 parts per million by volume (ppmv) methane, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a). The FID was calibrated prior to use in accordance with the United States Environmental Protection Agency (USEPA) Method 21 requirements. The Instantaneous SEM procedures followed the requirements of 40 CFR 60.755 (c) and (d), CCR Title 17 §95471(c)(2), VCAPCD Rule 74.1.7, and 40 CFR part 63, Subpart AAAA 63.1960.

RES personnel walked the surface of the landfill on a grid-by-grid basis with the wand tip held at 3 inches from the landfill surface. While sampling the grid, the technicians also checked any surface impoundments (wells or otherwise) for leaks. Technicians also checked any surface cracks, seeps, or other areas that show evidence of surface emissions (odors or distressed

vegetation). Active and sloped areas excluded for safety were documented on field data sheets and maps.

All instantaneous surface monitoring was performed in accordance with the applicable requirements referenced in this report. Any detections of methane above 200 ppmv (areas of concern) or 500 ppmv (exceedances) for instantaneous were recorded, flagged, and marked on an SEM Map, which, wherever required, is included in the Attachments of this report. Applicable corrective action and re-monitoring timelines are listed below:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
  - o If the re-monitoring event shows the exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance.
  - If the 1-month re-monitoring event shows the location is still corrected, all re-monitoring requirements have been completed.
- If either the first 10-day or 1-month re-monitoring events show a second exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance. If the 1-month re-monitoring event shows the area is still corrected, monitoring requirements have been completed.
- If any location shows three exceedances, an additional well shall be installed within 120 days of the initial exceedance.

### **Integrated Surface Emissions Monitoring**

The Integrated surface monitoring was conducted using a TVA 1000 calibrated to 25 ppmv for the integrated monitoring, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a). The field technician traversed the grid walking path over a continuous 25-minute period using the TVA 1000 held at 3 inches above the landfill surface. The Integrated monitoring procedures followed the requirements of CCR Title 17 §95471(c)(2).

Grids with results greater than 25 ppmv were recorded, marked on the SEM map, and flagged for remediation. Any grids with integrated concentrations greater than 25 ppmv are subject to the following corrective action and re-monitoring timeline:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
- If the 10-day re-monitoring event shows the exceedance is corrected, all re-monitoring requirements have been completed.

- If either the first 10-day re-monitoring event shows a second grid exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, all re-monitoring requirements have been completed.
- If the second 10-day re-monitoring event shows a third grid exceedance, an additional well shall be installed within 120 days of the initial exceedance.

#### **Component Leak Monitoring Procedures**

RES personnel monitored the exposed LFG components under positive pressure (pipes, wellheads, valves, blowers, and other mechanical appurtenances) using a TVA 1000 calibrated to 500 ppmv. All leaks measured one half inch or less from the component exceeding the compliance limit of 500 ppmv per requirements outlined in pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B) were recorded. Applicable corrective action and re-monitoring timelines are listed below:

• Leaks at or above 500 ppmv must be corrected and re-monitored within 10 days of the initial exceedance.

#### FOURTH QUARTER SEM AND COMPONENT LEAK RESULTS

The following is a summary of the SEM and Component leak monitoring results completed during the Fourth Quarter 2021.

#### **Instantaneous Surface Emission Monitoring Results**

The Instantaneous surface monitoring was performed on October 11, 2021, in accordance with the NSPS NESHAP, Rule 74.1.17, CCR Title 17 §95469 and ACO. Results and data from the monitoring are presented in Attachment A.

#### Initial Monitoring Event Exceedances of 500 ppmv

There were eleven (11) exceedances of 500 ppmv as methane detected during the initial monitoring events conducted on October 11, 2021. RES personnel remediated the locations, and the following re-monitoring was conducted as described below.

#### First Ten-Day Re-Monitoring Results

RES personnel performed the first ten-day re-monitoring events on October 21, 2021. No exceedances were observed during the first ten-day re-monitoring event.

#### Thirty-Day Re-Monitoring Results

RES personnel performed the thirty-day monitoring event on November 10, 2021. No exceedances were observed during the thirty-day re-monitoring event.

#### Readings between 200 ppmv and 499 ppmv (Initial and Re-monitored)

There were zero (0) readings between 200 ppmv and 499 ppmv, measured as methane detected during the initial monitoring event on October 11, 2021. Pursuant to CCR Title 17 §95471(c), instantaneous surface emissions exceeding 200 ppmv but below 500 ppmv are required to be recorded.

#### **Integrated Surface Emissions Monitoring Results**

The Integrated surface sampling (ISS) was performed on October 12 & 13, 2021, in accordance with the ACO, requirements outlined in CCR Title 17 §95469, and VCAPCD Rule 74.1.17. See Attachment B for details.

### Initial Monitoring Event Exceedances of 25 ppmv

There were zero (0) grids with an exceedance above 25 ppmv as methane detected during the initial monitoring event conducted on October 12 & 13, 2021.

#### Ten-Day Re-Monitoring Results

No exceedances were observed during the initial monitoring events, therefore the 10-day remonitoring was not required.

The average methane concentration of each grid was recorded during the monitoring event per applicable requirements. See Attachment B for details.

#### **Component Leak Monitoring Results**

Component leak monitoring was conducted per the applicable requirements on October 12, 2021. There were two (2) locations with a component leak detection of greater than 500 ppmv during the initial monitoring event. RES personnel remediated the locations, and the ten-day remonitoring event was performed on October 21, 2021; no exceedances were observed. See Attachment C for details.

#### WEATHER CONDITIONS

## Wind Speed Conductions during the Surface Emission Monitoring Events

Wind speeds during initial monitoring were monitored using a portable weather station. The station has a strip chart that records the wind speed and direction. After completion of monitoring, the strip chart is reviewed by RES office staff to determine the average and maximum wind speeds during the monitoring and the average wind direction during each grid and ensure that the wind speed requirements are met (no gusts greater than 20 mph, average wind speed cannot exceed 10 mph). These values are documented in the field data sheets. The chart data is scanned and included in Attachment D.

#### **Precipitation Requirements**

Per the SVLRC's ACO, the initial monitoring event was carefully scheduled so that it could be conducted in compliance with the precipitation requirements (no measurable precipitation within 24 hours). Re-monitoring events are required to adhere to strict timelines. Any conflicts with precipitation requirements are discussed in the results section of this document.

#### **EQUIPMENT CALIBRATION**

The portable analyzers were calibrated to meet the instrument specifications requirements of U.S. EPA Method 21. The calibration gas used was methane, diluted to a nominal concentration of 25 ppmv in air for integrated sample analyses and 500 ppmv in air for instantaneous monitoring to comply with the requirements.

All analyzers were calibrated prior to use with required response time and precision related instrument checks. Calibration records include the following: One time response time test record; One time response factor determination for methane; Calibration Precision test records (test to be

Mark Grady January 27, 2022 Page 7

performed every 3 months); and Daily Instrument Calibration and Background test records for each gas meter that was used during the quarterly monitoring event. The calibration log records are included in Attachment E.

All monitoring was completed in accordance with the applicable regulatory requirements or approved alternatives. If you have any questions regarding this report, please do not hesitate to contact the undersigned at (510) 714-6098.

Thank you, Waste Management

Collin Parellik

Collin Pavelchik

Environmental Protection Air Quality Specialist

## Attachment A - Instantaneous Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- Surface Monitoring Weather Data
- SEM Map

## Attachment B - Integrated Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- Surface Monitoring Weather Data
- SEM Map

#### Attachment C - Component Leak Monitoring Event Records

Component Leak Exceedances and Monitoring Logs

#### Attachment D - Weather Station Data

• Strip Chart Data and Legend

#### Attachment E - Calibration Records

• Instrument and Gas Calibration Records

### Attachment A

Instantaneous Surface Emission Monitoring Event Records

## SIMI VALLEY LANDFILL INSTANTANEOUS LANDFILL SURFACE MONITORING

| Personnel: S. Hevshey |                | A       | 1. par.       | idea .        | T-Spiver        |                            |
|-----------------------|----------------|---------|---------------|---------------|-----------------|----------------------------|
| į.                    | Gr. Poble      | 3       |               | Juy           |                 | al. Gas Exp. Date: 1-19-23 |
| Date: 10              | 0-11-21        | Instrur | nent Used     | 1: <u>TVA</u> | ໄດວບ Grid Sp    | acing: <u>25</u>           |
| Temperat              | ure: <u>65</u> | Pred    | cip: <u> </u> | Upv           | vind BG: [      | Downwind BG: 🚣             |
| GRID ID               | STAFF          | START   | STOP          | TOC           | WIND INFORMATIO | REMARKS                    |

| GRID ID | STAFF    | START | STOP | тос | WIN          | D INFOR          | MOTTAN                | REMARKS     |
|---------|----------|-------|------|-----|--------------|------------------|-----------------------|-------------|
|         | INITIALS | TIME  | TIME | PPM | AVG<br>SPEED | MAX.<br>SPEED    | DIRECTION<br>16 POINT | 11011111110 |
| 1       | SH       | 0800  | 0815 | 8   | 9            | 6                | 12                    | ****        |
| 2       | 50       | 0800  | 0415 | 7   | 4            | 6                | 12                    |             |
| 3       | GR       | 0800  | 0815 | 4   | 4            | 6                | 12                    |             |
| 4       | MP       | 0800  | 0815 | 9   | Ÿ            | 6                | 12                    |             |
| 5       | Sp       | 0800  | 1815 | 60  | प            | 6                | 12                    |             |
| 6       | The      | 0880  | 0815 | 2   | 4            | b                | Lib.                  |             |
| 7       | JS       | 0800  | 0815 | 7   | 4            | 6                | 11                    |             |
| 8       | SH       | 1815  | 0830 | 5   | 9            | le               | 12                    |             |
| 9       | DP       | 0815  | 6830 | Z   | 9            | - b <sub>1</sub> | 12                    |             |
| 10      | GIR      | 1815  | 0830 | ۶   | q            | · l              | 14                    | 7'          |
| 11      | MP       | 0815  | 0830 | 14  | q            | la.              | IL I                  |             |
| 12      | SP       | 0815  | 1830 | 12  | ٩            | b                | L L                   |             |
| 15      | JW       | 0815  | 0830 | 6   | 9            | J                | 12                    |             |
| 14      | JJ       | 0815  | 0830 | 5   | Y            | 6                | 17                    |             |
| 15      | SH       | 9830  | osus | 3   | Y Y          | 6                | R                     |             |
| 16      | 90       | 0830  | 0845 | 8   | 9            | 6                | 17                    |             |
| 17      | GIR      | 0830  | 0845 | 9   | 4            | 6                | 拉                     |             |
| 18      | Mp       | 0830  | 0872 |     | 4            | 6                |                       |             |
| 14      | Sp       | 0830  | 0845 | 4   | 4            | 6                | 1/2                   |             |
| 20      | JW       | 0830  | 0845 | )   | 9            | 6                | 11                    |             |
| U       | TS       | 0830  | 0842 | 2   | 4            | le               | 12                    |             |
| 22      | 34       | 0845  | 0900 | 1   | 2            | 4                | 1),                   |             |
| 27      | OP       | 0845  | 1900 | 2   | 1            | 9                | 12                    |             |
| 24      | GIR      | 0845  | 0900 | 6   | 7            | 9                | 117                   |             |
| 25      | mp       | 1842  | 0900 | 2   | 7            | 4                | 12                    |             |
| 26      | Sp       | 1845  | 0900 | 1   | 7            | 4                | 12                    |             |
| 27      | Ju       | 0845  | 0900 | 4   | 1            | 4                | 12                    |             |
| 78      | 15       | 0845  | 0900 | 5   | 2            | _9               | 12                    |             |
| 29      | SH       | 0900  | 0915 | 5   | 9            | le               | 1/2                   |             |
| 30      | OP       | 800   | 0915 | 8   | 9            | 16               | 12                    |             |

Attach Calibration Sheet

Attach site map showing grid ID

Page \_\_/\_ of \_\_\_\_\_\_

## SIMI VALLEY LANDFILL INSTANTANEOUS LANDFILL SURFACE MONITORING

| Personnel: Sithers buy  | Mynthieu           |                 | cer               |
|-------------------------|--------------------|-----------------|-------------------|
| G. Publici              | J. wesson          | Cal. Gas Ex     | (p. Date: 1-19-23 |
| Date: 10-11-21 Instrume | nt Used: TVA LOUIS | Grid Spacing: _ | 25-               |
| Temperature: 70 Precip  | : Upwind BG: _     | /Downwin        | d BG:             |

| GRID ID STAFF | STAFE    | START STOP | тос   | WIN | WIND INFORMATION |               |                       |         |
|---------------|----------|------------|-------|-----|------------------|---------------|-----------------------|---------|
| JAID ID       | INITIALS | TIME       | TIME  | PPM | AVG<br>SPEED     | MAX.<br>SPEED | DIRECTION<br>16 POINT | REMARKS |
| 31            | GIR      | 0900       | 0915  | 5   | 9                | 6             | 12                    |         |
| 32            | MP       | 0900       | 0915  | 2   | 9                | 6             | 14                    |         |
| 33            | 50       | 0800       | 0915  | 5   | 1 4              | 1             | II.                   |         |
| 34            | Ju       | 0900       | 0915  | 6   | 1 4              | ll            | 1                     |         |
| 35            | 55       | 0900       | 0915  | 6   | 1 4              | 6             | 12                    |         |
| 36            | 5:4      | 0915       | 09-30 | 4   | 1 4              | 5             | 1)                    |         |
| 37            | OP       | 0915       | 0930  | 2   | 1 4              | 8             | 1/12                  |         |
| 38            | GIR      | 0915       | 0950  | 1   | Ý                | 5             |                       |         |
| 39            | hep      | 0915       | 0830  | 4   | 1                | 5             | 12                    |         |
| 40            | SP       | 0915       | 0930  | 5   | У                | 5             |                       |         |
| 41            | The      | 0915       | 0930  | 6   | 4                | 5             | 12                    |         |
| 42            | 53       | 0915       | 0930  | 3   | 9                | 5             | 1/2                   |         |
| 43            | SH       | 1930       | 0945  | 2   | Ų                | 5             | 1/2                   |         |
| 94            | OP       | 0930       | 0945  | 4   | 7                | 5             | TL                    | 1000    |
| 45            | GIR      | 1930       | DA45  | 8   | 4                | 5             | 12                    |         |
| 46            | MP       | 1938       | 0945  | \$  | 1 4              | 5             | 12                    |         |
| 47            | SP       | 0930       | 0945  | 7   | 1 9              | 5             | 12                    |         |
| 48            | びん       | 1930       | 0945  | 4   | 1 4              | (             | 12                    |         |
| 49            | J5       | 0938       | 0945  | 4   | <u> </u>         | 15            | 11-                   |         |
| 50            | SH       | 0945       | 1000  | 3   | q                | 7             | 仕                     |         |
| 51            | DP       | 0945       | 1000  | 9   | 4                | 1 1           |                       |         |
| 52            | GR       | 0945       | 1000  | 6   | 4                | 1 7           | 14                    |         |
| 53            | MP       | 0945       | lion  | U   | <u> </u>         | 1             | 14                    |         |
| 54            | SP       | 0945       | 1000  | F   | 4                | 1             | 17                    |         |
| 55            | JW       | 0945       | 1000  | Ý   | 9                | 11            | 12                    |         |
| 56            | 55       | 0945       | 1000  | 2   | 4                | 7             | /2                    |         |
| 57            | SH       | 1000       | 105   | 8   | 7                | 9             | 12                    |         |
| 58            | SP       | 1000       | 1015  | 3   | 3                | 4             | 12                    |         |
| 59            | GR       | 1000       | 1015  | 5   | 2                | 14            | 12                    |         |
| 60            | MP       | 1000       | 1015  | 9   | 1                | Υ'            | 12                    |         |

Attach Calibration Sheet

Attach site map showing grid ID

Page 2 of 5

## SIMI VALLEY LANDFILL INSTANTANEOUS LANDFILL SURFACE MONITORING

| sonnel:    | S. Hers  | ta     |          | S. pope  | ida           |               | - Jisp                | Exp. Date: 1-19- |
|------------|----------|--------|----------|----------|---------------|---------------|-----------------------|------------------|
| -          | 6. Robly | 25     |          | Times    | <b>ठे</b> ट्य |               | Cal. Gas              | Exp. Date: 1-19- |
| ate: _/    | 5-11-21  | Instru | ment Use | d: TVA 1 | 000           | Gri           | d Spacing:            | 25               |
| emperat    | ure:     | Pre_   | cip:     | Upw      | /Ind BG:      | /             | Down                  | wind BG:2_       |
| GRID ID    | STAFF    | START  | STOP     | тос      | WIN           | ID INFOR      | MATION                | DEMARKS          |
|            | INITIALS |        | TIME     | PPM      | AVG<br>SPEED  | MAX.<br>SPEED | DIRECTION<br>16 POINT | REMARKS          |
| 61         | Sp       | 1000   | 1015     | 15       | 3             | 9             | 12                    |                  |
| 62         | The      | 1000   | 1015     | 12       | J             | 9             | 11)                   |                  |
|            | J5       | 1000   | 1015     | 700      | 1             | 9             | 12                    | WAN IZA          |
| 64         | 5#       | 1015   | 1030     | 26       | Ĭ             | 5             | 11                    |                  |
| 65         | OP       | 1015   | 1030     | [3       | 3             | 5             | I L                   |                  |
| 66         | GR       | 1015   | 1.030    | 14       | 3             | 5             | 12                    |                  |
| 67         | -        | 1015   | 1030     | 7        | C             | 5             | 12                    |                  |
| 68         | SÞ       | 1015   | 1030     | 5        | 2             | 5             | 12.                   |                  |
| 69         | Tw       | 1015   | 1030     | 2        | 2             | 5             | Th                    |                  |
| 70         | J5       | 1015   | 1030     | 6        | 3             | 5             | 12                    |                  |
| 71         | SH       | losa   | 1045     | 3        | y             | 6.            | 12                    |                  |
| 72         | Dp       | 1030   | 1045     | 4        | 9             | 6             | 112                   |                  |
| 75         | bir      | 1010   | 1045     | 2        | 4             | 4             | 12                    |                  |
| 74         | mp       | 1030   | 1045     | 5        | Ÿ             | 6             | 12                    |                  |
| 75         | 30       | 1030   | 1045     | 4        | 9             | 1             | 12                    |                  |
| 76         | Ju       | (030   | 1045     | 2        | 4             | 6             | 12                    |                  |
| 77         | 12       | 1030   | 1045     | 1        | 4             | 6             | 12                    |                  |
| 78         | SH       | 1045   | 11/00    | 3        | 4             | 10            | 11                    |                  |
| 79         | OP       |        | 1100     | Š        | YE            | 6             | 12                    |                  |
| 80         | GiR      | 1045   | 1100     | 2        | 4             | 6             | 1/2                   |                  |
| 81         | MP       | 1045   | 1100     | y        | 4             | 6             | 112                   |                  |
| 82         | Sp       | 1145   | 1100     | 1500     | Y             | 6             | 1/2                   | Ga 20611)        |
| <b>૪</b> 3 | TW       | 1045   | 1100     | 7        | ij            | 6             | 1/2                   |                  |
| 84         | JJ       |        | 1100     | 4        | 9             |               | W                     |                  |
| 85         | SH       | 1200   | 1215     | 9        | ý             | 70            | 8                     |                  |
| 86         | DP       | 1200   | 1215     | 4211     | Ų.            | 10            | 18                    | 65W \$ 109       |
| 87         | GIR      | 1700   | 1215     | 5        | 4             | 10            | ŤŸ                    |                  |
| 88         | MP       | 1200   | 1215     | 4        | 4             | is            | 1 9                   |                  |
| 89         | 5-19     | 1200   | 1715     | 19       | Ý             | 10            | ΤÝ                    |                  |
| 40         | JW       | 1200   | 1215     | 1700     | [J            | 10            | 18                    | Sump A           |

Attach Calibration Sheet Attach site map showing grid ID

## SIMI VALLEY LANDFILL

| sonnel: _ | SHEVS     | hey    |           | in parts | 5 Exp. Date: 1-1 |                |                       |                |
|-----------|-----------|--------|-----------|----------|------------------|----------------|-----------------------|----------------|
|           | O peral   | tc     |           | S-Pope   |                  |                | 5 5 7                 |                |
| 12        | 6. 1500Ly | 25     |           | Jiwes    | son              |                | _ Cal. Gas            | Exp. Date: _/~ |
| Date: 10  | 13-17-    | Instru | ment Used | 1: TUA   | (000             | Grie           | d Spacing:            | 25             |
|           |           |        |           |          |                  |                |                       | vind BG:       |
| GRID ID   | STAFF     | START  | STOP      | тос      | WIN              | ID INFORM      | MATION                | REMARKS        |
| J, 12     | INITIALS  | TIME   | TIME      | PPM      | AVG<br>SPEED     | MAX.<br>SPEED  | DIRECTION<br>16 POINT |                |
| 91        | J5        | 1200   | 1215      | 4        | 7                | Ь              | 8                     |                |
|           | 54        | 1215   | 1230      | 8        | У                | 6              | 8                     |                |
| 93        | DP        | 1215   | 1230      | J        | Ÿ                | V              | 8                     |                |
| 94        | GR        | 1215   | 1230      | 7        | 4                | l <sub>k</sub> |                       |                |
| 95        | Mp        | 1215   | 1230      | 5        | Y                | b              | 8                     |                |
| 96        | SP        | 1215   | 1230      | 6        | Ч                | 6              | 8                     |                |
| 97        | 5p<br>TN  | 1215   | 1230      | 6        | 4                | 6              | 8                     |                |
| 90        | J3        | 1215   | 1230      | 3        | 4                | 6              | 8                     |                |
| 99        | SH        | 1230   | 1245      | 8 2      | 9                | 6              | 8                     |                |
| 100       | OP        | 1230   | 1245      |          | Ч                | lp.            | 8                     |                |
| 101       | GR        | 1230   | 1245      | 4        | Ÿ                | وا             | 1 8                   |                |
| 107       | Mp        | 1230   | 1245      | 15       | 4                | þ              | 8                     |                |
| 103       | ge        | 1230   | 1245      | 3000     | 4                | ٥              | 8                     | GW 819         |
| 104       | JW        | 1230   | 1245      | 13       | 9                | 6              | 1 8                   |                |
| 105       | J3        | 1230   | 1245      | 10       | ÿ                | 6              | 18                    |                |
| 106       | SH        | 1245   | 1300      | 8        | 4                | 8              | 8                     |                |
| lor       | OP        | 1245   | 1500      | 10       | 4                | 5              | 8                     | 1              |
| 108       | GIR       | 1245   | 1300      | 2056     | Ý                | 8              | 8                     | Gru 19303      |
| 109       | hip       | 1245   | 1300      | 12       | Ý                | X              | 8                     | ,              |
| 110       | SØ        | 1245   | 1300      | 570      | 4                | B              | 8                     | (nu 1176       |
| 111       | Jw        | 1245   | 1300      | 14       | Ÿ                | 8              | 8                     |                |
| 112       | J3        | 1245   | 1300      | 18       | 4                | 8              | 8                     |                |
| 115       | S#        | 1300   | 1315      | 12       | ¥                | 10             | 10                    |                |
| 114       | OP        | 1300   | 13/5      | 8        | ď                | p              | 10                    |                |

380

SH **Attach Calibration Sheet** Attach site map showing grid ID

GiR

Mip

SP

JW

JS

Page 4 of 5

p

9/10

4 10

## SIMI VALLEY LANDFILL INSTANTANEOUS LANDFILL SURFACE MONITORING

| _      |                |         |               |                 |              |               |                       | Exp. Date: 1 |
|--------|----------------|---------|---------------|-----------------|--------------|---------------|-----------------------|--------------|
| te:    | -11-21         | Instrur | nent Use      | d: _ <i>TVA</i> | Lovo         | Gri           | d Spacing:            | _25"         |
| mperat | ure: <u>7.</u> | Pre     | cip: <u>-</u> | Upw             | vind BG:     |               | Downv                 | vind BG:2_   |
| RID ID | STAFF          | START   | STOP          | Toc             | WIN          | ID INFORM     | NOITAN                |              |
| ide is | INITIALS       | TIME    | TIME          | PPM             | AVG<br>SPEED | MAX.<br>SPEED | DIRECTION<br>16 POINT | REMARKS      |
| 121    | OP             | 1315    | 1330          | 10              | y            | 10            | 9                     |              |
| 22     | GR             |         | 1330          | 8               | 4            | b             | 9                     |              |
| 23     |                | 1315    | 1330          | 7               | 9            | p             | 9                     |              |
| 14     | Sip            | 1315    | 1330          | 1               | 4            | D             | Ŷ                     |              |
| 75     | Ju             | 1315    | 1330          | 9               | 9            | 13            | 9                     | ***          |
| 26     | JS:            | 1315    | 1330          | 4               | 9            | 10            | 9                     |              |
| 27     | SH             | 1330    | 1345          | 3               | Ý            | 10            | 3                     |              |
| 28     | OP             | 1330    | 1345          | 5               | 4            | b             | 8                     |              |
| 29     | GIR            | 1330    | 1345          | 6               | Ÿ            | 10            | ÿ                     |              |
| 30     | mp             | 1330    | 1345          | 1.              | 9            | 13            | 8                     |              |
| 31     | Sp             | 1330    | 1345          | 4               | 4            | 15            | 13                    |              |
| 32     | Tw             | (330    | 1345          | 5               | 4            | p             | 8                     |              |
| 33     | 55             | 1330    | 1345          | 3               | 4            | 10            | 8                     |              |
| SY     | SH             | 1345    | 1400          | 2               | 9            | <b>/</b> 0    | 8                     |              |
| 35     | DP             | 1345    | 1400          | Y               | 4,           | 15            | 8                     |              |
| 36     | GIR            | 1345    | 1400          | 5               | 9            | b             | Ÿ                     |              |
| 177    | MP             | 1345    | 1400          | 5               | 9            | p             | 8                     |              |
| 38     | SP             | 1345    | 1400          | 5200            | Ч            | 10            | 18                    | Gw 2004      |
| 39     |                | 1345    | 1400          | 2200            | 4            | 10            | 8                     | 6WK15        |
| 40     |                |         | 1400          | 16              | 4            | 10            | 8                     | 1            |
| 41     |                | 1400    | 1415          | 18              | V            | 9             | Ÿ                     |              |
| 42     | _              | 1400    | 1415          | 12              | Ų            | g'            | 9                     |              |
| 43     |                | 1400    | 1415          | 2000            | 7            | 9             | Ÿ                     | GWI8H        |
| 14     | Mp             |         | 1415          | 10              | Ý            | 9             | 9                     |              |
| 45     |                |         | 1415          | LO              | 9            | 9             | 9                     |              |
| 46     | The            | 1400    | 1415          | 19              | ¥            | 19            | q                     |              |

Attach Calibration Sheet Attach site map showing grid ID

Page \_\_\_\_\_ of \_\_\_\_

## SIMI VALLEY LANDFILL INSTANTANEOUS LANDFILL SURFACE MONITORING

| rsonnel: S. Hershay |                                         |                     | Jups                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5011                         |                                                                               | J-spicer                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                |
|---------------------|-----------------------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sipope              |                                         |                     | m. part                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ides                         |                                                                               | Cal. Gas Exp. Date: /- 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                |
|                     |                                         |                     | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
| ure: <u>6</u>       | 8° Pre                                  | ecip: 🕏             | Up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | wind BG:                     |                                                                               | Downw                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | vind BG: 2                                                                                                                                                                                                                     |
| STAFF<br>INITIALS   | START<br>TIME                           | STOP<br>TIME        | TOC<br>PPM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | WIND INFORM                  |                                                                               | NOITAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | REMARKS                                                                                                                                                                                                                        |
|                     |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AVG<br>SPEED                 | MAX.<br>SPEED                                                                 | DIRECTION<br>16 POINT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 13.0                                                                                                                                                                                                                           |
| SH                  | (1800                                   | 0815                | 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                            | 5                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
| NP                  | 0800                                    |                     | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q Q                          | (                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
| SP                  |                                         | 0815                | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                            | 5                                                                             | ý                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
| The                 | 0800                                    | 0815                | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 9                            | 5                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
| GIR                 | 180                                     |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ý                            | 5                                                                             | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                |
| MP                  |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9                            | 5                                                                             | 18.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                |
|                     |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Y                            | 5                                                                             | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                |
|                     |                                         |                     | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4                            | b                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     |                                         |                     | 18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1 9                          | 6                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                            |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     |                                         |                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100                          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | 3.50                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     |                                         |                     | <b></b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              | 0.00                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | - 1/2                        |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     | -                                       | -                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
| 1                   |                                         |                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1 1                          |                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                |
|                     | STAFF INITIALS SH OP SP TW GIR MP JS SH | 12-21   Instruction | 12-21   Instrument Use   12-21   Instrument | 12-21   Instrument Used: TVA | STAFF   START   STOP   TOC   NITTALS   TIME   TIME   TIME   PPM   AVG   SPEED | TVA 1000   Gri   Gri | INITIALS TIME TIME PPM AVG SPEED DIRECTION 16 POINT  SH (1800 O815 /0 Y C S  OP 0800 0815 8 Y C S  FR 0800 0815 7 Y S  The 0800 0815 3 Y S  GIR (1800 0815 9 Y S  MP 0800 0815 6 Y S  SH 0815 0830 12 Y G  SH 0815 0830 12 Y G |

Attach Calibration Sheet Attach site map showing grid ID

Page \_\_\_\_\_ of \_\_\_\_\_

## SIMI VALLEY LANDFILL INSTANTANEOUS LANDFILL SURFACE MONITORING

|                               |                   |               |              |             |              |               | Cal. Gas E            | xp. Date: |
|-------------------------------|-------------------|---------------|--------------|-------------|--------------|---------------|-----------------------|-----------|
| ate: 10                       | 12-21             | Instrur       | nent Used    | ACHVE<br>1: | Trash        | Grid          | d Spacing:            |           |
| Date: 10-12-21 Instrument Use |                   |               |              |             |              |               |                       |           |
| Temperature: Precip:          |                   | cip:          | Up           | wind BG:    |              | Downwind BG:  |                       |           |
| GRID ID                       | STAFF<br>INITIALS | START<br>TIME | STOP<br>TIME | TOC<br>PPM  | WIN          | ID INFORM     | MATION                | REMARKS   |
|                               |                   |               |              |             | AVG<br>SPEED | MAX.<br>SPEED | DIRECTION<br>16 POINT |           |
| 157                           |                   |               |              |             |              |               |                       |           |
| 158                           |                   |               |              |             |              |               |                       |           |
| 159                           |                   |               |              |             |              |               |                       |           |
| 160                           |                   |               |              |             |              |               |                       | 17.72     |
| 161                           | K.                |               |              |             |              |               |                       |           |
| 162                           |                   |               |              |             |              |               |                       |           |
| 163                           |                   |               |              |             |              |               |                       |           |
| 164                           |                   |               |              |             |              |               |                       |           |
| 165                           |                   |               |              |             |              |               |                       |           |
| 166                           |                   |               |              |             |              |               |                       |           |
| 167                           |                   |               |              |             |              |               |                       |           |
| 168                           |                   |               |              |             |              |               |                       |           |
| 169                           |                   |               |              |             |              |               |                       |           |
| 170                           |                   |               |              |             |              |               |                       |           |
| 121                           |                   |               |              |             |              |               |                       |           |
| 172                           |                   |               |              |             |              |               |                       |           |
| 173                           |                   |               |              |             |              |               |                       |           |
| 174                           |                   |               |              |             |              |               |                       |           |
| 175                           |                   |               |              |             |              |               |                       |           |
| 176                           |                   |               |              |             |              |               |                       |           |
| 177                           |                   |               |              |             |              |               |                       |           |
| 178                           |                   |               |              |             |              |               |                       |           |
| 179                           |                   |               |              |             |              |               |                       |           |
| 180                           |                   |               |              |             |              |               |                       |           |
| 181                           |                   |               |              |             |              |               |                       |           |
| 185                           |                   |               |              |             |              |               |                       |           |
| 183                           |                   |               |              |             |              |               |                       |           |
| 184                           |                   |               |              |             |              |               |                       |           |
| 185                           |                   |               |              |             |              |               |                       |           |

Page \_\_\_\_\_ of \_\_\_\_\_







| PENETRATION ID | GRID NUMBER | INITIAL (PPM) | 10 DAY (PPM) | 30 DAY (PPM) |
|----------------|-------------|---------------|--------------|--------------|
| SIMW0019       | 4           | 5             |              |              |
| SIMW0001       | 6           | G.            |              |              |
| SIMW0002       | 6           | 7             |              |              |
| SIMW0808       | 7           | 4             |              |              |
| 8IMW0020       | 8           | 9             |              |              |
| SIMW1808       | 8           | 3             |              |              |
| SIMW0004       | 9           | 3             |              |              |
| SIMW0006       | 10          | 4             |              |              |
| SIMW1015       | 13          | 2             | -            |              |
| SIMW709D       | 14          | 6             |              |              |
| SIMW709S       | 14          | 5             |              |              |
| SIMH0017       | 16          | 7             |              |              |
| SIH1363B       | 17          | 4             |              |              |
| SIMW0708       | 17          | 8             |              |              |
| SIMW2006       | 18          | 3             |              |              |
| SIMH022S       | 19          | 7             |              |              |
| SIMW2007       | 20          | 4             |              |              |
| SIMW2008       | 20          | 20            |              |              |
| SIH1361B       | 21          | 15            |              |              |
| SIMSVE02       | 21          | 8             | 12           |              |
| SIMLR00B       | 21          | 3             |              |              |
| SIMH016N       | 22          | 7             | ,,,          |              |
| SIH1359B       | 24          | 7             |              | -            |
| SIMI0905       | 24          | 7             |              |              |
| SIMI0904       | 25          | 6             |              |              |
| SIMH022N       | 27          | 9             |              |              |
| SIM10903       | 27          | 3             |              |              |
| SIM10901       | 29          | 3             |              |              |
| SIMI0902       | 30          | 7             |              |              |
| SIMW116R       | 31          | 2             |              |              |
| SIMW1565       | 31          | 8             |              |              |

| PENETRATION ID | GRID NUMBER | INITIAL (PPM) | 10 DAY (PPM) | 30 DAY (PPM) |
|----------------|-------------|---------------|--------------|--------------|
| SIMW2084       | 31          | 8.            |              |              |
| SIM1570D       | 32          | 4             |              |              |
| SIM1570S       | 32          | 9             |              |              |
| SIMW2045       | 33          | 3             |              |              |
| SIMW703D       | 33          | Ζ             |              |              |
| SIMW703S       | 33          | 9             |              |              |
| SIMW1785       | 35          | ş             |              |              |
| SIMW2083       | 35          | 6             |              |              |
| SIMW1233       | 36          | 12            |              |              |
| SIMW1790       | 36          | 15            |              |              |
| SIMW1571       | 37          | 8             |              |              |
| SIH1362B       | 38          | 3             |              |              |
| SIM1792D       | 38          | 2             |              |              |
| SIM1792S       | 38          | 2             |              |              |
| SIMW1232       | 39          | 40            |              |              |
| SIMW707D       | 39          | 7             |              | -            |
| SIMW1791       | 40          | 3             |              |              |
| SIM2042D       | 41          | 9             |              |              |
| SIM2042S       | 41          | 7             |              |              |
| SIMW805D       | 41          | 8             |              |              |
| SIMW805S       | 41          | 2             |              |              |
| SIMW1231       | 42          | n             |              |              |
| SIMW2041       | 43          | 6             |              |              |
| SIMW09RD       | 44          | 7             |              |              |
| SIMW1012       | 44          | 2.            |              |              |
| SIMW1228       | 44          | 5             |              |              |
| SIMWO9RS       | 44          | 8             |              |              |
| SIMW010R       | 45          | 4             |              |              |
| SIMW007R       | 46          | y             |              |              |
| SIMW1227       | 47          | 9             |              |              |
| SIMW1234       | 47          | 6             |              |              |

| PENETRATION ID | GRID NUMBER | INITIAL (PPM) | 10 DAY (PPM) | 30 DAY (PPM) |
|----------------|-------------|---------------|--------------|--------------|
| SIM1572D       | 48          | 3             |              |              |
| SIM1572S       | 48          | 7             |              |              |
| SIMW810D       | 51          | 8             |              |              |
| SIMW810S       | 51          | 9             |              |              |
| SIMW0018       | 52          | 7             |              |              |
| SIMW0812       | 52          | 7             |              |              |
| SIMW0811       | 53          | 6             |              |              |
| SIMLROOD       | 55          | 4             |              |              |
| SIMW0003       | 57          | 5             |              |              |
| SIMW0813       | 57          | 8             |              |              |
| SIMW2009       | 57          | 2             |              |              |
| SIMW1014       | 58          | 9             |              |              |
| SIMW1107       | 59          | y             |              | To an        |
| SIH1405B       | 60          | 6             |              |              |
| SIH1406B       | 60          | 6             |              |              |
| SIMW1806       | 60          | 3             |              |              |
| SIMW1013       | 61          | 2             |              |              |
| SIMW1226       | 62          | 8             |              |              |
| SIMW1011       | 63          | 7             |              |              |
| SIM1673S       | 64          | 4             |              |              |
| SIM1793D       | 64          | 6             |              |              |
| SIM1793S       | 64          | 2             |              |              |
| SIMW012R       | 64          | 700           | 60           | 4            |
| SIH1406A       | 65          | 12            |              |              |
| SIM2044D       | 65          | 11            |              |              |
| SIM2044S       | 65          | 12            |              |              |
| SIMW1229       | 65          | 8             |              |              |
| SIM1788D       | 66          | 5             |              |              |
| SIM1788S       | 66          | 6             |              |              |
| SIH1362A       | 67          | 6             |              |              |
| SIH1404A       | 67          | 2             |              |              |

|                | W DEST      |               | 9 <u></u>    |              |
|----------------|-------------|---------------|--------------|--------------|
| PENETRATION ID | GRID NUMBER | INITIAL (PPM) | 10 DAY (PPM) | 30 DAY (PPM) |
| SIMW1008       | 67          | Q             | <u> </u>     |              |
| SIMW1787       | 67          | 8             | ****         |              |
| SIM1789D       | 68          | 5             |              |              |
| SIM1789S       | 68          | 9             |              |              |
| SIM2054D       | 68          | /             |              |              |
| SIM2054S       | 68          | 4             |              |              |
| SIMW1005       | 68          | Z             |              |              |
| SIMW1225       | 68          | 9             |              |              |
| SIM2043D       | 69          | 5             |              |              |
| SIM2043S       | 69          | 3             |              |              |
| S!MW1786       | 69          | 8             |              | 99-3-311     |
| SIM1573D       | 70          | 5             |              |              |
| SIM1573S       | 70          | 6             |              |              |
| SIM1783D       | 70          | 6             |              |              |
| SIM1783S       | 70          | 3             |              |              |
| SIM2064D       | 70          | 2             |              |              |
| SIM2064S       | 70          | 5             |              |              |
| SIMW2086       | 70          | 6             |              |              |
| SIM1805D       | 71          | 6             |              |              |
| SIM1805S       | 71          | 10            |              |              |
| SIMW1224       | 71          | 5             |              |              |
| SIMW1569       | 71          | 4             |              |              |
| SIH1359A       | 72          | 5             |              |              |
| SIM1927S       | 72          | 14            |              |              |
| SIMW1784       | 72          | 6             |              |              |
| SIMW1779       | 73          | 5             |              |              |
| SIM1568D       | 74          | 8             |              |              |
| SIM1568S       | 74          | 7             |              |              |
| SIM2052D       | 74          | 7             |              |              |
| SIM2052S       | 74          | 4             |              |              |
| SIMW2065       | 74          | 5-            |              |              |

| PENETRATION ID | GRID NUMBER | INITIAL (PPM) | 10 DAY (PPM)   | 30 DAY (PPM) |
|----------------|-------------|---------------|----------------|--------------|
| SIM1564D       | 75          | /3            | All the second |              |
| SIM1564S       | 75          | 10            | 300 1101       |              |
| SIMW0045       | 78          | Ý             |                |              |
| SIMW1563       | 78          | 5             |                |              |
| SIM1562D       | 81          | 8             |                |              |
| SIM1562S       | 81          | フ             |                |              |
| SIMW0047       | 81          | 4             |                |              |
| SIM2061D       | 82          | 0621          | 58             | 19           |
| SIM2061S       | 82          | 3             |                |              |
| SIM1778D       | 83          | 5             |                |              |
| SIM1778S       | 83          | 2             |                |              |
| SIMW1802       | 83          |               |                |              |
| SIMW822D       | 83          | 9             |                |              |
| SIMW822S       | 83          | 16            |                |              |
| SIMW1220       | 84          | 4             |                |              |
| SIMW2053       | 84          | 5             |                |              |
| SIM1780D       | 85          | 13            |                |              |
| SIM1780S       | 85          | 9             |                |              |
| SIMW1804       | 85          | 9             |                |              |
| SIH1401A       | 86          | 5             |                |              |
| SIMW1104       | 86          | 4211          | 90             | 7            |
| SIMW2047       | 86          | 12            |                |              |
| SIMHL004       | 86          | 8             |                |              |
| SIH1403A       | 88          | 9             |                |              |
| SIM2081D       | 88          | 8             |                |              |
| SIM2081S       | 88          | 7             |                |              |
| SIMW1105       | 88          | 6             |                |              |
| SIMW1781       | 88          | 4             |                |              |
| SIMHL005       | 88          | 3             |                |              |
| SIM1782D       | 89          | 3             |                |              |
| SIM1782S       | 89          | δ             |                |              |

| PENETRATION ID | GRID NUMBER | INITIAL (PPM) | 10 DAY (PPM) | 30 DAY (PPM) |
|----------------|-------------|---------------|--------------|--------------|
| SIM1928S       | 89          | 9             | her schools  |              |
| SIMW2056       | 89          | 17            |              |              |
| SIMLROAR       | 89          | 10            |              |              |
| SIMW1356       | 90          | 11            |              |              |
| SIMLR00A       | 90          | 1700          |              |              |
| SIM1929S       | 91          | 15            | 28           | 9            |
| SIMW1797       | 91          | 8             |              |              |
| SIMW1801       | 91          | 3             |              |              |
| SIM1799D       | 92          | 6             | 0            |              |
| SIM1799S       | 92          | 4             |              |              |
| SIMW1222       | 93          | 8             |              |              |
| SIMW2046       | 93          | 9             |              |              |
| SIMW2049       | 93          | 5             |              |              |
| SIMW1798       | 94          | 7             |              |              |
| SIMW1010       | 95          | 7             |              |              |
| SIMW1355       | 95          | 9             |              |              |
| SIMW2048       | 95          | 6             |              |              |
| SIM1937S       | 96          | 8.            |              |              |
| SIH1403B       | 97          | 6             |              |              |
| SIH1404B       | 97          | 6             |              |              |
| SIMW0814       | 98          | 4             |              |              |
| SIMLR602       | 99          | 2             |              |              |
| SIMLR603       | 99          | 9             |              |              |
| SIMW0816       | 99          | 5             |              |              |
| SIMW0817       | 100         | 3             |              |              |
| SIMW0818       | 101         | 2             |              |              |
| SIMW0819       | 103         | 3000          | 24           | 13           |
| SIMW1102       | 103         | 6             |              |              |
| SIMW1796       | 103         | 14            |              |              |
| SIMW2055       | 104         | 18            |              |              |
| SIH1235A       | 105         | 10            |              |              |

| PENETRATION ID | GRID NUMBER | INITIAL (PPM) | 10 DAY (PPM) | 30 DAY (PPM) |
|----------------|-------------|---------------|--------------|--------------|
| SIM1933S       | 105         | /2            |              |              |
| SIM1938S       | 105         | 18            |              |              |
| SIMW1354       | 105         | 16            |              |              |
| SIMW1794       | 105         | 3             |              |              |
| SIH2001A       | 106         | 4             |              | - 1-         |
| SIM1932S       | 106         | 3             |              |              |
| SIMW1007       | 106         | 5-            |              |              |
| SIM1931\$      | 107         | 8             |              |              |
| SIMW1807       | 107         | 9             |              |              |
| SIMW1353       | 108         | 6             |              |              |
| SIMW1795       | 108         | 7             |              |              |
| SIH2001B       | 109         | 7             |              |              |
| SIM1930S       | 109         | 2056          | 12           | [1           |
| SIMW1803       | 109         | 4             |              |              |
| SIM1777D       | 110         | 7             |              |              |
| SIM1777S       | 110         | 8             |              |              |
| SIM1924S       | 110         | þ             |              |              |
| SIMW1101       | 110         | 3             |              |              |
| SIMW1219       | 110         | 9             |              |              |
| SIMW1776       | 110         | 576           | 8            | 15           |
| SIMHL002       | 110         | 8             |              |              |
| SIMHL003       | 110         | 7             |              |              |
| SIMW2057       | 111         | 9             |              |              |
| SIMHL001       | 112         | 10            |              |              |
| SIMW0048       | 113         | 12            |              |              |
| SIMW1560       | 113         | 15            |              | 4            |
| SIMW2062       | 113         | 6             |              |              |
| SIMW1816       | 114         | 4             |              |              |
| SIMW2058       | 114         | 5             | C            |              |
| SIMW1561       | 115         | 3             |              |              |
| SIMW2060       | 116         | 9             |              |              |

| PENETRATION ID | GRID NUMBER | INITIAL (PPM) | 10 DAY (PPM) | 30 DAY (PPM) |
|----------------|-------------|---------------|--------------|--------------|
| SIMW0031       | 117         | 9             |              |              |
| SIMW2001       | 117         | 4             |              |              |
| SIMW2000       | 118         | 8             | a a          |              |
| SIH1401B       | 119         | 9             |              |              |
| SIMW2099       | 119         | 9             |              |              |
| SIMW0820       | 120         | 3800          | 15           | 10           |
| SIMW2059       | 120         | 14            |              |              |
| SIMW2098       | 122         | 6             |              |              |
| SIMLR31A       | 123         | 3             |              |              |
| SIMW2076       | 126         | 7             |              |              |
| SIMW2096       | 127         | 12            |              |              |
| SIMW2097       | 127         | 8             |              |              |
| SIMW2077       | 128         | 3             |              |              |
| SIMW2095       | 129         | 5             |              |              |
| SIMW2074       | 130         | 8             |              |              |
| SIMW2078       | 131         | 9             |              |              |
| SIMW2073       | 132         | 8             |              |              |
| SIMW2094       | 132         | フ             |              |              |
| SIMW2079       | 133         | 8             |              |              |
| SIMW2072       | 134         | 5             |              | 4.0          |
| SIMW2093       | 134         | 3             |              |              |
| SIMW2080       | 135         | 9             |              |              |
| SIMW2002       | 136         | 2             |              |              |
| SIMW2071       | 136         | 6             | Y            |              |
| SIMW2087       | 136         | 4 2           |              |              |
| SIMW2088       | 137         | 2             |              |              |
| SIMW2003       | 138         | 5             |              |              |
| SIMW2004       | 138         | 2500          | 56           | 7            |
| SIMW1809       | 139         | 20            |              |              |
| SIMW1815       | 139         | 2200          | 74           | 5            |
| SIMW1814       | 141         | 18            |              |              |

| PENETRATION ID | GRID NUMBER | INITIAL (PPM) | 10 DAY (PPM) | 30 DAY (PPM) |  |
|----------------|-------------|---------------|--------------|--------------|--|
| SIMW2005       | 141         | 13            | 917          |              |  |
| SIMW1817       | 142         | 8             |              |              |  |
| SIMW1811       | 143         | 2000          | 102          | 16           |  |
| SIMW1813       | 143         | 2             | 111          |              |  |
| SIMW2082       | 143         | 4             |              |              |  |
| SIMW1812       | 144         | J             |              |              |  |
| SIMW1821       | 144         | 2             |              |              |  |
| SIMW2070       | 144         | 7             |              |              |  |
| SIMSVE03       | 144         | 6             |              | 3            |  |
| SIH02004       | 145         | 8             |              |              |  |
| SIM1936S       | 145         | 9             |              |              |  |
| SIH2115F       | 146         | 7             |              |              |  |
| S(H02106       | 146         | 3             |              |              |  |
| SIMW1820       | 149         | 2             |              |              |  |
| SIMW2089       | 149         | 9             |              |              |  |
| SIMW1B10       | 151         | 6             |              |              |  |
| SIMW1819       | 151         | 7             |              |              |  |
| SIMW1818       | 153         | 8             |              |              |  |
| SIMW2090       | 153         | 3             |              |              |  |
| SIMW2091       | 155         | 9             |              |              |  |
| SIMW2092       | 156         | 15            |              |              |  |
| SIH2115E       | 157         | 6             |              |              |  |
| SIH02107       | 157         | 18            |              |              |  |
| SIH02108       | 157         | 12            |              |              |  |
| SIH2115D       | 158         | 30            |              |              |  |
| SIH02109       | 158         | 14            |              |              |  |
| SIH02110       | 158         | 10            |              |              |  |
| SIH2115C       | 159         | 8             |              |              |  |
| SIH02111       | 159         | 11            |              |              |  |
| SIH02112       | 159         | 16            |              |              |  |
| SIH2115B       | 161         | 10            |              |              |  |

| PENETRATION ID | GRID NUMBER | INITIAL (PPM) | 10 DAY (PPM) | 30 DAY (PPM)       |
|----------------|-------------|---------------|--------------|--------------------|
| SIH2115A       | 168         | 15            |              | - V-8 (V-8/V-9/V-1 |
| SIH02113       | 168         | 12            |              |                    |
| SIH02114       | 168         | 16            |              |                    |
| SIMLR22A       | 168         | 14            |              |                    |
| SIMLR22B       | 168         | 21            |              |                    |
| SIMHL010       | 172         | 36            |              |                    |
| SIMHL009       | 175         | 14            |              |                    |
| SIMHL008       | 177         | 11            |              |                    |
| SIMHL007       | 179         | 28            |              |                    |
| SIMHL006       | 182         | 19            |              |                    |
| SIM2101S       | 184         | 31            |              |                    |
| SIM2100S       | 185         | 16            |              |                    |
| SIMLR22C       | 185         | 25            |              |                    |

# Waste Management Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs

Quarter. Yen BTR 2021

Initial Monitoring Performed By: Shawn HUShay

Follow-up Monitoring Performed By: Michael orline, Buckey Ramines

Landfill Name: Simi Valley

|                                 | ste                                  |             |     | -       |          | 102           |        |        |             |           |        |     |   |
|---------------------------------|--------------------------------------|-------------|-----|---------|----------|---------------|--------|--------|-------------|-----------|--------|-----|---|
|                                 | Comments                             | שייון וויים |     | GW 1730 | G1907 40 | Unmanced pile | 918 mg | 181 20 | FIR 1815    | Gran rock | Sumo A |     |   |
| 후                               | Exceed. >500                         |             |     |         |          |               |        |        |             |           |        |     |   |
| 1# 30-Day Follow-Up             | No<br>Exceed.<br><\$00               | 7           | 18  | 11      | 19       | 10            | 13     | 16     | 2           | 2         | 6      | 7   |   |
| 1#30                            | Monitoring<br>Date                   | 11-10-21    | -   |         |          |               |        |        |             |           |        | S   |   |
| ₽D                              | Exceed.<br>>500                      |             |     |         |          |               |        |        |             |           |        |     |   |
| 1* 10-Day Follow-Up             | Exceed.                              | 9           | 20  | 12      | 28       | 15            | 52     | 201    | 74          | 26        | 38     | 90  |   |
| 1* 10.                          | Monitoring                           | h-12-01     |     |         |          |               |        |        |             | _         |        | >   |   |
| Corrective Action within 5 Days | Action taken to repair<br>Exceedance |             |     |         |          |               |        |        |             |           |        |     |   |
| Correct                         | Repair<br>Date                       |             |     |         |          |               |        |        |             |           |        |     |   |
| ž                               | Field<br>Reading                     | 1124        | 576 | 2056    | 1500     | 5800          | 3000   | 202    | 22000       | 2520      | 1700   | ٥٥٥ |   |
| Initial Monitoring Event        | Monitoring<br>Date                   | 12-11-01    |     |         |          |               |        |        |             |           | ,      | ≯   |   |
| Initial R                       | Fing **                              | 1/6         | 727 | 77.5    | × × ×    | 735           | 22     | 22.2   | <b>V3</b> < | 7.3%      | 74     | तु  |   |
|                                 | Grid                                 | 200         | MO  |         |          | 32            | A      | 43     | 139         | 158       | 2      | 53  | 1 |

# Attachment B

Integrated Surface Emission Monitoring Event Records

| Personnel: S. Hershey   | M. Partida        | J-Spicer                   |
|-------------------------|-------------------|----------------------------|
| Diperation On Parties   | J. wessan         | Cal. Gas Exp. Date: 2-19-2 |
| Date: 10-12-11 Instrume | ent Used: DSG 1-7 | Grid Spacing: 25"          |
| Temperature: 70° Precin | Linwind RG L      | Downwind BC. 2             |

| GRID | STAFF    | START | STOP  | тос | ROTO-MTR, | WII          | ID INFOR      | MATION                | DEMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------|----------|-------|-------|-----|-----------|--------------|---------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ID   | INITIALS | TIME  | TIME  | PPM | CC/MIN    | AVG<br>SPEED | MAX.<br>SPEED | DIRECTION<br>16 POINT | REMARKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1    | UP       | 0845  | 09/0  | 4   | 333       | Y            | 5             | 7                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2    | 612      | 0845  | 0910  | 2   | 1         | 4            | 5             | 7                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| _3   | mo       | 0845  | 0910  | 5   |           | 4            | *             | 7                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4    | Sp       | 0845  | 0910  | 3   |           | y            | 5             | 7                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5    | JW       | 0845  | 0910  | 3   |           | 4            | 5             | 7                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6    | 12       | 0845  | 09/0  | 2   |           | 4            | 5             | 7                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7    | OP       | 0910  | 0935  | Y   |           | ý            | 8             | 19                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8    | GR       | 1910  | 11935 | 5   |           | Ý            | 8             | 3                     | V-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9    | MP       | 0910  | 0835  | 2   |           | У            | 3             | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10   | Sp       | 0410  | 1435  |     |           | 4            | 8             | 1                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1/   | TW       | 0910  | 0935  | 3   |           | 4            | 8             | 7                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12   | Q2       | 1910  | 11935 | 7   |           | 9            | 8             | 7                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13   | DP       | 8935  | 1000  | 5   |           | 9            | Ž             | 7                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 14   | GIR      | 0935  | 1000  | 3   |           | 4            | Ŋ             | Ý                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15   | MP       | 0935  | 1000  | 3   |           | 4            | 1             | ń                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16   | Sp       | 0935  | 1000  | ۷   |           | Ÿ            | )             | j                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 17   | Tw       | 0935  | 1000  | 1   |           | 4            | 1             | 7                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 18   | J5       | 0935  | 1000  | 4   |           | Ÿ            | 7             | Ÿ                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19   | SH       | 1000  | 1125  | 5   |           | Y            | la            | 7                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20   | OP       | 1000  | 1025  | 2   |           | 9            | 7,            | 7                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 21   | GIR      | 1000  | 1025  | 5   |           | 9            | 6             | 7                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 22   | MP       | 1000  | 1075  | 3   |           | 4            | 6             | 1                     | 10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 23   | Sp       | 1000  | WZ5   | 3   |           | 4            | 6             | ń                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.4  | JU       | 1000  | 1025  | ጌ   |           | 4            | ь             | 7                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15   | JS       | low   |       | 5   |           | ÿ            | 12            | 7                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 26   | SH       | 1025  | 1050  | 3   |           | Ý            | 6             | K                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27   | OP       | 1DTK  | 1050  | 2   |           | Y            | Ь             | 8                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 28   | GR       | 1025  | 1000  | 4   |           | 4            | 6             | <b>X</b> ,            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 29   | MP       | 1025  | 1050  | t   |           | ÿ            | 6             | 8                     | To the second se |
| 30   | SP       |       | 1050  | 3   | N.        | u            | Ĭ             | Ý                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Attach Calibration Sheet
Attach site map showing grid ID

Page \_\_\_\_\_\_ of \_\_\_\_\_

| Personnel: S. Hershey        | M. partide                   | I-spicer                   |
|------------------------------|------------------------------|----------------------------|
| Graphus                      | J. Lusson                    | Cal. Gas Exp. Date: 179-23 |
| Date: <u>/レー1マーマ</u> Instrum | nent Used: <del>ISSI-7</del> | Grid Spacing: 25           |
| Temperature: 70 Prec         | ip: - Upwind BG: /           | Downwind BG: 2             |

| GRID | STAFF    | START | STOP | тос | ROTO-MTR, | WIN          | ID INFOR      | MATION                | REMARKS  |
|------|----------|-------|------|-----|-----------|--------------|---------------|-----------------------|----------|
| ID   | INITIALS | TIME  | TIME | PPM | CC/MIN    | AVG<br>SPEED | MAX.<br>SPEED | DIRECTION<br>16 POINT | REPIARRS |
| 31   | JW       | 1025  | 1050 | 4   | 333       | 4            | 6             | 8.                    |          |
| 52   | Je       | 1075  | 1050 | 2   |           | У.           | 6             | 8                     |          |
| 33   | SH       | 1200  | 1225 | 3   |           | 7            | 9             | 8                     |          |
| 34   | OP       | 1200  | 1225 | 2   |           | 1 4          | Q             | 8                     |          |
| 35   | InR      | 1200  | 1225 | 2   |           | 4            | 9             | 8                     |          |
| 36   | MP       | 1200  | 1225 | 5   |           | 4            | y             | 8                     |          |
| 37   | SP       | 1200  | 1225 | 5   |           | 9            | 9             | 8                     |          |
| 38   | JW       | 1200  | 1225 | 1   |           | 9            | 9             | ð                     |          |
| 34   | J5       | 1700  | 1225 | z   |           | y'           | q             | 8                     |          |
| 40   | SH       | 1225  | 1250 | Y   |           | 9            | ρ̈́           | 9                     |          |
| 41   | DP       | 1225  | 1750 | 6   |           | <u> </u>     | 10            | 9                     |          |
| 42   | GAR      | 1225  | 1250 | 3   |           | 9            | h             | 7                     |          |
| 43   | Mp       | 1225  | 120  | 2   |           | Ч.           | 19            | 9 1                   |          |
| 44   | Sp       | 1225  | 1250 | 5   |           | 4            | 10            | 7                     |          |
| 45   | JW       | 1225  | 1200 | Ь   |           | 9            | lo            | 9                     |          |
| 46   | JS       | 1225  | 1250 | 7   |           | 4            | 10            | 9                     |          |
| 47   | SH       | 1250  | 1315 | Z   |           | . 4          | 10            | 9                     |          |
| 48   | OP       | 1250  | 1315 | Y   |           | 9            | 10            | G                     |          |
| 49   | GIR      | 1250  | 1315 | 4   |           | 9            | 19            | 9 ]                   |          |
| 23   | Mp       | 1250  | 1315 | ١   |           | 9            | 10            | 9                     |          |
| 51   | SP       | 1250  | 1315 | 2   |           | 7            | D             | 9                     |          |
| 52   | Tw       | 1250  | 1315 | 6   |           | 4            | 10            | 9                     |          |
| 53   | JS       | 120   | 1315 | 3   |           |              | 10            | 9                     |          |
| 59   | SH       | 1315  | 1340 | 7   |           | 9            | 10            | Y                     |          |
| 55   | Op       | 1315  | 1340 | 4   |           | 4            | 12            | 9                     |          |
| 56   | COR      | 1315  | 1340 | 2   |           | 9            | 15            | 9                     |          |
| 57   | Mo       | 1315  | 1540 | 5   |           | 9            | 10            | q                     |          |
| 58   | 50       | 1815  | 1340 | 3   |           | 9            | 10            | 9                     |          |
| 59   | JW       | 1315  | 1340 | 6   |           | 4            | Ю             | 9                     |          |
| 60   | JS       | 1315  | 1340 | 6   |           | वा           | 10            | 9                     |          |

Attach Calibration Sheet

Attach site map showing grid ID

Page \_ **3** of <u>3</u>

| Person | inel: <u>5.+</u>                                      | tersing | 4         |             | M. partida |              |               | J-Sp:wer<br>Cal. Gas Exp. Date: 1-19: 23 |                 |  |  |
|--------|-------------------------------------------------------|---------|-----------|-------------|------------|--------------|---------------|------------------------------------------|-----------------|--|--|
|        | Con                                                   | Cablus  | ۲,        | <u> -</u> 옷 | poper      |              |               | Cal Gae Eve                              | 2 Data: 1 19 P3 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
| Date   | e: <u>70 - 72</u>                                     | - 4     | Instrumer | nt Used:    | 155 1-7    |              | Grid S        | pacing: _{                               | 25              |  |  |
| Tem    | Temperature: 10 Precip: 0 Upwind BG: 1 Downwind BG: 2 |         |           |             |            |              |               |                                          |                 |  |  |
| GRID   | STAFF                                                 | START   | STOP      | тос         | ROTO-MTR,  | WIN          | ID INFO       | RMATION                                  | DEMARKS         |  |  |
| [D     | INITIALS                                              | TIME    | TIME      | PPM         | CC/MIN     | AVG<br>SPEED | MAX.<br>SPEED | DIRECTION<br>16 POINT                    | REMARKS         |  |  |
| 61     | SH                                                    | 1346    | 1405      | 5           | 333        | 4            | 6             | 10                                       |                 |  |  |
| 62     | Op                                                    | 1340    | 1405      | Š           | 1          | 9            | 6             | lo                                       |                 |  |  |
| 63     | GIR<br>MP<br>SP<br>JW                                 | 1340    | 1405      | 3           |            | 4            | 6             | [2                                       |                 |  |  |
| 64     | MP                                                    | 1340    | 1405      | 4           |            | 4            | b             | 10                                       |                 |  |  |
| 65     | Sp                                                    | 1340    | 1405      | 2           |            | Y            | b             | to.                                      |                 |  |  |
| 66     | JW                                                    | 1340    | 1405      | 5           |            | 4            | 6             | 12                                       |                 |  |  |
| 67     | 03                                                    | 1340    | 1465      | 8           | V          | 9            | 6             | 10                                       |                 |  |  |
|        |                                                       |         |           |             |            | •            |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            | =            |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |
|        |                                                       |         |           |             |            |              |               |                                          |                 |  |  |

Attach Calibration Sheet Attach site map showing grid ID

Page <u>3</u> of <u>3</u>

| Personnel: Mi o Rus    | J. Spicer<br>M. Partida | Gilberte Ribles            |
|------------------------|-------------------------|----------------------------|
| S. Pope                | J. Wesson               | Cal. Gas Exp. Date: 6/4/22 |
| Date: 10-13-21 Instrum | ent Used: <u>TSS1-7</u> | _ Grid Spacing:ZSFT        |
| Temperature: 52° Preci | p:O Upwind BG:          | 3 Downwind BG: 4           |

| GRID | STAFF      | START | STOP | тос | ROTO-MTR, | WIN   | ID INFOR      | MATION                | REMARKS |
|------|------------|-------|------|-----|-----------|-------|---------------|-----------------------|---------|
| 1D   | INITIALS   | TIME  | TIME | PPM | CC/MIN    | AVG ' | MAX.<br>SPEED | DIRECTION<br>16 POINT | REMARKS |
| 68   | MO         | 0730  | 0745 | 10  | 333       | 4     | 4.            | _/}                   |         |
| 69   | OP         | 6730  | 0795 | 5   |           | 1 9   | b             | 12                    |         |
| 70   | SP         | 0730  | 0755 | 5   |           | 1 4   | b             | 17                    |         |
| 71   | JS         | 0730  | 0755 | 19  |           | Y     |               | 12                    |         |
| 72   | mp         | 0730  | 0755 | 11  |           | Y     | 1             | 17                    |         |
| 173  | JW         | 0730  | 0755 | 6   |           | Ψ     | J_L           | IL.                   |         |
| 74   | GR         | 0730  | 0755 | 5   |           | 4     | 6             | 12                    |         |
| 75   | Mo         | 0755  | 0820 | 5   |           | 1 4   | 6             | 从                     |         |
| 76   | OP         | 0755  | 0820 | 6   |           | 4     | 6             | 1/2                   |         |
| 77   | 50         | 0755  | 0820 | 9   |           | 9     | b             | 14                    |         |
| 78   | JS         | 0755  | 0820 | 8   |           | 4     | 6             | 12                    |         |
| 79   | mp         | 0755  | 0870 | 4   |           | 1     | b             | 12                    |         |
| 80   | TW         | 0755  | 0820 | 6   |           | 9     | L L           | 八                     |         |
| 81   | GR         | 0755  | 0820 | 5   |           | 4     | b             | 12                    | L       |
| 82   | Mo         | 0820  | 0845 | 8   |           | 4     | lo            | 1),                   |         |
| 83   | 06         | 0820  | 0845 | _8  |           | 4     | Б             | 12                    |         |
| 84   | SP         | 0520  | 0845 | 10  |           | y     | 6             | 12                    |         |
| 85   | JS         | 0820  | 0845 | 9   |           | Ų     | 6             | 1                     |         |
| 86   | mp         | 0826  | 0845 | 12  |           | Ļ     | 6             | L                     |         |
| 87   | JW         | 0820  | 0845 | 14  |           | 1 4   | 6             | 12                    |         |
| 88   | 6R         | 0820  | 0845 | 14  |           | ľ     | 6             | 12                    |         |
| 89   | Mo         | 0845  | 0910 | 10  |           | 4     | 8             | I)                    |         |
| 90   | OP         | 0845  | 0910 | 6   |           | 9     | 8             | 1                     |         |
| 91   | SP         | 0845  | 0910 | 5   |           | Ÿ     | 8             | 1)_                   |         |
| 92   | JS         | 0845  | 0910 | 10  |           | Ý     | Y             | 12                    |         |
| 93   | mp         | 0845  | 0910 | 12  |           | 4     | 8             | 12                    |         |
| 94   | JW         | 0845  | 0910 | 8   |           | y     | 8             | 12                    |         |
| 95   | GR         | 0845  | 0910 | 8   |           | Ÿ     | Ý             | 12                    | T       |
| 96   | Mo         | 0910  | 0935 | 8   |           | ģ     | 7             | 11.                   |         |
| 97   | OP         | 0910  | 0935 | 15  |           | ч     | 7             | 12                    |         |
| -    | h Calibrat |       |      |     |           |       |               | -                     |         |

Attach Calibration Sheet

Attach site map showing grid ID

| Personnel: M. ORVE    |              | spieer     |        | G. RiBles           |        |
|-----------------------|--------------|------------|--------|---------------------|--------|
| S. PoA'.              |              | WUSSON     |        | Cal. Gas Exp. Date: | 6-4-22 |
| Date: 10-13-21 Instru | ment Used: _ | ISS, 1-7   | Grid s | Spacing: 25 FT      |        |
| Temperature: _60° Pre | cin: O       | Unwind BG: | 2      | Downwind BG:        | u      |

| GRID | STAFF    | START | STOP | TOC | ROTO-MTR, | WII          | ID INFOR      | MATION                | DEMARKS |
|------|----------|-------|------|-----|-----------|--------------|---------------|-----------------------|---------|
| ID   | INITIALS | TIME  | TIME | PPM | CC/MIN    | AVG<br>SPEED | MAX.<br>SPEED | DIRECTION<br>16 POINT | REMARKS |
| 98   | 50       | 0910  | 0935 | 7   | 333       | 4            | 8             | 12                    |         |
| 99   | J5       | 0910  | 0935 | 6   |           | ÿ            | 8             | W.                    |         |
| 100  | mp       | 0910  | 0935 | 10  |           | 4            | Š             | 1)                    |         |
| 101  | JW       | 0910  | 0935 | 15  |           | ų            | Ý             | 72                    |         |
| loz  | GR       | 0910  | 0935 | 12  |           | y'           | V             | 10                    |         |
| 1103 | mo       | 0935  | 1000 | 10  |           | 9            | 8             | 12                    |         |
| 104  | OP       | 0935  | 1000 | 10  |           | 4            | 3             | 12                    |         |
| 105  | SP       | 0935  | 1000 | 9   |           | Ý            | 8             | TI I                  |         |
| 106  | JS       | 0935  | lone | 8   |           | Ý            | 8             | 72                    | 7110    |
| 107  | mp       | 0935  | 1000 | 7   |           | Ý            | 8             | 12                    |         |
| 108  | JW       | 0935  | 1000 | 9   |           |              | 8             | 72                    |         |
| 109  | GR       | 0935  | 1000 | 6   |           | Ч            | 8             | 12                    |         |
| 110  | mo       | 1000  | 1025 | 6   |           | 9            | 8             | 12                    |         |
| 111  | OP       | 1000  | 1025 | 9   |           | 4            | 8             | JI.                   |         |
| 112  | Sρ       | 1000  | 1025 | 6   |           | 4            | 8             | 1L                    | _       |
| 113  | JS       | 1000  | 1025 | 14  |           | Ý            | 8             | 1人                    |         |
| 114  | mρ       | 1000  | 1025 | 14  |           | 4            | 8             | 1                     | 77      |
| 115  | JW       | 1000  | 1025 | 5   |           | 4            | 8             | 14                    |         |
| 116  | GR       | 1000  | 1025 | 10  |           | y'           | 8             | 12                    |         |
| 117  | mo       | 1025  | 1050 | B   |           | Ÿ            | 8             | 12                    |         |
| 118  | OP       | 1025  | 1050 | 6   |           | Ý            | 8             | 12                    |         |
| 119  | SP       | 1025  | 1050 | 6   |           | Ÿ            | 8             | 2                     |         |
| 120  | J.S.     | 1025  | 1050 | 8   |           | Ÿ            | 8             | 14                    |         |
| 121  | mρ       | 1025  | 1050 | 7   |           | У            | 3             | 12                    |         |
| 12.2 | The      | 107.5 | 1050 | 7   |           | 4            | Š             | 14                    |         |
| 123  | GR       | 1025  | 1050 | 6   |           | V            | 8             | 12                    |         |
| 124  | ma       | 1050  | 1115 | 5   |           | ď            | 8             | 龙                     |         |
| 125  | OP       | 1050  | 1115 | 4   |           | 4            |               | 12                    |         |
| 126  | SP       | 1050  | 1115 | 6   |           | 4            | 8             | 12                    |         |
| 127  | JS       | 1050  | 1115 | 8   |           | - tr         | 8             | 12                    |         |

Attach Calibration Sheet

Attach site map showing grid ID

Page <u>2</u> of <u>3</u>

| Personnel: M. owe      | M. Artida          | G. RiBles           |        |
|------------------------|--------------------|---------------------|--------|
| S. Pape                | J. WESSON          | Cal. Gas Exp. Date: | 6-4-22 |
| Date: 10-13-7  Instrum | ent Used: <u> </u> | Grid Spacing:75FT   |        |
| Temperature:70° Preci  | p: O Upwind BG:    | 3 Downwind BG:      | 4      |

| GRID | STAFF    | START | STOP | тос | POTO-MTP | ROTO-MTR, WIND INFORMATION |               | REMARKS               |         |
|------|----------|-------|------|-----|----------|----------------------------|---------------|-----------------------|---------|
| ID   | INITIALS | TIME  | TIME | PPM | CC/MIN   | AVG '                      | MAX.<br>SPEED | DIRECTION<br>16 POINT | REMARKS |
| 128  | MP       | 1050  | 1115 | 6   | 333      | 4                          | 3             | 12                    |         |
| 129  | JW       | 1050  | 1115 | 8   |          | 1 9                        | 8             | IL.                   |         |
| 136  | GR       | 1050  | 1115 | 6   |          | 4                          | 8             | 12                    |         |
| 131  | Mo       | 1215  | 1240 | 6   |          | 7                          | 4             | 从                     |         |
| 132  | oP       | 1215  | 1240 | 5′  |          | 3                          | Ú             | 12                    |         |
| //33 | SP       | 1215  | 1240 | 7   |          | (5,                        | 4             | 11                    |         |
| _134 | J.5      | 1215  | 1240 | 6   |          | )                          | Y             | 1)                    |         |
| 135  | mp       | 1215  | 1240 | 5   |          | ے                          | У.            | 12                    |         |
| 136  | JW       | 1215  | 1240 | 7   |          | 2                          | 4-            | 12                    |         |
| 137  | GR       | 1215  | 1240 | 6   |          | 3                          | 4.            | 12                    |         |
| 138  | mo       | 1240  | 1305 | 5   |          | 3                          | Ÿ             | 1)                    |         |
| 139  | OP       | 1240  | 1305 | 8   |          | 3                          | 4             | Ď                     |         |
| 140  | 58       | 1240  | 1305 | 14  |          | 3                          | 4             | D                     |         |
| 141  | JS       | 1240  | 1305 | 6   |          | כ                          | Ÿ             | ۵                     |         |
| 142  | mp       | 1240  | 1305 | 5   |          | С                          | 4             | D                     |         |
| 143  | Jω       | 1240  | 1305 | 5   |          | C                          | 4             | B                     |         |
| 144  | GR       | 1240  | 1305 | 10  |          | 2                          | 4             | B                     |         |
| 145  | MO       | 1305  | 1330 | 8   |          | y                          | 5             | D L                   | ,       |
| 146  | oρ       | 1305  | 1330 | 6   |          | Ÿ                          | 5             | ۵                     |         |
| 147  | SP       | 1305  | 1330 | 5   |          | У                          | 5             | 13                    |         |
| 148  | JS       | 1305  | 1330 | 6   |          | 4                          | 5             | 13                    |         |
| 149  | mp       | 1305  | 1330 | 6   |          | Ÿ                          | 2             | 13                    |         |
| 150  | JW       | 1305  | 1330 | 5   |          | 4                          | 2             | 13                    |         |
| 151  | GR       | 1305  | 1330 | 7   |          | 'Y                         | 5             | D                     |         |
| 152  | mo       | 1330  | 1355 | 6   |          | ų                          | 6             | Ü                     |         |
| 153  | OΡ       | 1330  | 1355 | 5   |          | Ý                          | Ь             | מ                     |         |
| 154  | Sρ       | 1330  | 1355 | 6   |          | 4                          | 7             | D                     |         |
| 155  | J3       | 1330  | 1335 | 8   |          | 4                          | 6             | ä                     |         |
| 156  | mp       | 1330  | 1355 | 9   |          | Ÿ                          | t             | <b>D</b>              |         |

Attach Calibration Sheet Attach site map showing grid ID

Page <u>3</u> of <u>3</u>

| Person | nel: <u>M.o</u>  | RUE         |           |          |           |              |               |                       |        |         |
|--------|------------------|-------------|-----------|----------|-----------|--------------|---------------|-----------------------|--------|---------|
|        |                  |             |           |          |           |              |               | Cal. Gas Exp.         | Date:  |         |
| Date   | ≥: <u>10-13-</u> | <i>zı</i> I | nstrumer  | nt Used: |           |              | Grid St       | oacing:               |        |         |
| Tem    | perature:        |             | _ Precip: |          | Upwind E  | BG:          |               | Downwind              | BG:    |         |
| GRID   | STAFF            | START       | STOP      | тос      | ROTO-MTR, | MIN          | ND INFOR      | MATION                | REM    | IARKS   |
| ID     | INITIALS         | TIME        | TIME      | PPM      | CC/MIN    | AVG<br>SPEED | MAX.<br>SPEED | DIRECTION<br>16 POINT |        |         |
| 157    |                  |             |           |          |           |              |               |                       | Actuic | TIZASIA |
| 158    | -                |             |           |          |           |              |               |                       |        |         |
| 159    |                  |             | $\vdash$  |          |           |              |               |                       |        |         |
| 160    |                  |             | <b></b>   | <b>-</b> |           |              |               |                       |        |         |
| 162    |                  |             | -         |          | -         |              |               |                       |        |         |
| 163    |                  |             |           |          | -         |              |               |                       |        |         |
| 164    |                  |             | $\vdash$  |          |           |              |               |                       |        |         |
| 165    |                  |             |           |          | <u> </u>  | <b> </b>     |               |                       |        |         |
| 166    |                  |             |           |          |           | $\vdash$     | <del></del>   | -                     |        |         |
| 167    |                  |             |           |          |           | $\vdash$     |               |                       |        |         |
| 168    |                  |             |           |          |           | $\vdash$     |               |                       |        |         |
| 169    |                  |             |           |          |           |              |               |                       | - 1    |         |
| 170    |                  |             |           |          | 77        |              | -             |                       |        |         |
| 171    |                  | E           |           |          |           |              |               |                       |        |         |
| 172    |                  |             |           |          |           |              |               | 377                   |        |         |
| 173    |                  |             |           |          |           |              |               |                       |        | -       |
| 174    |                  |             |           |          |           |              |               |                       |        |         |
| 175    |                  |             |           |          |           |              |               |                       |        | - 37    |
| 176    |                  |             |           |          |           |              |               |                       |        |         |
| 177    |                  |             |           |          |           |              |               |                       |        |         |
| 178    |                  |             |           |          |           |              |               |                       |        |         |
| 179    |                  |             |           |          |           |              |               |                       |        |         |
| 180    |                  |             |           |          |           |              |               |                       |        |         |
| 181    |                  |             |           |          |           |              |               |                       |        |         |
| 182    |                  |             |           |          |           |              |               |                       |        |         |
| 183    |                  |             |           |          |           |              |               |                       |        |         |
| 184    |                  |             |           |          |           |              |               |                       |        | 10      |
| 185    |                  |             |           |          |           |              |               |                       | V      | 1       |
|        |                  |             |           |          |           |              |               |                       |        |         |

Attach Calibration Sheet Attach site map showing grid ID

Page 1 of 1



# Attachment C

Component Leak Monitoring Event Records



LANDFILL NAME: QUARTERLY LFG COMPONENT LEAK MONITORING

INSTRUMENT FIL MAKE: Themo Erviron MODEL: TVA 1000 SN: {65 24732

DATE OF SAMPLING: 10-12-21 TECHNICIAN: Shown Hearshary

|   | RE-MONITORED<br>CONCENTRATION<br>(ppmv)   | 86                       |  |
|---|-------------------------------------------|--------------------------|--|
|   | DATE OF ANY<br>REQUIRED RE-<br>MONITORING | 12-12-01                 |  |
|   | DATE OF<br>REPAIR                         |                          |  |
| - | ACTION TAKEN TO<br>REPAIR LEAK            |                          |  |
|   | TECHNICIAN                                | Shoughtershough          |  |
|   | DATE OF<br>DISCOVERY                      | 12-21-01                 |  |
|   | LEAK<br>CONCENTRATION<br>(ppmv)           | जिक्का स्थाप<br>अभिनेत्र |  |
|   | LOCATION OF LEAK                          | Frant Let Thank          |  |

# **Attachment D**

Weather Station Data













|           | 16-POINT V            | VIND DIRECTION | INDEX         |           |
|-----------|-----------------------|----------------|---------------|-----------|
| <u>NO</u> | DIRECTION             |                | DEGREES       |           |
|           |                       | FROM           | <u>CENTER</u> | <u>TO</u> |
| 16        | NORTH (N)             | 348.8          | <u>369,0</u>  | 0.13      |
| 1         | NORTH-NORTHEAST (NNE) | 011.3          | <u>022,5</u>  | 033.8     |
| 2         | NORTHEAST (NE)        | 033.8          | <u>045.0</u>  | 056.3     |
| 3         | EAST-NORTHEAST (ENE)  | 056.3          | <u>067,5</u>  | 078.8     |
| 4         | EAST (E)              | 078.8          | 090,0         | 101.3     |
| 5         | EAST-SOUTHEAST (ESE)  | 101.3          | 112.5         | 123.8     |
| 6         | SOUTHEAST (SE)        | 123.8          | 135.0         | 146.3     |
| 7         | SOUTH-SOUTHEAST (SSE) | 146.3          | <u>157.5</u>  | 168.8     |
| 8         | SOUTH (S)             | 168.8          | 180.0         | 191,3     |
| 9         | SOUTH-SOUTHWEST (SSW) | 191.3          | <u>202.5</u>  | 213.8     |
| iv        | SOUTHWEST (SW)        | 213.8          | <u>225.0</u>  | £30,3     |
| 11        | WEST-SOUTHWEST (WSW)  | 236,3          | <u>247.</u> 5 | 258.8     |
| 12        | WEST (W)              | 258.8          | 270.0         | 281.3     |
| 13        | WEST-NORTHWEST (WNW)  | 281,3          | <u>292.5</u>  | 303,8     |
| 14        | NORTHWEST (NW)        | 301,8          | 315.0         | 326.3     |
| 15        | NORTH-NORTHWEST (NNW) | 326.3          | <u>337,5</u>  | 348,8     |

# Attachment E

Calibration Records

# Environmental Inc.

| CALIBRATION | PROCEDURE | AND BACKGROUND | REPORT - | INSTANTANEOUS |
|-------------|-----------|----------------|----------|---------------|

| LANDFILL NAME: Sim                                       | : ValleyEQUIPMENT#:                                                                          |              | NT MAKE         | лечио<br>0720723626 |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------|--------------|-----------------|---------------------|
| MONITORING DATE: 10                                      |                                                                                              |              | 0755            |                     |
| 2. Introduce calibrati                                   | o zero itself while introducing a<br>on gas into the probe. Stabiliz<br>ngs to read 500 ppm. |              | 7 <u>80</u> ppm |                     |
| Background Determination                                 | on Procedure                                                                                 |              |                 |                     |
| Upwind Background<br>Reading:<br>(Highest in 30 seconds) | Downwind Background<br>Reading:<br>(Highest in 30 seconds)                                   | Background V | 10120           |                     |
| ) ppm                                                    | 2 ppm                                                                                        | 7            | ppm             |                     |

Background Value = 1-5 ppm

# INSTRUMENT RESPONSE TIME RECORD

| Measurement# | Stabilized Reading Using Calibration Gas | 90% of the Stabilized<br>Reading | Time to Reach 90% of<br>Stabilized Reading after<br>switching from Zero Air to<br>Calibration Gas |
|--------------|------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------|
| #1           | 201 bbw                                  | 450 ppm                          | 10                                                                                                |
| #2           | 200 bbw                                  | AZO bbw                          | 11                                                                                                |
| #3           | SOU ppm                                  | YSV ppm                          | 9                                                                                                 |
|              | Calculate Response Time (1               | +2+3)                            | 10 #DIV/0I                                                                                        |
|              |                                          |                                  | Must be less than 30 seconds                                                                      |

# CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

| Measurement #       | Meter Reading for Zero Air (A) | Meter Reading for<br>Calibration Gas (B) | Calculate Precision [STO – (B)]  |
|---------------------|--------------------------------|------------------------------------------|----------------------------------|
| #1                  | O. a ppm                       | 281 bbu                                  | 501,00                           |
| #2                  | 0.0 ppm                        | 500 ppm                                  | 500.00                           |
| #3                  | 10 ppm                         | 500 ррт                                  | 498.00                           |
| Calculate Precision | on [STD-B1] + [STD-B2] + [S    | 5TD-B3] X 1 X 100<br>500 1               | #DIV/0!<br>Must be less than 10% |

| Performed By: Shaw Hero Wy              | Date/Time: | 10-11-21 | /a755 |
|-----------------------------------------|------------|----------|-------|
| • • • • • • • • • • • • • • • • • • • • |            | /        |       |

Environmental Inc.

# CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

| LANDFILL NAME: <u>Simi u</u> | alley                       | I          | NSTRUM | ENT MAKE: 72 | evno    |
|------------------------------|-----------------------------|------------|--------|--------------|---------|
| MODEL: TVA 1000              | EQUIPMENT #: _              | 5          |        | SERIAL #:    | 4911480 |
| MONITORING DATE: _/ひー        | 11-21                       | «ı;        | TIME:  | 0255         |         |
| Calibration Procedure:       |                             |            |        |              |         |
| 1. Allow instrument to ze    | ero itself while introducin | g air.     |        |              |         |
| Introduce calibration g      | gas into the probe. Stab    | ilized rea | ding = | SOO ppm      |         |

# **Background Determination Procedure**

Adjust meter settings to read 500 ppm.

| Reading: | Downwind Background<br>Reading:<br>(Highest in 30 seconds) | Background Value:  (Upwind + Downwind) 2 |
|----------|------------------------------------------------------------|------------------------------------------|
| / ppm    | 2 ppm                                                      | 3 ppm                                    |

Background Value = 1-5 ppm

# INSTRUMENT RESPONSE TIME RECORD

| Measurement # | Stabilized Reading Using Calibration Gas | 90% of the Stabilized<br>Reading | Time to Reach 90% of<br>Stabilized Reading after<br>switching from Zero Air to<br>Calibration Gas |
|---------------|------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------|
| #1            | 20.3 bbw                                 | 450 ppr                          | n <i>g</i>                                                                                        |
| #2            | 201 bbw                                  | 450 ppn                          | 11                                                                                                |
| #3            | 20 / bbu                                 | 450 ppn                          | 10                                                                                                |
|               | Calculate Response Time (1-              | 2+3)                             | /O #DIV/0!                                                                                        |
|               |                                          |                                  | Must be less than 30 seconds                                                                      |

# CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

| Measurement #      | Meter Reading for Zero Air (A) | Meter Reading for<br>Calibration Gas (B) | Calculate Precision [STD – (B)] |
|--------------------|--------------------------------|------------------------------------------|---------------------------------|
| #1                 | Z.O ppm                        | 503 ppm                                  | 501.10                          |
| #2                 | 2.0 ppm                        | 537 ppm                                  | 489.00                          |
| #3                 | leo ppm                        | 50/ ppm                                  | 501.00                          |
| Calculate Precisio | in [STD-B1] + [STD-B2] + [S    | 500 1                                    | #DIV/0                          |

| Performed By: Shirum Harshle | Date/Time: | 10-11-01 | 10755 |
|------------------------------|------------|----------|-------|
| 1                            |            |          |       |

RING - in Environmental Inc.

| CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS |
|-------------------------------------------------------------|
|-------------------------------------------------------------|

3

| MODEL: TVH 1000                      | EQUIPMENT #:                                                                                      | 0     | SERIAL #: 163/ | P830 |
|--------------------------------------|---------------------------------------------------------------------------------------------------|-------|----------------|------|
| MONITORING DATE:                     | 10-18-21                                                                                          | TIME: | 0755           |      |
| <ol><li>Introduce calibral</li></ol> | to zero itself while introducing a<br>tion gas into the probe. Stabilize<br>ings to read 500 ppm. |       | ОО ррт         |      |
| Background Determinati               | on Procedure                                                                                      |       |                |      |

ppm

3

ppm

|                    | ^        |     |
|--------------------|----------|-----|
| Background Value = | <b>3</b> | ppm |

# INSTRUMENT RESPONSE TIME RECORD

ppm

| Measurement# | Stabilized Reading Using Calibration Gas | 90% of the Stabilized<br>Reading |     | Time to Reach 90% of<br>Stabilized Reading after<br>switching from Zero Air to<br>Calibration Gas |            |
|--------------|------------------------------------------|----------------------------------|-----|---------------------------------------------------------------------------------------------------|------------|
| #1           | SUS bbw                                  | 450                              | ppm | 10                                                                                                |            |
| #2           | COO bbu                                  | 450                              | ppm | 10                                                                                                |            |
| #3           | 501 ppm                                  | 450                              | ppm | 10                                                                                                |            |
|              | Calculate Response Time (1.3)            | +2+3)                            |     | 10                                                                                                | #DIV/0!    |
|              |                                          |                                  |     | Must be less than                                                                                 | 30 seconds |

# CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

| Measurement #       | Meter Reading for Zero Air (A)      | Meter Reading for<br>Calibration Gas (B) | Calculate Precision [STD - (B)] |
|---------------------|-------------------------------------|------------------------------------------|---------------------------------|
| #1                  | 1. U ppm                            | 502 ppm                                  | 571-60                          |
| #2                  | /, o ppm                            | 800 ppm                                  | 499-00                          |
| #3                  | 1-0 ppm                             | Mdd (28                                  | 500-00                          |
| Calculate Precision | on <u>[STD-B1] + [STD-B2] + [</u> 5 | 500 1                                    | #DIV/0                          |

| Performed By: Shawa | Hershey |
|---------------------|---------|
|                     |         |

Date/Time: 10-11-21/0755

558



# CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

| LANDFILL NAME: Size<br>MODEL: TVA 1000<br>MONITORING DATE: 10                                            | EQUIPMENT #:                                                                         | INSTRUMENT MAKE:  SERIAL  TIME: 0255    | # 15865889 |
|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------------------------|------------|
| <ol><li>Introduce calibrati</li></ol>                                                                    | o zero itself while introducing on gas into the probe. Stabilizings to read 500 ppm. |                                         |            |
| Upwind Background Reading: (Highest in 30 seconds)  Downwind Background Reading: (Highest in 30 seconds) |                                                                                      | Background Value: (Upwind + Downwind) 2 |            |
| 1 ppm                                                                                                    | 2 ppm                                                                                | 2 ppm                                   |            |

# INSTRUMENT RESPONSE TIME RECORD

Background Value □

2

\_ ppm

| Measurement # | Stabilized Reading Using Calibration Gas | 90% of the Stabilized<br>Reading | Time to Reach 90% of<br>Stabilized Reading after<br>switching from Zero Air to<br>Calibration Gas |  |
|---------------|------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------|--|
| #1            | SUI ppm                                  | 450 ppm                          | 10                                                                                                |  |
| #2            | 201 bbw                                  | 450 ppm                          | 12                                                                                                |  |
| #3            | 501 ppm                                  | 450 ppm                          | 8                                                                                                 |  |
|               | Calculate Response Time (1               | +2+3)                            | LO #DIV/01                                                                                        |  |
|               |                                          |                                  | Must be less than 30 seconds                                                                      |  |

# CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

| Measurement #      | Meter Reading for Zero Air (A)   | Meter Reading for<br>Calibration Gas (B) | Calculate Precision [STD - (B)]  |  |
|--------------------|----------------------------------|------------------------------------------|----------------------------------|--|
| #1                 | 1-50 ppm                         | 50( ppm                                  | 411-50                           |  |
| #2                 | · SO ppm                         | 501 ppm                                  | 30.50                            |  |
| #3                 | -50 ppm                          | SO1 ppm                                  | 500.60                           |  |
| Calculate Precisio | n <u>[STD-B1] + [STD-B2] + [</u> |                                          | #DIV/0!<br>Must be less than 10% |  |

| Performed By: Jhaw4 | 1 Hershey | Date/Time; | 10-11-21 | 10255 |
|---------------------|-----------|------------|----------|-------|
|                     | 7         |            | /        |       |

| CALIBRATION PROCEDURE AND BACKGROUND REPORT - INS | TANTANEOUS |
|---------------------------------------------------|------------|
|---------------------------------------------------|------------|

| LANDFILL NAME: 5:44:     | valley                      | INSTRUMENT MAKE Therms |         | henno   |          |
|--------------------------|-----------------------------|------------------------|---------|---------|----------|
| MODEL: TVA 1000          |                             | 1                      |         | SERIAL# | 16320832 |
| MONITORING DATE: 10-     | 17 - 21                     | -                      | TIME: _ | 0758    |          |
| Calibration Procedure:   |                             |                        |         |         |          |
| 1 Allow instrument to ze | ero itself while introducin | g air.                 |         | _       |          |

### Background Determination Procedure

| Upwind Background<br>Reading:<br>(Highest in 30 seconds) | Downwind Backg<br>Reading:<br>(Highest in 30 secon |     | Background Valo |     |
|----------------------------------------------------------|----------------------------------------------------|-----|-----------------|-----|
| į pp                                                     | n 3                                                | ppm | 3               | ppm |

2 Introduce calibration gas into the probe. Stabilized reading = 500 ppm
3 Adjust meter settings to read 500 ppm

Background Value = \_\_\_\_3 \_\_\_ppm

#### INSTRUMENT RESPONSE TIME RECORD

| Measurement # | Stabilized Reading Using Calibration Gas | 90% of the Stabilized<br>Reading | 1   | Time to Reach 90<br>Stabilized Readir<br>switching from Z<br>Calibration Gas | ng after   |
|---------------|------------------------------------------|----------------------------------|-----|------------------------------------------------------------------------------|------------|
| #1            | SO) ppm                                  | 450                              | ррm | 8                                                                            |            |
| #2            | 500 ppm                                  | 450                              | ppm | 10                                                                           |            |
| #3            | Sol ppm                                  | 750                              | ppm | 12                                                                           |            |
| 2 47 6        | Calculate Response Time (1               | +2+3)                            |     | 10                                                                           | #DIV/0!    |
|               |                                          |                                  |     | Must be less than                                                            | 30 seconds |

#### CALIBRATION PRECISION RECORD

| Measurement #       | Meter Reading for Zero Air (A)      | Meter Reading for<br>Calibration Gas (B) | Calculate Precision [STD - (B)] |
|---------------------|-------------------------------------|------------------------------------------|---------------------------------|
| #1                  | 0,50 ppm                            | 201 bbw                                  | 22/0 -20                        |
| #2                  | 0-0 ppm                             | 200 bbw                                  | 500.00                          |
| #3                  | 1-0 ppm                             | 501 ppm                                  | 00.002                          |
| Calculate Precision | on <u>[STD-B1] + [STD-B2] + [</u> 3 | 5TD-B3] X 1 X 100<br>500 1               | #DIV/01                         |

| Performed By: Shaw Hursley | Date/Time: | 00-11-21/0755 |
|----------------------------|------------|---------------|
| Performed By: Shaw Hersley | Date/Time: | 20-11-21/0755 |



### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

| SERIAL #: 7784545       |
|-------------------------|
|                         |
|                         |
|                         |
| eading = <u>SOO</u> ppm |
| (Upwind + Downwind)     |
|                         |
|                         |

#### INSTRUMENT RESPONSE TIME RECORD

Background Value = \_\_\_

| Measurement # | Stabilized Reading Using Calibration Gas | 90% of the Stabilized<br>Reading |     | Time to Reach 9 Stabilized Read switching from Calibration Gas | Ing after<br>Zero Air to |
|---------------|------------------------------------------|----------------------------------|-----|----------------------------------------------------------------|--------------------------|
| #1            | 205 bbw                                  | 490                              | ppm | 12                                                             |                          |
| #2            | 500 ppm                                  | 450                              | ppm | 7                                                              |                          |
| #3            | 500 ppm                                  | 450                              | ppm | LO                                                             |                          |
|               | Calculate Response Time (1-3             | 2+3)                             |     | lo                                                             | #DIV/0!                  |
|               |                                          |                                  |     | Must be less then                                              | 30 seconds               |

#### CALIBRATION PRECISION RECORD

| Measurement #      | Meter Reading for Zero Air (A)    | Meter Reading for<br>Calibration Gas (B) | Calculate Precision [STD (B)] |
|--------------------|-----------------------------------|------------------------------------------|-------------------------------|
| #1                 | O.O ppm                           | S ppm                                    | 502-00                        |
| #2                 | (-O ppm                           | See ppm                                  | 429-00                        |
| #3                 | /- o ppm                          | 5UD ppm                                  | 498-00                        |
| Calculate Precisio | n <u>[STD-B1] + [STD-B2] + [S</u> | STD-B3] X 1 X 100<br>500 1               | #DIV/0                        |

| Performed By: Shigun thership | Date/Time: 10-11-21/025 |
|-------------------------------|-------------------------|
| /                             |                         |



#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

| ANDFILL NAME: _SiL     |                                                                  | (N:                    | SIKUME | NT MAKE: Thermo      |
|------------------------|------------------------------------------------------------------|------------------------|--------|----------------------|
| MODEL: TVA LOW         | EQUIPMENT #:                                                     | _7_                    |        | SERIAL #: 1720723626 |
| MONITORING DATE:       | 10-11-21                                                         |                        | TIME:  | 0755                 |
|                        |                                                                  |                        |        |                      |
| Calibration Procedure: |                                                                  |                        |        |                      |
| Allow instrument       | to zero itself while introducing                                 | ng air                 |        |                      |
| Allow instrument       | to zero itself while introducir<br>tion gas into the probe. Stat | ng air<br>bilized read | ling ≂ | 500 ppm              |

#### **Background Determination Procedure**

| Upwind Background<br>Reading:<br>(Highest in 30 seconds) | Downwind Background<br>Reading:<br>(Highest in 30 seconds) | Background Value: (Upwind + Downwind) 2 |
|----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------|
| 2 ppm                                                    | 3 ppm                                                      | \$ ppm                                  |

Background Value = 15 ppm

#### INSTRUMENT RESPONSE TIME RECORD

| Measurement # | Stabilized Reading Using Calibration Gas | 90% of the Stabilized<br>Reading |     | Time to Reach 90%<br>Stabilized Reading<br>switching from Zea<br>Calibration Gas | after   |
|---------------|------------------------------------------|----------------------------------|-----|----------------------------------------------------------------------------------|---------|
| #1            | 501 ppm                                  | 450                              | ppm | w                                                                                |         |
| #2            | 50z ppm                                  | 450                              | ppm | 10                                                                               |         |
| #3            | SUZ ppm                                  | ५५०                              | ppm | 10                                                                               |         |
|               | Calculate Response Time (1-              | +2+3)                            |     | 10                                                                               | #DIV/0! |
|               |                                          |                                  |     | Must be less than 30                                                             | seconds |

#### CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

| Measurement #       | Meter Reading for Zero Air (A) | Meter Reading for<br>Calibration Gas (B) | Calculate Precision [STD - (B)]  |
|---------------------|--------------------------------|------------------------------------------|----------------------------------|
| #1                  | /rO ppm                        | SDI ppm                                  | 500.00                           |
| #2                  | 20 ppm                         | SOZ ppm                                  | 500.00                           |
| #3                  | (.o ppm                        | 802 ppm                                  | \$01.00                          |
| Calculate Precision | (STD-B1] + (STD-B2] + (S       | 500 1                                    | #OIV/0!<br>Must be less than 10% |

| Performed By: Shawin | Housey |
|----------------------|--------|
|                      |        |

Date/Time: 10-11-21/0755

558

Environmental in

| CALIBRATION PROCEDURE AND BACKGROUND REPORT - INST | TANTANEOUS |
|----------------------------------------------------|------------|
|----------------------------------------------------|------------|

| LANDFILL NAME: Sim                                       | valley                                                                               | INSTRUMEN             | NT MAKE: Thermo   |    |
|----------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------------|-------------------|----|
| MODEL: TVA 1000<br>MONITORING DATE:                      | EQUIPMENT #:                                                                         | 6                     | SERIAL#: 07207256 | 26 |
| Introduce calibrati     Adjust meter setti               | to zero itself while introducing ion gas into the probe. Stabilings to read 500 ppm. | air:<br>zed reading = | 7 <u>00</u> ppm   |    |
| Background Determination                                 |                                                                                      |                       |                   |    |
| Upwind Background<br>Reading:<br>(Highest in 30 seconds) | Downwind Background<br>Reading:<br>(Highest in 30 seconds)                           | Background Va         |                   |    |
| <b>∮</b> ppm                                             | 2 ppm                                                                                | 2                     | ppm               |    |

### INSTRUMENT RESPONSE TIME RECORD

Background Value = \_

| Measurement # | Stabilized Reading Using Calibration Gas | 90% of the Stabilized<br>Reading |     | Time to Reach 90<br>Stabilized Readin<br>switching from Zi<br>Calibration Gas | g after   |
|---------------|------------------------------------------|----------------------------------|-----|-------------------------------------------------------------------------------|-----------|
| #1            | SOZ ppm                                  | 450                              | ppm | 7                                                                             |           |
| #2            | SOZ ppm                                  | ५६०                              | ppm | 10                                                                            |           |
| #3            | 571 ppm                                  | 450                              | ppm | 13                                                                            |           |
|               | Calculate Response Time (1-              | +2+3)                            |     | 10                                                                            | #DIV/0!   |
|               |                                          |                                  |     | Must be less than 3                                                           | 0 seconds |

### CALIBRATION PRECISION RECORD

| Measurement #      | Meter Reading for Zero Air (A) | Meter Reading for<br>Calibration Gas (B) | Calculate Precision [STD – (B)]  |
|--------------------|--------------------------------|------------------------------------------|----------------------------------|
| #1                 | Leo ppm                        | Sus bbw                                  | \$01.00                          |
| #2                 | 150 ppm                        | 502 ppm                                  | 501,50                           |
| #3                 | (-O ppm                        | SU( ppm                                  | 500,00                           |
| Calculate Precisio | n [STD-B1] + [STD-B2] + [S     |                                          | #DIV/0I<br>Musi be less than 10% |

| Performed By: Shawn Harshy | Date/Time: 10-12-21/0755 |
|----------------------------|--------------------------|
|                            | 7                        |



| CALIBRATION PROCEDURE | AND BACKGROUND REPORT | INSTANTANEOUS       |
|-----------------------|-----------------------|---------------------|
| CALIBRATION FROCEDURE | AND BACKGROUND REPURI | - ING I AN I ANEUUS |

| LANDF | TLL NAME: Simi Valley                                   |                   | NSTRUM  | ENT MAKE Thermo    |
|-------|---------------------------------------------------------|-------------------|---------|--------------------|
| MODE  | ILL NAME: <u>Simi valley</u><br>L <u>TVA 1000</u> EQUIF | PMENT #: 5        |         | SERIAL #: 49 19480 |
| MONIT |                                                         |                   |         | 100                |
| MUNIT | ORING DATE: <u>10-11-21</u>                             |                   | TIME: _ | 0755               |
|       | ation Procedure:                                        | e introducino eir | TIME:   | 0735               |
|       |                                                         |                   | _       |                    |

| Upwind Background<br>Reading:<br>(Highest in 30 seconds) | Downwind Background<br>Reading:<br>(Highest in 30 seconds) | Background Value: (Upwind + Downwind) 2 |
|----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------|
| [ ppm                                                    | 3 ppm                                                      | ppm                                     |

Background Value = 3 ppm

#### INSTRUMENT RESPONSE TIME RECORD

| Measurement # | Stabilized Reading Using Calibration Gas | 90% of the Stabilized<br>Reading | Time to Reach 90% of<br>Stabilized Reading after<br>switching from Zero Air to<br>Calibration Gas |
|---------------|------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------|
| #1            | .502 ppm                                 | 450 pp                           | m 10                                                                                              |
| #2            | 5700 ppm                                 | 450 pp                           | m 12                                                                                              |
| #3            | 20S) bbw                                 | 450 pp                           | m y                                                                                               |
|               | Calculate Response Time (1-3             | +2+3)                            | 10 #DIV/0!                                                                                        |
|               |                                          |                                  | Must be less than 30 seconds                                                                      |

#### CALIBRATION PRECISION RECORD

| Measurement #       | Meter Reading for Zero Air  | (A) Meter Rea<br>Calibration |                         | Calculate Precision [STD - (B)]  |
|---------------------|-----------------------------|------------------------------|-------------------------|----------------------------------|
| #1                  | ,50 P                       | pm                           | 502 ppr                 | 501.50                           |
| #2                  | •50 P                       | pm .                         | STO PPT                 |                                  |
| #3                  | +0 P                        |                              | 500 ppr                 |                                  |
| Calculate Precision | on [STD-B1] + [STD-B2]<br>3 |                              | 1 X <u>100</u><br>500 1 | #OIV/0I<br>Must be less than 10% |

|                             |            |         |        | _ |
|-----------------------------|------------|---------|--------|---|
| Performed By: Jugun Hersluy | Date/Timo: | 10-12-2 | 1/0755 |   |

| CALIBRATION | PROCEDURE | AND BACKGROUND REPORT | - INSTANTANEOUS |
|-------------|-----------|-----------------------|-----------------|
|-------------|-----------|-----------------------|-----------------|

| LANDFILL NAME: Simi Valley    | INSTRUMENT MAKE: Thermu |            |          |
|-------------------------------|-------------------------|------------|----------|
| MODEL: Tra- Laso EQUIPMENT #: | 4                       | SERIAL #:_ | 16319830 |
| MONITORING DATE: 10-12-21     | TIME:                   | 0753       |          |
|                               |                         | -0.1 1002  |          |

#### Calibration Procedure:

#### Background Determination Procedure

| Reading: | Downwind Background<br>Reading:<br>(Highest in 30 seconds) | Background Value:  (Upwind + Downwind) 2 |     |
|----------|------------------------------------------------------------|------------------------------------------|-----|
| ppm      | Z ppm                                                      | 3                                        | ppm |

Background Value = 1.5 ppm

#### INSTRUMENT RESPONSE TIME RECORD

| Measurement # | Callbration Gas Reading    |         | Time to Reach 90<br>Stabilized Readin<br>switching from Z<br>Calibration Gas | ng after   |
|---------------|----------------------------|---------|------------------------------------------------------------------------------|------------|
| #1            | SUZ ppm                    | 450 ppm | 12                                                                           | 7          |
| #2            | SOZ ppm                    | 450 ppm | 8                                                                            |            |
| #3            | 500 ppm                    | 450 ppm | 10                                                                           |            |
|               | Calculate Response Time (1 | +2+3)   | 10                                                                           | #DIV/0!    |
|               |                            |         | Must be less than                                                            | 30 seconds |

#### CALIBRATION PRECISION RECORD

| Measurement #       | Meter Reading for Zero Air (A) | Meter Reading for<br>Calibration Gas (B) | Calculate Precision [STD – (B)]  |
|---------------------|--------------------------------|------------------------------------------|----------------------------------|
| #1                  | 1,0 ppm                        | Sb2 ppm                                  | 501.00                           |
| #2                  | 150 ppm                        | SO2 ppm                                  | 501.50                           |
| #3                  | 1.10 ppm                       | SOO ppm                                  | 499-00                           |
| Calculate Precision | n [STD-B1] + [STD-B2] + [S     | 500 1                                    | #DIV/0 <br>Must be less than 10% |

| Performed By: Shawn Hiershey | Date/Time | 10-12-21 | 10755 |  |
|------------------------------|-----------|----------|-------|--|
|------------------------------|-----------|----------|-------|--|

| CALIBRATION | PROCEDURE   | AND BACKGROUND REPORT | - INSTANTANEOUS        |
|-------------|-------------|-----------------------|------------------------|
| CULTATION   | LICOLLOUILL |                       | - INO I WIS I WISE OUG |

| LANDFILL NAME: Sim, valley | INSTRUMENT MAKE Thermo |
|----------------------------|------------------------|
| MODEL: TUALOO EQUIPMENT #: | 3 SERIAL # 15865889    |
| MONITORING DATE: 10-12-21  | TIME: 0155             |
| Calibration Procedure:     |                        |

#### **Background Determination Procedure**

| Upwind Background<br>Reading:<br>(Highest in 30 seconds) | ading: Reading: |       |
|----------------------------------------------------------|-----------------|-------|
| / ppm                                                    | 3 ppm           | 3 ppm |

<u>گ\_\_\_\_ ppm</u> Background Value = \_\_\_

#### INSTRUMENT RESPONSE TIME RECORD

| Measurement # | Stabilized Reading Using 90% of the Stabilized Calibration Gas Reading |             | Time to Reach 90% of<br>Stabilized Reading after<br>switching from Zero Air to<br>Calibration Gas |
|---------------|------------------------------------------------------------------------|-------------|---------------------------------------------------------------------------------------------------|
| #1            | 502 ppn                                                                | 1 450 ppr   | 10                                                                                                |
| #2            | 501 ppn                                                                |             | 8                                                                                                 |
| #3            | 500 ppn                                                                | 450 ppr     | 12                                                                                                |
|               | Calculate Response Time (                                              | 1+2+3)<br>3 | 10 #DIV/0!                                                                                        |
|               |                                                                        |             | Must be less than 30 seconds                                                                      |

#### CALIBRATION PRECISION RECORD

| Measurement #       | Meter Reading for Zero Air (A)      | Meter Reading for<br>Calibration Gas (B) | Calculate Precision [STD – (B)]  |
|---------------------|-------------------------------------|------------------------------------------|----------------------------------|
| #1                  | , 50 ppm                            | SOZ ppm                                  | 501.50                           |
| #2                  | 1.50 ppm                            | 501 ppm                                  | 499-50                           |
| #3                  | 1.0 ppm                             | 500 ppm                                  | 499-50                           |
| Calculate Precision | on <u>[STD-B1] + [STD-B2] + [</u> 3 | 500 1                                    | #DIV/0!<br>Must be less than 10% |

| Performed By _ Shawn | Hershey | Date/Time: 0755/10-12-21 |
|----------------------|---------|--------------------------|
|                      |         |                          |

Environmentation.

| CALIBRATION PROCEDURE AND BACKGROUND REPORT - IN | NSTANTANEOUS |
|--------------------------------------------------|--------------|
|--------------------------------------------------|--------------|

| _ANDF | ILL NAME: Simi Valley | INSTRUMENT MAKE: 1 | ermo    |
|-------|-----------------------|--------------------|---------|
|       | TVA 1000 EQUIPMENT #: |                    | 7784545 |
| TINON | ORING DATE:10-12-21   | TIME: 0755         |         |
|       |                       | IIME: <u>0755</u>  |         |
|       | tion Procedure:       | 11MC: <u>0755</u>  |         |
|       | tion Procedure:       |                    |         |
|       |                       | gair               |         |

#### Background Determination Procedure

| Upwind Background<br>Reading:<br>(Highest in 30 seconds) | Downwind Background<br>Reading:<br>(Highest in 30 seconds) | Background Value:  (Upwind + Downwind) 2 |
|----------------------------------------------------------|------------------------------------------------------------|------------------------------------------|
| ( ppm                                                    | Z ppm                                                      | Z ppm                                    |

Background Value = 2 ppm

#### INSTRUMENT RESPONSE TIME RECORD

| Measurement # | Stabilized Reading Using Calibration Gas | 90% of the Stabilize Reading | ed  | Time to Reach 9<br>Stabilized Readi<br>switching from a<br>Calibration Gas | ing after<br>Zero Air to |
|---------------|------------------------------------------|------------------------------|-----|----------------------------------------------------------------------------|--------------------------|
| #1            | 500 ppm                                  | 450                          | ppm | 7                                                                          | *                        |
| #2            | 571 ppm                                  | 450                          | ppm | /3                                                                         |                          |
| #3            | SZIO PPM                                 | 450                          | ppm | 10                                                                         |                          |
|               | Calculate Response Time (1               | +2+3)                        |     | 10                                                                         | #DIV/0!                  |
|               |                                          |                              |     | Must be less than                                                          | 30 seconds               |

#### CALIBRATION PRECISION RECORD

| Measurement #       | Meter Reading for Zero Air (A) | Meter Reading for<br>Calibration Gas (B) | Calculate Precision [STD – (B)]      |
|---------------------|--------------------------------|------------------------------------------|--------------------------------------|
| #1                  | ,50 ppm                        | 5∞ ppm                                   | 489.50                               |
| #2                  | 1.0 ppm                        | 50/ ppm                                  | 500.00                               |
| #3                  | · ZO ppm                       | 500 ppm                                  | 49.9.50                              |
| Calculate Precision | (STD-B1) + (STD-B2) + (S       | 500 1                                    | 1 / #DIV/0!<br>Must be less than 10% |

| Performed By: Shown Havs | hey Dato/Timo: | 10-12-21/ | 0755 |
|--------------------------|----------------|-----------|------|
|--------------------------|----------------|-----------|------|

| CALIBRATION | PROCEDURE | AND BACKGROUND | DEDORT - | METANTANEOUS  |
|-------------|-----------|----------------|----------|---------------|
| CALIBRATION | PROCEDURE | AND BACKGROUND | KEPUKI - | INSTANTANEUUS |

| MODEL: TVA LOOD                              | EQUIPMENT #:                                           | 1 SERIAL # / 6370832 |
|----------------------------------------------|--------------------------------------------------------|----------------------|
| MONITORING DATE: 16                          | 12-21                                                  | TIME: 6755           |
| Calibration Procedure:                       | o zero itself while introducing a                      |                      |
| <ol><li>Introduce calibrati</li></ol>        | on gas into the probe. Stabilizatings to read 500 ppm. |                      |
| Introduce calibrati     Adjust meter setting | on gas into the probe. Stabilizeings to read 500 ppm.  |                      |

#### INSTRUMENT RESPONSE TIME RECORD

| Measurement # | Stabilized Reading Using Calibration Gas | 90% of the Stabilized<br>Reading | Time to Reach 90% of<br>Stabilized Reading after<br>switching from Zero Air to<br>Calibration Gas |
|---------------|------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------|
| #1            | 501 ppm                                  | 450 ppm                          | 8                                                                                                 |
| #2            | 29( bbw                                  | 450 ppm                          | 12                                                                                                |
| #3            | 502 ppm                                  | 450 ppm                          | 10                                                                                                |
|               | Calculate Response Time (1-3             | +2+3)                            | 10 #DIV/01                                                                                        |
|               |                                          |                                  | Must be less than 30 seconds                                                                      |

#### CALIBRATION PRECISION RECORD

| Measurement #       | Meter Reading for Zero Air (A) | Meter Reading for<br>Calibration Gas (B) | Calculate Precision (STD – (B)) |
|---------------------|--------------------------------|------------------------------------------|---------------------------------|
| #1                  | 0-0 ppm                        | 701 ppm                                  | 501-00                          |
| #2                  | 1.0 ppm                        | SOI ppm                                  | <u>ζ</u> αν ω                   |
| #3                  | l.o ppm                        | 502 ppm                                  | 501.00                          |
| Calculate Precision | STD-B1] + [STD-B2] + [<br>3    | STD-B31 X 1 X 100<br>500 1               | #DIV/0I                         |

| Performed By: Shown thershey | Date/Time | 10-12-21/0255 |
|------------------------------|-----------|---------------|
| Performed By: Shown Hershey  | Date/Time | 10-12-21/0755 |

|                                                                                                       | OCEDURE !                              |                                               |                                       |                                                           |       |                                                                     |                                     |
|-------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------|---------------------------------------|-----------------------------------------------------------|-------|---------------------------------------------------------------------|-------------------------------------|
| LANDFILL NAME                                                                                         | Simi v                                 | sulley                                        |                                       | INSTRUMENT MAK                                            | Œ     | Nemo                                                                |                                     |
| MODEL TVA                                                                                             | 1000                                   | EQUIPMEN                                      | VT #:                                 | € 7 se                                                    | ERIAL | #:                                                                  |                                     |
| MONITORING DATE                                                                                       | E:                                     | 12-21                                         |                                       | TIME: 07                                                  | 55    |                                                                     |                                     |
| Calibration Proced                                                                                    |                                        |                                               |                                       |                                                           |       |                                                                     |                                     |
| Allow instru                                                                                          |                                        | e itaali oolia tak                            |                                       |                                                           |       |                                                                     |                                     |
| <ol><li>Introduce c</li></ol>                                                                         | alibration ga                          | es into the probe<br>read 500 ppm.            | a. Stabiliz                           | air.<br>zed reading = <u>500</u>                          | _ ppm |                                                                     |                                     |
| Background Detern                                                                                     | mination Pr                            | ocedure                                       |                                       |                                                           |       |                                                                     |                                     |
| Upwind Backgrou<br>Reading:                                                                           |                                        | wnwind Backg                                  | round                                 | Background Value:                                         |       |                                                                     |                                     |
| (Highest in 30 secon                                                                                  |                                        | iding:<br>pleat in 30 secon                   | ıds)                                  | (Upwind + Downwing 2                                      | 0     |                                                                     |                                     |
| 1                                                                                                     | ppm                                    | 2                                             | ppm                                   | 2                                                         | ρpm   |                                                                     |                                     |
| Background Value                                                                                      | 2 =                                    | ppm                                           |                                       |                                                           |       |                                                                     |                                     |
| INSTRUMENT RESI                                                                                       | PONSE TIM                              | E RECORD                                      |                                       |                                                           |       |                                                                     |                                     |
| Measurement #                                                                                         | Stal                                   | bilized Reading                               | Using                                 | 90% of the Stabilized                                     | -     | Time to Reach 90                                                    | % of                                |
|                                                                                                       | Cali                                   | bration Gas                                   |                                       | Reading                                                   |       | Stabilized Reading after switching from Zero Air to Calibration Gas |                                     |
| #1                                                                                                    |                                        | 503                                           | ppm                                   | ५५०                                                       | ppm   | &                                                                   | 122                                 |
|                                                                                                       |                                        |                                               |                                       | 450                                                       | ppm   | 12                                                                  |                                     |
| #2                                                                                                    |                                        | 500                                           | ppm                                   | 150                                                       | ppiii |                                                                     |                                     |
| #3                                                                                                    |                                        | 501                                           | ppm                                   | 450                                                       | ppm   | 10                                                                  |                                     |
|                                                                                                       | Calcuta                                |                                               | ppm<br>Filme (1                       | 130                                                       |       | 10                                                                  | #DIV/0I                             |
| #3                                                                                                    |                                        | 50/<br>ite Response 1                         | ppm<br>Filme (1                       | Y50                                                       |       | 10                                                                  |                                     |
| #3 CALIBRATION PRE                                                                                    | CISION RE                              | 50 /<br>ate Response 1                        | ppm<br>Filme (1                       | Y50                                                       |       | 10                                                                  |                                     |
| #3  CALIBRATION PREC                                                                                  | CISION REG                             | 50 /<br>ate Response 1<br>CORD                | ppm<br>Fime (1                        | (50<br>(50<br>(1+2+3)                                     | ppm   | LO<br>LO<br>Must be less than                                       | 30 seconds                          |
| #3  CALIBRATION PREC                                                                                  | CISION REG                             | 50 /<br>ate Response 1<br>CORD                | ppm<br>Fime (1                        | Y50                                                       | ppm   | 10                                                                  | 30 seconds                          |
| #3  CALIBRATION PREC                                                                                  | CISION REG                             | SO (<br>ate Response 1<br>CORD<br>pm          | ppm<br>Fime (1                        | (50<br>l+2+3)<br>Meter Reading for<br>Calibration Gas (B) | ppm   | LO LO Must be less than                                             | 30 seconds                          |
| #3  CALIBRATION PRECENT OF STREET PROPERTY OF STREET PROPERTY OF STREET PROPERTY OF STREET PROPERTY # | CISION REG                             | SO ( ate Response 1  CORD pm  ading for Zero  | ppm<br>Fime (1                        | Meter Reading for Calibration Gas (B)                     | ppm   | Must be less than:                                                  | 30 seconds                          |
| #3  CALIBRATION PRECallbration Gas Standa  Measurement #                                              | CISION REG                             | SO / ate Response 1  CORD  pm  ading for Zero | ppm Fime (1                           | Meter Reading for Calibration Gas (B)  503 ppm 500 ppm    | Cai   | Must be less than surface Precision [S                              | 30 seconds                          |
| #3  CALIBRATION PREC Calibration Gas Standa Measurement #  #1 #2                                      | CISION REI<br>ard = 500 p<br>Meter Rei | SO ( ate Response 1  CORD pm  ading for Zero  | ppm Fime (1 3 Air (A) ppm ppm ppm ppm | Meter Reading for Calibration Gas (B)  503 ppm 500 ppm    | Cai   | Must be less than:                                                  | 30 seconds<br>3TD - (B)]<br>#DIV/01 |

| CALIDRATION | PROCEDURE | AND DACKCOOL | IND DECODE | - INSTANTANEOUS |
|-------------|-----------|--------------|------------|-----------------|
| CALIBRATION | PROCEDURE | AND BACKGROU | IND REPURI | - INSTANTANEOUS |

| LANDFILL NAME: SIMI VAURY |              | INSTRUMENT MAKE: TVA 1000 |                      |  |  |
|---------------------------|--------------|---------------------------|----------------------|--|--|
| MODEL: THEZWO             | EQUIPMENT #: | 33                        | SERIAL #: 00004/1015 |  |  |
| MONITORING DATE           | 11-10-21     | TIME                      | 0730                 |  |  |

#### Calibration Procedure:

1. Allow instrument to zero itself while introducing air.

Introduce calibration gas into the probe. Stabilized reading = <u>SOO</u> ppm
 Adjust meter settings to read 500 ppm.

#### **Background Determination Procedure**

| Upwind Backgr<br>Reading:<br>(Highest In 30 sec |     | Downwind Background<br>Reading:<br>(Highest in 30 seconds) |     | Background Valu<br>(Upwind + Down<br>2 | Vac W |  |
|-------------------------------------------------|-----|------------------------------------------------------------|-----|----------------------------------------|-------|--|
| 2.3                                             | ppm | 2.5                                                        | ppm | 2,4                                    | ppm   |  |

Background Value = 2, 4 ppm

#### INSTRUMENT RESPONSE TIME RECORD

| Measurement # | Stabilized Reading U<br>Calibration Gas | bilized Reading Using   90% of the Stabilized   Reading   Reading |       | zed | Time to Reach 90% of<br>Stabilized Reading after<br>switching from Zero Air to<br>Calibration Gas |              |
|---------------|-----------------------------------------|-------------------------------------------------------------------|-------|-----|---------------------------------------------------------------------------------------------------|--------------|
| #1            | 500                                     | ppm                                                               | 450   | ppm | 5                                                                                                 |              |
| #2            | 501                                     | ppm                                                               | 450   | ppm | 6                                                                                                 |              |
| #3            | 503                                     | ppm                                                               | 450   | ppm | Ч                                                                                                 |              |
|               | Calculate Response Tim                  | ie ( <u>1</u> -                                                   | +2+3) |     | 5                                                                                                 | #DIV/0!      |
|               |                                         |                                                                   |       |     | Must be less than                                                                                 | n 30 seconds |

#### CALIBRATION PRECISION RECORD

| Measurement #       | Meter Reading for Z | ero Air (A)    | Meter Reading for Calibration Gas (B) |          |                           |         |
|---------------------|---------------------|----------------|---------------------------------------|----------|---------------------------|---------|
| #1                  | 0,49                | ppm            | 500                                   | ppm      | 0                         |         |
| #2                  | 0.61                | ppm            | 501                                   | ppm      | 1                         | -       |
| #3                  | 0.38                | ppm            | 503                                   | ppm      | 3                         |         |
| Calculate Precision | on [STD-B1] + [S    | 3 3 TD-B2] + [ | STD-B3] X 1 X<br>500                  | 100<br>1 | O.)_<br>Must be less than | #DIV/01 |

| Performed By: | P. MMIREZ    | Date/Time: | 0930 | 11-10-7-1 |   |
|---------------|--------------|------------|------|-----------|---|
| Репогтеа ву:  | 1-1 10001102 | Date/Time: | 0110 |           | _ |



### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

|                | FILL NAME: Simi Valley L: TVA 1000 EQUIPMENT #: 32                                                                                                          | SERIAL #: _092853842     | 3 |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|---|
| MONIT          | TORING DATE: 10-2 - 2                                                                                                                                       | TIME: _0700-             | _ |
| Calibra        | ation Procedure:                                                                                                                                            |                          |   |
| 1,<br>2.<br>3. | Allow instrument to zero itself while introducing air.<br>Introduce calibration gas into the probe. Stabilized of<br>Adjust meter settings to read 500 ppm. | reading = <u>523</u> ppm |   |
| Backg          | round Determination Procedure                                                                                                                               |                          |   |

| 2.5 ppm | 3.8' ppm | 3,/ ppm |
|---------|----------|---------|

Background Value = 3.1 ppm

#### INSTRUMENT RESPONSE TIME RECORD

| Measurement# | Stabilized Reading Using Calibration Gas | 90% of the Stabilized<br>Reading | Time to Reach 90% of<br>Stabilized Reading after<br>switching from Zero Air to<br>Calibration Gas |  |
|--------------|------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------|--|
| #1           | 505 ppm                                  | 450 ppm                          | 6                                                                                                 |  |
| #2           | Se3 ppm                                  | 450 ppm                          | 5                                                                                                 |  |
| #3           | Se3 ppm                                  | 450 ppm                          | 6                                                                                                 |  |
|              | Calculate Response Time (1-3             | +2+3)                            | 5.6 #DIV/01                                                                                       |  |
|              |                                          |                                  | Must be less than 30 seconds                                                                      |  |

#### CALIBRATION PRECISION RECORD

| Measurement #      | Meter Reading for Zo | Pro Air (A) | Meter Reading for<br>Catibration Gas (B) |     | Calculate Precision [STD – (B)] |
|--------------------|----------------------|-------------|------------------------------------------|-----|---------------------------------|
| #1                 | 0.93                 | ppm         | 505                                      | ppm | 5                               |
| #2                 | 0.89                 | ppm         | 503                                      | ppm | 3                               |
| #3                 | 0.87                 | ppm         | 503                                      | ppm | .3                              |
| Calculate Precisio | on [STD-B1] + [S     | TD-B2] + [5 | 5TD-B3] X 1 X<br>500                     | 100 | 4./% #DIV/0I                    |

| Performed By:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------|
| The state of the s | Date/Time: 10 -21-21/ 0700 | <br>558 |



#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

| LANDFILL NAME: Simi Valley      | INSTRUMENT MAKE: THE MO |
|---------------------------------|-------------------------|
| MODEL: TVA 1000 EQUIPMENT #: 32 | SERIAL #: 0928538423    |
| MONITORING DATE: 10-21-21       | TIME: <u>0700-</u>      |
|                                 |                         |

#### Calibration Procedure:

- Allow instrument to zero itself while introducing air.
   Introduce calibration gas into the probe. Stabilized reading = <u>\$503</u> ppm
   Adjust meter settings to read 500 ppm.

#### **Background Determination Procedure**

| Upwind Background<br>Reading:<br>(Highest in 30 seconds) | Downwind Background<br>Reading:<br>(Highest in 30 seconds) | Background Value: (Upwind + Downwind) 2 |
|----------------------------------------------------------|------------------------------------------------------------|-----------------------------------------|
| 2.5 ppm                                                  | 3.8 ppm                                                    | 3./ ppm                                 |

Background Value = 3,1

#### INSTRUMENT RESPONSE TIME RECORD

| Stabilized Reading Using Calibration Gas | 90% of the Stabilit<br>Reading    | Des                                                                                                                                               |                                                                | after                                                                                                                                  |
|------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Sys ppm                                  | 450                               | ppm                                                                                                                                               | 6                                                              |                                                                                                                                        |
| nnm                                      |                                   | ppm                                                                                                                                               | 5                                                              |                                                                                                                                        |
| 503 ppm                                  |                                   | ppm                                                                                                                                               | 6                                                              |                                                                                                                                        |
| Calculate Response Time (14              |                                   |                                                                                                                                                   | 5.6                                                            | #DIV/0                                                                                                                                 |
|                                          | Calibration Gas  SOS ppm  SOS ppm | Calibration Gas         Reading           505         ppm         450           503         ppm         450           503         ppm         450 | Calibration Gas  Ppm 450 ppm  So3 ppm 450 ppm  So3 ppm 450 ppm | Calibration Gas  Reading Stabilized Reading switching from Ze Calibration Gas  Sos ppm 450 ppm 6  Sos ppm 450 ppm 5  Sos ppm 450 ppm 6 |

#### CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

| Measurement #      | Meter Reading for Zero Air (A) |        | Meter Reading for<br>Calibration Gas (B) |                 | Catculate Precision [STD - (B)] |
|--------------------|--------------------------------|--------|------------------------------------------|-----------------|---------------------------------|
| #1                 | 0,93                           | ppm    | 505                                      | ppm             | 5                               |
| #2                 | 0.89                           | ppm    | 503                                      | ppm             | 3                               |
| #3                 | 0.87                           | ppm    | 503                                      | ppm             | 3                               |
| Calculate Precisio |                                | 3<br>3 |                                          | <u>100</u><br>1 | 4./% #DIV/0!                    |

| (             | -11    | 10-  |            |           | /    |  |
|---------------|--------|------|------------|-----------|------|--|
| Performed By: | in the | 16.7 | Date/Time: | 10-21-211 | 0700 |  |
|               | 7      | /    |            |           |      |  |

558

| CALIBRATION PROCEDURE | AND BACKGROUND REPORT - | INTEGRATED |
|-----------------------|-------------------------|------------|
|                       |                         |            |

|                                                                                     | EQUIPMENT #:                                                                              |                            | MAKE: | 0720723621 |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------|-------|------------|
| MONITORING DATE:                                                                    | 10-12-21                                                                                  | TIME                       | 073   | 2          |
| Calibration Procedure:                                                              |                                                                                           |                            |       |            |
|                                                                                     |                                                                                           |                            |       |            |
| 1 Allow instrumen                                                                   | to zero itself while introducing                                                          | air.                       |       |            |
| <ol><li>Introduce calibra</li></ol>                                                 | to zero itself while introducing tion gas into the probe. Stabili                         |                            | 5 ppm |            |
| <ol><li>Introduce calibra</li></ol>                                                 |                                                                                           |                            | \$ppm |            |
| <ol><li>Introduce calibra</li></ol>                                                 | tion gas into the probe. Stabili<br>tings to read 25 ppm                                  |                            | 5ppm  |            |
| 2 Introduce calibra 3 Adjust meter set  Background Determination  Upwind Background | tion gas into the probe. Stabilitings to read 25 ppm.  ion Procedure  Downwind Background |                            |       |            |
| Introduce calibra     Adjust meter set  Background Determina                        | tion gas into the probe. Stabili<br>tings to read 25 ppm<br>lon Procedure                 | zed reading = <u>&amp;</u> | ue:   |            |

| 1              | ppm    | 2   | ppm |
|----------------|--------|-----|-----|
| Background Val | ue= // | ppm |     |

#### **INSTRUMENT RESPONSE TIME RECORD**

| Measurement # | urement # Stabilized Reading Using Calibration Gas |                      |       |     | Time to Reach 90<br>Stabilized Readir<br>switching from Z<br>Calibration Gas | g after    |
|---------------|----------------------------------------------------|----------------------|-------|-----|------------------------------------------------------------------------------|------------|
| #1            | 25,1                                               | ppm                  | 22.5  | ppm | 6                                                                            |            |
| #2            | 25.8                                               | ppm                  | 22.5  | ppm | 5                                                                            |            |
| #3            | 25.9                                               | ppm                  | 22.5  | ppm | 5                                                                            |            |
|               | Calculate Response 1                               | ime ( <u>1:</u><br>3 | +2+3) |     | 5,3                                                                          | #DIV/0I    |
|               |                                                    |                      |       |     | Must be less than :                                                          | 30 seconds |

#### **CALIBRATION PRECISION RECORD**

| Measurement #       | Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B) |        |                     | Calculate Precision [ | STD - (B)]        |         |
|---------------------|----------------------------------------------------------------------|--------|---------------------|-----------------------|-------------------|---------|
| #1                  | 0,69                                                                 | ppm    | 25,1                | ppm                   | 0.1               |         |
| #2                  | 0.78                                                                 | ppm    | 25.8                | ppm                   | 0.3               |         |
| #3                  | 0.64                                                                 | ppm    | 25,9                | ppm                   | 0.4               |         |
| Calculate Precision | on [STD-B1] + [S                                                     | 3 + [S | STD-B3] X 1 X<br>25 | 100<br>1              | 1.0               | #DIV/0l |
|                     |                                                                      |        |                     |                       | Must be less than | 10%     |

| Performed By: | OMBR PERAULA | Date/Time: | 10-12-71 | 0730 |
|---------------|--------------|------------|----------|------|

RIDES Entronman al 1-

#### CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATED

| LANDFILL NAME Simi VI  | માસ્ય        | INSTRUMENT MAKE THERMO |  |
|------------------------|--------------|------------------------|--|
| MODEL: TVALOGO         | EQUIPMENT #: | 7 SERIAL # 0720723627  |  |
| MONITORING DATE: 10-13 | -21          | TIME:730               |  |

#### Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air
- 2. Introduce calibration gas into the probe. Stabilized reading = 25, 8 ppm
- 3. Adjust meter settings to read 25 ppm.

#### **Background Determination Procedure**

| Upwind Baci<br>Reading:<br>(Highest in 30 |     | Downwind Back<br>Reading:<br>(Highest in 30 seco |     | Background Value |     |
|-------------------------------------------|-----|--------------------------------------------------|-----|------------------|-----|
| 3.3                                       | ppm | 4.9                                              | ppm | 4.1              | ppm |

Background Value = \_\_\_\_\_ ppm

#### INSTRUMENT RESPONSE TIME RECORD

| Measurement # | Stabilized Reading Using Calibration Gas | 90% of the Stabilized<br>Reading | Time to Reach 90% of<br>Stabilized Reading after<br>switching from Zero Air to<br>Calibration Gas |
|---------------|------------------------------------------|----------------------------------|---------------------------------------------------------------------------------------------------|
| <b>#1</b>     | 26,5 ppm                                 | 22.5 ppm                         | 6                                                                                                 |
| #2            | 25,8 ppm                                 | 22.5 ppm                         | 5                                                                                                 |
| #3            | 25.8 ppm                                 | 22.5 ppm                         | 6                                                                                                 |
|               | Calculate Response Time (1               | +2+3)                            | 5.6 #DIV/0!<br>Must be less than 30 seconds                                                       |

#### CALIBRATION PRECISION RECORD

| Measurement #       | Meter Reading for Z | Aro Air (A) | Meter Reading for Calibration Gas |                  | Calculate Precision [STD - (B)] |
|---------------------|---------------------|-------------|-----------------------------------|------------------|---------------------------------|
| #1                  | 0.48                | ppm         | 2615                              | ppm              | 1,5                             |
| #2                  | 0,71                | ppm         | 25.8                              | ppm              | 0.8                             |
| #3                  | 0.87                | ppm         | 25.8                              | ppm              | 0.8                             |
| Calculate Precision | on [STD-B1] + [     | STD-B2) + [ |                                   | 1 <u>00</u><br>1 | O, Z 10 #DIV/0                  |

| Performed By Michael ORUS Date/Time 10-13-21 /0730 | 730 |
|----------------------------------------------------|-----|
|----------------------------------------------------|-----|

| CUSTOMER:      | RESUNT #   |       |         |
|----------------|------------|-------|---------|
| SERIAL NUMBER: | 16320832   |       |         |
| TECHNICIAN:    | The Apones | DATE: | 10-2-21 |

### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

|                                     | Fi                       | D                 |                    |
|-------------------------------------|--------------------------|-------------------|--------------------|
| METHANE GAS<br>NOMINAL (ppm)        | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 100                                 | 100                      | 100               | +/- 25             |
| 500                                 | 500                      | 500               | +/- 125            |
| 10000                               | 10000                    | (0,003            | +/- 2500           |
| <1                                  | ZERO GAS                 | 0.64              | < 3                |
|                                     | Pil                      | 0                 | -                  |
| ISOBUTYLENE<br>GAS NOMINAL<br>(ppm) | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 50                                  | 50                       |                   | +/- 12.5           |
| 100                                 | 100                      | /                 | +/- 25             |
| 500                                 | 500                      | /                 | +/- 125            |
| <1                                  | ZERO GAS                 | -/                | < 3                |

| CUSTOMER:              | <u> </u>       |
|------------------------|----------------|
| SERIAL NUMBER:         |                |
| TECHNICIAN: The MBGITS | DATE: /0-2-2-( |

### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

|                                     | F1                       | D                 |                    |
|-------------------------------------|--------------------------|-------------------|--------------------|
| METHANE GAS<br>NOMINAL (ppm)        | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 100                                 | 100                      | 100               | +/- 25             |
| 500                                 | 500                      | 501               | +/- 125            |
| 10000                               | 10000                    | 10, 100           | +/- 2500           |
| <1                                  | ZERO GAS                 | 0,45              | <3                 |
|                                     | Pil                      | 0                 |                    |
| ISOBUTYLENE<br>GAS NOMINAL<br>(ppm) | CALIBRATION<br>GAS.(ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 50                                  | 50                       |                   | +/- 12.5           |
| 100                                 | 100                      |                   | +/- 25             |
| 500                                 | 500                      |                   | +/- 125            |
| <1                                  | ZERO GAS                 | /                 | < 3                |

| CUSTOMER: PIES VAID # 3  | <del></del> |
|--------------------------|-------------|
| SERIAL NUMBER: 15865 884 |             |
| TECHNICIAN: MARINE DATE: | 10-2-21     |

### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

|                                     | Fil.                     | D                 |                    |
|-------------------------------------|--------------------------|-------------------|--------------------|
| METHANE GAS<br>NOMINAL (ppm)        | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE (ppm)    |
| 100                                 | 100                      | 94                | +/- 25             |
| 500                                 | 500                      | 500               | +/- 125            |
| 10000                               | 10000                    | 10,031            | +/- 2500           |
| <1                                  | ZERO GAS                 | 0.79              | < 3                |
|                                     | PII                      | 0                 |                    |
| ISOBUTYLENE<br>GAS NOMINAL<br>(ppm) | CALIBRATION<br>GAS.(ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 50                                  | 50                       |                   | +/- 12.5           |
| 100                                 | 100                      |                   | +/- 25             |
| 500                                 | 500                      |                   | +/- 125            |
| < 1                                 | ZERO GAS                 |                   | < 3                |

| CUSTOMER:      | NES Vait | #4    |                                                |
|----------------|----------|-------|------------------------------------------------|
| SERIAL NUMBER: | 163198   | 30    | <u>.                                      </u> |
| TECHNICIAN:    | UBIE YS  | DATE: | 10-2-21                                        |

### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

|                                     | Fi                       | D                 |                    |
|-------------------------------------|--------------------------|-------------------|--------------------|
| METHANE GAS<br>NOMINAL (ppm)        | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 100                                 | 100                      | 100               | +/- 25             |
| 500                                 | 500                      | Sao               | +/- 125            |
| 10000                               | 10000                    | 10,021            | +/- 2500           |
| <1                                  | ZERO GAS                 | 0.65              | < 3                |
|                                     | Pil                      | 0                 |                    |
| ISOBUTYLENE<br>GAS NOMINAL<br>(ppm) | CALIBRATION<br>GAS.(ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 50                                  | 50                       |                   | +/- 12.5           |
| 100                                 | 100                      |                   | +/- 25             |
| 500                                 | 500                      |                   | +/- 125            |
| <1                                  | ZERO GAS                 |                   | < 3                |

| CUSTOMER:      | Plas Vay | +5            |
|----------------|----------|---------------|
| SERIAL NUMBER: | 4919480  |               |
| TECHNICIAN:    | M MBERES | DATE: 10-2-21 |

### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

|                                     | FI:                      | D                 |                    |
|-------------------------------------|--------------------------|-------------------|--------------------|
| METHANE GAS<br>NOMINAL (ppm)        | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 100                                 | 100                      | (00               | +/- 25             |
| 500                                 | 500                      | Sel               | +/- 125            |
| 10000                               | 10000                    | 10,001            | +/- 2500           |
| <1                                  | ZERO GAS                 | 0.52              | < 3                |
|                                     | Pil                      | )                 |                    |
| ISOBUTYLENE<br>GAS NOMINAL<br>(ppm) | CALIBRATION<br>GAS.(ppm) | TVA READING (ppm) | TOLERANCE (ppm)    |
| 50                                  | 50                       |                   | +/- 12.5           |
| 100                                 | 100                      |                   | +/- 25             |
| 500                                 | 500                      |                   | +/- 125            |
| <1                                  | ZERO GAS                 | /                 | < 3                |

| CUSTOMER:     |    | 1/25 (In ut | #6      |         |
|---------------|----|-------------|---------|---------|
| SERIAL NUMBER | R: | 07207236    | 126     |         |
| TECHNICIAN:   | M  | MBF15       | DATE: _ | 10-2-21 |

### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

|                                     | FII                      | D                 |                    |
|-------------------------------------|--------------------------|-------------------|--------------------|
| METHANE GAS<br>NOMINAL (ppm)        | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 100                                 | 100                      | 100               | +/- 25             |
| 500                                 | 500                      | 494               | +/- 125            |
| 10000                               | 10000                    | 10,126            | +/- 2500           |
| <1                                  | ZERO GAS                 | 6,79              | < 3                |
|                                     | PI                       | D .               |                    |
| ISOBUTYLENE<br>GAS NOMINAL<br>(ppm) | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 50                                  | 50                       |                   | +/- 12.5           |
| 100                                 | 100                      |                   | +/- 25             |
| 500                                 | 500                      |                   | +/- 125            |
| <1                                  | ZERO GAS                 |                   | < 3                |

| CUSTOMER:              | #7      | 700     |
|------------------------|---------|---------|
| SERIAL NUMBER: 0720723 | 627     |         |
| TECHNICIAN: M MORENTS  | DATE: _ | 10-2-21 |

### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

|                                     | FI                       | D                 |                    |
|-------------------------------------|--------------------------|-------------------|--------------------|
| METHANE GAS<br>NOMINAL (ppm)        | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE (ppm)    |
| 100                                 | 100                      | 100               | +/- 25             |
| 500                                 | 500                      | 500               | +/- 125            |
| 10000                               | 10000                    | 10,101            | +/- 2500           |
| <1                                  | ZERO GAS                 | 0,69              | < 3                |
|                                     | Pil                      |                   |                    |
| ISOBUTYLENE<br>GAS NOMINAL<br>(ppm) | CALIBRATION<br>GAS.(ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 50                                  | 50                       |                   | +/- 12.5           |
| 100                                 | 100                      |                   | +/- 25             |
| 500                                 | 500                      | /                 | +/- 125            |
| <1                                  | ZERO GAS                 | 7                 | <3                 |

| CUSTOMER:      | RES VOUT# | - 9     |               |
|----------------|-----------|---------|---------------|
| SERIAL NUMBER: | 0532113   | 801     | <del></del> - |
| TECHNICIAN:    | MBFINS    | DATE: _ | 10-2-21       |

#### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

| FiD                                 |                          |                   |                    |
|-------------------------------------|--------------------------|-------------------|--------------------|
| METHANE GAS<br>NOMINAL (ppm)        | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 100                                 | 100                      | 100               | +/- 25             |
| 500                                 | 500                      | 500               | +/- 125            |
| 10000                               | 10000                    | LUIWOO            | +/- 2500           |
| <1                                  | ZERO GAS                 | Q. 6?             | < 3                |
|                                     | PII                      | D                 |                    |
| ISOBUTYLENE<br>GAS NOMINAL<br>(ppm) | CALIBRATION<br>GAS.(ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 50                                  | 50                       |                   | +/- 12.5           |
| 100                                 | 100                      |                   | +/- 25             |
| 500                                 | 500                      |                   | +/- 125            |
| <1                                  | ZERO GAS                 | /                 | < 3                |

| CUSTOMER: MES VANT     | # 29             |
|------------------------|------------------|
| SERIAL NUMBER: 103/445 | 324              |
| TECHNICIAN: M. MBEJES  | _ DATE: /0-2-2-( |

### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

|                                     | Fi                       | D                 |                    |
|-------------------------------------|--------------------------|-------------------|--------------------|
| METHANE GAS<br>NOMINAL (ppm)        | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 100                                 | 100                      | 29                | +/- 25             |
| 500                                 | 500                      | 499               | +/- 125            |
| 10000                               | 10000                    | 10,000            | +/- 2500           |
| < 1                                 | ZERO GAS                 | 0.71              | < 3                |
|                                     | PI                       | )                 | ·                  |
| ISOBUTYLENE<br>GAS NOMINAL<br>(ppm) | CALIBRATION<br>GAS.(ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 50                                  | 50                       |                   | +/- 12.5           |
| 100                                 | 100                      |                   | +/- 25             |
| 500                                 | 500                      |                   | +/- 125            |
| <1                                  | ZERO GAS                 |                   | <3                 |

| CUSTOMER: NES VAT | # 32          |
|-------------------|---------------|
| SERIAL NUMBER:    | 8173          |
| TECHNICIAN:       | DATE: 10-7-21 |

#### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

|                                     | FI.                      | D                 |                    |
|-------------------------------------|--------------------------|-------------------|--------------------|
| METHANE GAS<br>NOMINAL (ppm)        | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 100                                 | 100                      | 100               | +/- 25             |
| 500                                 | 500                      | 500               | +/- 125            |
| 10000                               | 10000                    | 10,000            | +/- 2500           |
| <1                                  | ZERO GAS                 | 0,69              | < 3                |
|                                     | PI                       | D                 |                    |
| ISOBUTYLENE<br>GAS NOMINAL<br>(ppm) | CALIBRATION<br>GAS_(ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 50                                  | 50                       | /                 | +/- 12.5           |
| 100                                 | 100                      |                   | +/- 25             |
| 500                                 | 500                      |                   | +/- 125            |
| <1                                  | ZERO GAS                 |                   | < 3                |

| CUSTOMER:      | Pris var | # 33  |         |
|----------------|----------|-------|---------|
| SERIAL NUMBER: | 00041015 |       |         |
| TECHNICIAN:    | NUBITIES | DATE: | 10-2-21 |

### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

|                                     | FI                       | D                 |                    |
|-------------------------------------|--------------------------|-------------------|--------------------|
| METHANE GAS<br>NOMINAL (ppm)        | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 100                                 | 100                      | 100               | +/- 25             |
| 500                                 | 500                      | 500               | +/- 125            |
| 10000                               | 10000                    | 10.010            | +/- 2500           |
| < 1                                 | ZERO GAS                 | 0,68              | < 3                |
|                                     | Pil                      | D                 |                    |
| ISOBUTYLENE<br>GAS NOMINAL<br>(ppm) | CALIBRATION<br>GAS.(ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 50                                  | 50                       |                   | +/- 12.5           |
| 100                                 | 100                      |                   | +/- 25             |
| 500                                 | 500                      |                   | +/- 125            |
| <1                                  | ZERO GAS                 | /                 | < 3                |

| CUSTOMER:      | PIES COUTE & | ¥ 36    |         |
|----------------|--------------|---------|---------|
| SERIAL NUMBER: | 0332603      | 125     |         |
| TECHNICIAN:    | Ol 1319 115  | DATE: _ | 10-2-21 |

### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

|                                     | FI                       | D                 |                    |
|-------------------------------------|--------------------------|-------------------|--------------------|
| METHANE GAS<br>NOMINAL (ppm)        | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 100                                 | 100                      | 100               | +/- 25             |
| 500                                 | 500                      | SOU               | +/- 125            |
| 10000                               | 10000                    | 10,000            | +/- 2500           |
| <1                                  | ZERO GAS                 | 0,64              | < 3                |
|                                     | Pil                      | D ,               |                    |
| ISOBUTYLENE<br>GAS NOMINAL<br>(ppm) | CALIBRATION<br>GAS_(ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 50                                  | 50                       |                   | +/- 12.5           |
| 100                                 | 100                      |                   | +/- 25             |
| 500                                 | 500                      |                   | +/- 125            |
| <1                                  | ZERO GAS                 |                   | < 3                |

| CUSTOMER:               | # 10            |
|-------------------------|-----------------|
| SERIAL NUMBER:          | 773             |
| TECHNICIAN: M (1631-145 | _ DATE: 10-2-21 |

### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

|                                     | FI                       | D                 |                    |
|-------------------------------------|--------------------------|-------------------|--------------------|
| METHANE GAS<br>NOMINAL (ppm)        | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE (ppm)    |
| 100                                 | 100                      | 100               | +/- 25             |
| 500                                 | 500                      | 500               | +/- 125            |
| 10000                               | 10000                    | 10,006            | +/- 2500           |
| <1                                  | ZERO GAS                 | 0.24              | < 3                |
|                                     | PII                      | )                 |                    |
| ISOBUTYLENE<br>GAS NOMINAL<br>(ppm) | CALIBRATION<br>GAS.(ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 50                                  | 50                       |                   | +/- 12.5           |
| 100                                 | 100                      |                   | +/- 25             |
| 500                                 | 500                      |                   | +/- 125            |
| <1                                  | ZERO GAS                 |                   | < 3                |

| CUSTOMER:      | NES UNIT  | #11     |         |
|----------------|-----------|---------|---------|
| SERIAL NUMBER: | 10363467  | 74      |         |
| TECHNICIAN:    | My MB1915 | DATE: _ | 10-2-21 |

#### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

|                                     | FII                      | D                    |                    |
|-------------------------------------|--------------------------|----------------------|--------------------|
| METHANE GAS<br>NOMINAL (ppm)        | CALIBRATION<br>GAS (ppm) | TVA READING (ppm)    | TOLERANCE<br>(ppm) |
| 100                                 | 100                      | 100                  | +/- 25             |
| 500                                 | 500                      | 500                  | +/- 125            |
| 10000                               | 10000                    | 10,000               | +/- 2500           |
| < 1                                 | ZERO GAS                 | 0.61                 | < 3                |
|                                     | PII                      | D                    |                    |
| ISOBUTYLENE<br>GAS NOMINAL<br>(ppm) | CALIBRATION<br>GAS.(ppm) | TVA READING<br>(ppm) | TOLERANCE<br>(ppm) |
| 50                                  | 50                       |                      | +/- 12.5           |
| 100                                 | 100                      |                      | +/- 25             |
| 500                                 | 500                      | /                    | +/- 125            |
| < 1                                 | ZERO GAS                 |                      | < 3                |

| CUSTOMER:           | 12    |         |
|---------------------|-------|---------|
| SERIAL NUMBER:      |       |         |
| TECHNICIAN: MBIE115 | DATE: | 10-2-21 |

### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

|                                     | FII                      | D                 |                    |
|-------------------------------------|--------------------------|-------------------|--------------------|
| METHANE GAS<br>NOMINAL (ppm)        | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 100                                 | 100                      | (00               | +/- 25             |
| 500                                 | 500                      | 500               | +/- 125            |
| 10000                               | 10000                    | 14,003            | +/- 2500           |
| <1                                  | ZERO GAS                 | 0,64              | < 3                |
|                                     | PI                       | D                 |                    |
| ISOBUTYLENE<br>GAS NOMINAL<br>(ppm) | CALIBRATION<br>GAS.(ppm) | TVA READING (ppm) | TOLERANCE (ppm)    |
| 50                                  | 50                       |                   | +/- 12.5           |
| 100                                 | 100                      |                   | +/- 25             |
| 500                                 | 500                      |                   | +/- 125            |
| <1                                  | ZERO GAS                 |                   | < 3                |

| CUSTOMER:      | IES UNIT#  | 13      |         |
|----------------|------------|---------|---------|
| SERIAL NUMBER: | 1102746 27 | 5       |         |
| TECHNICIAN:    | UBG45      | DATE: _ | 10-2-21 |

#### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

| FID                                 |                          |                   |                    |  |
|-------------------------------------|--------------------------|-------------------|--------------------|--|
| METHANE GAS<br>NOMINAL (ppm)        | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |  |
| 100                                 | 100                      | 100               | +/- 25             |  |
| 500                                 | 500                      | SOO               | +/- 125            |  |
| 10000                               | 10000                    | 10,000            | +/- 2500           |  |
| <1                                  | ZERO GAS                 | 0,72              | < 3                |  |
|                                     | PII                      | D                 |                    |  |
| ISOBUTYLENE<br>GAS NOMINAL<br>(ppm) | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |  |
| 50                                  | 50                       |                   | +/- 12.5           |  |
| 100                                 | 100                      |                   | +/- 25             |  |
| 500                                 | 500                      |                   | +/- 125            |  |
| <1                                  | ZERO GAS                 |                   | < 3                |  |

| CUSTOMER: Piss Unit.    | 4-14          |
|-------------------------|---------------|
| SERIAL NUMBER: / 036346 | 271           |
| TECHNICIAN: MBILTS      | DATE: 10-2-21 |

### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

|                                     | Fi                       | D                 |                    |
|-------------------------------------|--------------------------|-------------------|--------------------|
| METHANE GAS<br>NOMINAL (ppm)        | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 100                                 | 100                      | 100               | +/- 25             |
| 500                                 | 500                      | 500               | +/- 125            |
| 10000                               | 10000                    | 10,000            | +/- 2500           |
| <1                                  | ZERO GAS                 | 0.63              | < 3                |
|                                     | PII                      | )                 |                    |
| ISOBUTYLENE<br>GAS NOMINAL<br>(ppm) | CALIBRATION<br>GAS.(ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 50                                  | 50                       |                   | +/- 12.5           |
| 100                                 | 100                      |                   | +/- 25             |
| 500                                 | 500                      |                   | +/- 125            |
| <1                                  | ZERO GAS                 | 7                 | < 3                |

| CUSTOMER: | PIES | Vat | # | 15 |  |
|-----------|------|-----|---|----|--|
|           |      |     |   |    |  |

TECHNICIAN: M ABERTS DATE: 10-2-21

#### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

|                                     | Fi                       | D                 |                    |
|-------------------------------------|--------------------------|-------------------|--------------------|
| METHANE GAS<br>NOMINAL (ppm)        | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 100                                 | 100                      | 100               | +/- 25             |
| 500                                 | 500                      | 500               | +/- 125            |
| 10000                               | 10000                    | 10,004            | +/- 2500           |
| <1                                  | ZERO GAS                 | 0,63              | < 3                |
|                                     | PI                       | D                 |                    |
| ISOBUTYLENE<br>GAS NOMINAL<br>(ppm) | CALIBRATION<br>GAS.(ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 50                                  | 50                       |                   | +/- 12.5           |
| 100                                 | 100                      |                   | +/- 25             |
| 500                                 | 500                      |                   | +/- 125            |
| <1                                  | ZERO GAS                 | 1                 | < 3                |

| CUSTOMER:              | - 16    |         |
|------------------------|---------|---------|
| SERIAL NUMBER: 1027467 | 176     |         |
| TECHNICIAN: M ABEHS    | DATE: _ | 10-2-20 |

### GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

|                                     | FI                       | D                 |                    |
|-------------------------------------|--------------------------|-------------------|--------------------|
| METHANE GAS<br>NOMINAL (ppm)        | CALIBRATION<br>GAS (ppm) | TVA READING (ppm) | TOLERANCE (ppm)    |
| 100                                 | 100                      | 100               | +/- 25             |
| 500                                 | 500                      | SOU               | +/- 125            |
| 10000                               | 10000                    | 10,000            | +/- 2500           |
| <1                                  | ZERO GAS                 | 0,63              | < 3                |
|                                     | PI                       | 0                 |                    |
| ISOBUTYLENE<br>GAS NOMINAL<br>(ppm) | CALIBRATION<br>GAS_(ppm) | TVA READING (ppm) | TOLERANCE<br>(ppm) |
| 50                                  | 50                       |                   | +/- 12.5           |
| 100                                 | 100                      | /                 | +/- 25             |
| 500                                 | 500                      | /                 | +/- 125            |
| <1                                  | ZERO GAS                 |                   | <3                 |



### SURFACE EMISSION MONITORING INSTRUMENT CALIBRATION LOG

| Operator:                        | //9                  |                                           |            |
|----------------------------------|----------------------|-------------------------------------------|------------|
| Date: 10-2-2-(                   | Time:                | 0600                                      |            |
| fodel # TVA 1000B                |                      |                                           |            |
| erial # # 1 /632083              | 2                    |                                           |            |
| INSTRUMENT INTEGRITY CH          | HECKLIST             | INSTRUMENT CA                             | LIBRATION  |
|                                  |                      | CALIBRATION                               | CHECK      |
| sattery test                     | as / Fail Calibratio |                                           |            |
| eading following ignition        | 2.6 ppm Gas (ppm     | ı) (ppm)                                  | Accuracy   |
|                                  | Soo                  | 500                                       | 100%       |
| eak test (#                      | Pass / Fail / NA     | RESPONSE                                  | TIME       |
| lean system check                | Paşs / Fail / NA     | ,                                         | _          |
| check valve chatter)             | Calibration          |                                           | <u> </u>   |
| 2 supply pressure gauge          |                      | ibration Gas, ppm<br>red to attain 90% of |            |
| acceptable range 9.5 - 12)       | 1.                   |                                           | од. одо рр |
| late of last factor, cellbration | 10-2-2-1 2.          | 5                                         |            |
| ate of last factory calibration  | 3.                   | 6                                         |            |
| actory calibration record        | Pass / Fail Average  | less than 30 secon                        | nds? (Y) N |
| //instrument within 3 months     |                      | calibrated to                             |            |
|                                  | 11193 9111916        |                                           |            |
| comments:                        |                      |                                           |            |

465



### SURFACE EMISSION MONITORING INSTRUMENT CALIBRATION LOG

| Date: 10-2-2(  Model # + 1000B                                        | Time:             | 0615                |               |
|-----------------------------------------------------------------------|-------------------|---------------------|---------------|
|                                                                       |                   |                     |               |
| _                                                                     |                   |                     |               |
| Serial # # 2 778 4545                                                 |                   |                     |               |
| INSTRUMENT INTEGRITY CHECKLIST                                        | INST              | RUMENT CALIBRA      | ATION         |
| Battery test Rass / Fail                                              | Calibration       | ALIBRATION CHEC     |               |
| <i>O</i>                                                              | Gas (ppm)         | Actual<br>(ppm)     | %<br>Accuracy |
| Reading following ignition                                            | -                 | 500                 | 100           |
| eak test Pas / Fail / NA                                              | 500               | 300                 | 100'r.        |
| ilean system check Pass / Fail / NA                                   |                   | RESPONSE TIME       |               |
| 1                                                                     | Calibration Gas,  | pom 5               | 00            |
| <i>n</i>                                                              | 90% of Calibratio | on Gas, ppm         | 450           |
| 1/2 supply pressure gauge Fast / Fail / NA acceptable range 9.5 - 12) |                   | attain 90% of Cal G | ias ppm       |
|                                                                       | 1.                | 5                   |               |
| Pate of last factory calibration 10-2-21                              |                   | ط                   |               |
| factory calibration record                                            | Average           | 5.3                 | _             |
| //Instrument within 3 months                                          |                   | than 30 seconds?    | € N           |
|                                                                       | instrument calibr | rated to CV4        | _gas.         |
| Comments:                                                             |                   |                     |               |

465



| Purpose:                             | West /           | W                        |                                       |               |
|--------------------------------------|------------------|--------------------------|---------------------------------------|---------------|
| Operator:                            | fra CI           |                          |                                       |               |
| Date: /0 -2- 2 (                     |                  | Time:                    | 0630                                  |               |
| Model # JUA 1000 B                   | -                |                          |                                       |               |
| ierial# #3 15865                     | 884              |                          |                                       |               |
| INSTRUMENT INTEGRITY                 | CHECKLIST        | INSTI                    | RUMENT CALIBRA                        | ATION         |
|                                      |                  |                          | ALIBRATION CHE                        |               |
| Sattery test                         | eas / Fail       | Calibration<br>Gas (ppm) | Actual<br>(ppm)                       | %<br>Accuracy |
| eading following ignition            | _1,9ppm          |                          |                                       |               |
|                                      | A                | 500                      | 500                                   | 1004          |
| eak test                             | Pass / Fail / NA |                          | RESPONSE TIME                         | Ē             |
| lean system check                    | Facs / Fail / NA |                          |                                       | 500           |
| check valve chatter)                 |                  | Calibration Gas,         | ррпі                                  | 450           |
| l <sub>2</sub> supply pressure gauge | Pass / Fall / NA | 90% of Calibratio        | n Gas, ppm<br>attain 90% of Cal (     |               |
| acceptable range 9.5 - 12)           |                  | 1.                       | ,                                     |               |
| nata af lant fasta - a allh t'-      | 10-2-2-1         | 2.                       |                                       |               |
| Pate of last factory calibration     | 10-1-0-          | J                        | 5                                     |               |
| actory calibration record            | Fass / Fail      |                          | .6                                    | 6             |
| Vinstrument within 3 months          |                  | 1 '                      | han 30 seconds?<br>ated to <u>CHU</u> | (e) N         |
|                                      |                  | Instrument Canon         | aled to CAA                           | yas.          |
| Comments:                            |                  |                          |                                       |               |



| ourpose:                        | 1. /1.           |                                          |                     |                   |
|---------------------------------|------------------|------------------------------------------|---------------------|-------------------|
| Operator:                       | 11 (19           | W. Hills                                 |                     |                   |
| Date: 10-2-21                   |                  | Time:                                    | 0645                |                   |
| Model # _ +VA-1000 V            | 3                |                                          |                     |                   |
| Gerial # 4 163 199              | 830              |                                          |                     |                   |
| INSTRUMENT INTEGRITY            | CHECKLIST        | INSTR                                    | UMENT CALIBRA       | ATION             |
| -M                              | <u> </u>         |                                          | LIBRATION CHE       | CK                |
| attery test                     | Pass / Fail      | Calibration                              | Actual              | %                 |
| eading following ignition       | 2.3 ppm          | Gas (ppm)                                | (ppm)               | Accuracy          |
| eak test                        | Pass / Fail / NA | 500                                      | 500                 | 100%              |
|                                 | Š                |                                          | RESPONSE TIME       |                   |
| lean system check               | Rass / Fail / NA | Calibarda - C                            |                     | Cean              |
| theck valve chatter)            |                  | Calibration Gas, p<br>90% of Calibration |                     | <u>500</u><br>450 |
| l₂ supply pressure gauge        | (ass / Fail / NA |                                          | ittain 90% of Cal ( | 7.7.0             |
| acceptable range 9.5 - 12)      |                  | 1.                                       | (                   | Phili             |
| hate of last factors, as lib 4' | 10-2-21          | 2.                                       |                     |                   |
| ate of last factory calibration | 1000             | 3.                                       | 0                   |                   |
| actory calibration record       | Pass / Fail      |                                          | 0                   | 60                |
| /instrument within 3 months     | •                | Equal to or less th                      | an 30 seconds?      | 60 N              |
|                                 |                  | Instrument calibra                       | ited to <u>Cbty</u> | _ gas.            |
| Comments:                       |                  |                                          |                     |                   |
| omments.                        |                  |                                          |                     |                   |



| 1                                                                                                  |
|----------------------------------------------------------------------------------------------------|
| Time:                                                                                              |
|                                                                                                    |
|                                                                                                    |
| INSTRUMENT CALIBRATION                                                                             |
| CALIBRATION CHECK Calibration Actual % Gas (ppm) (ppm) Accuracy                                    |
| 900 SOO (907,                                                                                      |
| RESPONSE TIME  A Calibration Gas, ppm  90% of Calibration Gas, ppm                                 |
| Time required to attain 90% of Cal Gas ppm  1                                                      |
| - 3. <u>5</u>                                                                                      |
| Average <u>\$.3</u> Equal to or less than 30 seconds? (Y) Instrument calibrated to <u>CHY</u> gas. |
|                                                                                                    |
| -                                                                                                  |



| Site:                                                               |                  | _                                         |                     |                |
|---------------------------------------------------------------------|------------------|-------------------------------------------|---------------------|----------------|
| Purpose:                                                            |                  |                                           |                     |                |
| Operator:                                                           | Vac My           |                                           |                     |                |
| Date: 10-2-21                                                       |                  | Time:                                     | 0715                |                |
| Model # TUA 1000 B                                                  | <del></del>      |                                           |                     |                |
| Serial # #6 077077                                                  | 362b             |                                           |                     |                |
| INSTRUMENT INTEGRITY                                                | CHECKLIST        | INSTR                                     | RUMENT CALIBRA      | ATION          |
| Battery test                                                        | ass / Fail       | Calibration                               | ACTUAL              | %              |
| Reading following ignition                                          | 2 11 ppm         | Gas (ppm)                                 | (ppm)               | Accuracy       |
| Leak test                                                           | Pags / Fail / NA | 500                                       | 500                 | 1004,          |
| Clean system check (check valve chatter)                            | Pass / Fail / NA | Calibration Gas, p                        |                     | <u>Soo_</u>    |
| H <sub>2</sub> supply pressure gauge<br>(acceptable range 9.5 - 12) | Fase / Fail / NA | 90% of Calibration Time required to a  1. | attain 90% of Cal C | 450<br>Sas ppm |
| Date of last factory calibration                                    | 10-2-21          | 2.<br>3.                                  |                     |                |
| Factory calibration record w/instrument within 3 months             | ease / Fail      | Equal to or less th                       | nan 30 seconds?     | Ø N<br>_gas.   |
| Comments:                                                           |                  |                                           |                     | ·              |
|                                                                     |                  |                                           |                     |                |



| perator:                                            | Mr /19            | 1                                     |                   |               |
|-----------------------------------------------------|-------------------|---------------------------------------|-------------------|---------------|
| ate: 10-2-21                                        |                   | Time:                                 | 0710              |               |
| odel# + 1000 V                                      | 3                 |                                       |                   |               |
| rial # # 7 072072                                   | 3 627             |                                       |                   |               |
| INSTRUMENT INTEGRIT                                 | Y CHECKLIST       | INST                                  | RUMENT CALIBR     | ATION         |
|                                                     |                   | C/                                    | LIBRATION CHE     | CK            |
| ttery test                                          | fass / Fail       | Calibration<br>Gas (ppm)              | Actual<br>(ppm)   | %<br>Accuracy |
| ading following ignition                            | _2.0_ ppm         |                                       |                   | •             |
| -b. 44                                              | ^                 | 500                                   | 500               | 100%          |
| ak test                                             | (7a)s / Fail / NA |                                       | RESPONSE TIME     | <b>E</b>      |
| an system check                                     | Rasis / Fail / NA | Calibaria - Can                       |                   | 500           |
| eck valve chatter)                                  |                   | Calibration Gas, p 90% of Calibration |                   | 450           |
| supply pressure gauge                               | Rass / Fail / NA  |                                       | attain 90% of Cal |               |
| cceptable range 9.5 - 12)                           |                   | 1                                     | 2                 |               |
| ite of last factory calibration                     | 10-2-2-           | 2                                     | <u>6</u>          |               |
| i la                                                | Ca                | 3                                     | <u> </u>          |               |
| ctory calibration record instrument within 3 months | Pass / Fail       |                                       | nan 30 seconds?   | Ø N           |
| HOUSE CHIRD HOUSE                                   |                   |                                       | ated to Clfy      |               |
|                                                     |                   | I                                     |                   |               |



| Operator:                                              | Mu / My          |                          |                      |              |
|--------------------------------------------------------|------------------|--------------------------|----------------------|--------------|
| Date:                                                  |                  | Time:                    | 0747                 |              |
| Model # + 41 1000B                                     | -                |                          |                      |              |
| Serial # #9 0532)                                      | 13801            |                          |                      |              |
| INSTRUMENT INTEGRITY                                   | CHECKLIST        | INSTR                    | RUMENT CALIBR        | ATION        |
| Battery test                                           | Fail             | Calibration<br>Gas (ppm) | ACTUAL               | %            |
| Reading following ignition                             |                  |                          | (ppm)                | Accuracy     |
| eak test                                               | Pass / Fail / NA | 500                      | SOO<br>RESPONSE TIME | 1004,        |
| Clean system check<br>check valve chatter)             | Pass / Fail / NA | Calibration Gas, p       |                      | <u>500</u>   |
| t₂ supply pressure gauge<br>acceptable range 9.5 - 12) | Pass / Fail / NA | Time required to a       | attain 90% of Cal C  |              |
| Date of last factory calibration                       | 10-2-21          | 2. <u>4</u>              | <del></del>          |              |
| Factory calibration record within 3 months             | Pass / Fail      | Equal to or less th      | nan 30 seconds?      | Ø N<br>_gas. |
|                                                        |                  |                          |                      |              |



| perator:                        |                  |                   |                                   |                                               |
|---------------------------------|------------------|-------------------|-----------------------------------|-----------------------------------------------|
| ate: 10-2-21                    |                  | Time:             | 0800                              |                                               |
| odel#                           | 3                |                   |                                   |                                               |
| erial # <u>#29 10314</u>        | 45324            |                   |                                   |                                               |
| INSTRUMENT INTEGRITY            | CHECKLIST        | INSTI             | RUMENT CALIBRA                    | ATION                                         |
|                                 |                  | C                 | LIBRATION CHE                     | CK                                            |
| attery test                     | Pass / Fail      | Calibration       | Actual                            | %                                             |
| ading following ignition        |                  | Gas (ppm)         | (ppm)                             | Accuracy                                      |
| acing following ignition        |                  | 500               | 500                               | 1007                                          |
| ak test                         | Gas / Fail / NA  |                   | RESPONSE TIME                     |                                               |
| ean system check                | Pass / Fail / NA |                   |                                   | _                                             |
| eck valve chatter)              | 0                | Calibration Gas,  | —                                 | <u> 500                                  </u> |
| supply pressure gauge           | Fass / Fail / NA | 90% of Calibratio | n Gas, ppm<br>attain 90% of Cal ( | 450                                           |
| cceptable range 9.5 - 12)       |                  | 1.                | dicam 90 % or Oar C               | Jas ppin                                      |
| ota of last factors callbrakter | 10-2-21          | 2.                |                                   |                                               |
| te of last factory calibration  | 1000             |                   | 2                                 |                                               |
| ectory calibration record       | Pass / Fail      |                   | (cb                               | (V) N                                         |
| instrument within 3 months      |                  | Instrument calibr | nan 30 seconds?<br>ated to Clfy   | nas N                                         |
|                                 |                  | msuoment campra   | sted to                           | _ Ago.                                        |
|                                 | -                |                   |                                   |                                               |



| Purpose:                                   |                  |                                  |                                  |                |
|--------------------------------------------|------------------|----------------------------------|----------------------------------|----------------|
| Operator:                                  | u M              |                                  |                                  |                |
| Date: 10-27                                |                  | Time:                            | 0815                             |                |
| Hodel # 14 47 1000 12                      | <u> </u>         |                                  |                                  |                |
| Serial # #3} 0928                          | <u>5384</u> 23   |                                  |                                  |                |
| INSTRUMENT INTEGRITY                       | CHECKLIST        | INST                             | RUMENT CALIBRA                   | ATION          |
|                                            |                  |                                  | CALIBRATION CHE                  |                |
| Battery test                               | Pass / Fail      | Calibration<br>Gas (ppm)         | Actual                           | %<br>Appurpose |
| leading following ignition                 | 2:6 ppm          | VI                               | (ppm)                            | Accuracy       |
| eak test                                   |                  | 500                              | 500                              | 1008           |
| oak test                                   | as / Fail / NA   |                                  | RESPONSE TIME                    |                |
| Clean system check                         | as / Fail / NA   |                                  |                                  | -<br>-<br>-    |
| check valve chatter)                       | ,—               | Calibration Gas 90% of Calibrati |                                  | 450<br>450     |
| 12 supply pressure gauge                   | Pass / Fall / NA | 1                                | on Gas, ppmo attain 90% of Cal G |                |
| acceptable range 9.5 - 12)                 |                  | 1.                               | 6                                |                |
| Date of last factory calibration           | 10-2-21          | 2                                | 6                                |                |
|                                            | ~                | 3                                | 7                                |                |
| Factory calibration record within 3 months | (Pass / Fail     | Average                          | than 30 seconds?                 | (v) N          |
| avisuoment within 3 months                 |                  |                                  | prated to CHy                    |                |
| Comments:                                  |                  |                                  |                                  |                |
|                                            |                  |                                  | - WHO                            |                |
|                                            |                  |                                  |                                  |                |



| Site:                                                   |                    |                    |                   |          |
|---------------------------------------------------------|--------------------|--------------------|-------------------|----------|
| Purpose:                                                |                    |                    |                   |          |
| Operator:                                               | 1 //               |                    |                   | x        |
| Date: 10-2-21                                           |                    | Time:              | 0830              |          |
| Model #                                                 |                    |                    |                   |          |
| Serial # # 33 00041                                     | 1015               |                    |                   |          |
| INSTRUMENT INTEGRITY                                    | CHECKLIST          | INSTR              | RUMENT CALIBR     | ATION    |
|                                                         | ~                  | C/                 | LIBRATION CHE     | CK       |
| Battery test                                            | (ass) / Fail       | Calibration        | Actual            | %        |
| Reading following ignition                              | _7.1 ppm           | Gas (ppm)          | (ppm)             | Accuracy |
| reading londwing ignition                               | PP'''              | 500                | 500               | 100%     |
| .eak test                                               | Pass / Fail / NA   |                    | RESPONSE TIME     |          |
| Clean system check                                      | Pass / Fail / NA   |                    | KESPONSE TIME     | _        |
| check valve chatter)                                    | (AB) / ( B) / ( B) | Calibration Gas,   |                   | SO 0     |
|                                                         |                    | 90% of Calibration |                   | 450      |
| 1/2 supply pressure gauge                               | ess / Fall / NA    |                    | attain 90% of Cal | Sas ppm  |
| acceptable range 9.5 - 12)                              |                    |                    | 6                 |          |
| Date of last factory calibration                        | 10-2-21            | 3.                 | 6                 |          |
| P 4                                                     | <b>4</b> 3         |                    | ,,0               |          |
| Factory calibration record w/instrument within 3 months | ass / Fail         |                    | han 30 seconds?   | ₩ N      |
| many phone whith a mound                                |                    |                    | ated to Cly       |          |
| Comments:                                               |                    |                    | 0                 |          |
|                                                         |                    |                    |                   |          |
|                                                         |                    |                    |                   |          |
|                                                         |                    |                    |                   |          |



| Purpose:                         | 0/4 04           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.32                 |               |
|----------------------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------------|
| Operator:                        | My MS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 34            |
| Date:                            |                  | Time:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>ወ</b> ጀላ <i>2</i> |               |
| lodel # + VA 1000 /              | 3                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |               |
| erial # #36 03326                | 003185           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |               |
| INSTRUMENT INTEGRITY             | CHECKLIST        | INST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RUMENT CALIBR        | ATION         |
| -M- A A                          | <i>m</i> .       | A CONTRACTOR OF THE PARTY OF TH | LIBRATION CHE        |               |
| Sattery test                     | Ass / Fail       | Calibration<br>Gas (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Actual<br>(ppm)      | %<br>Accuracy |
| eading following ignition        | 1,9 ppm          | 18.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (ppm)                | Accuracy      |
| eak test                         | ass / Fail / NA  | 500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 500                  | 1004          |
|                                  | ass / Fall / NA  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RESPONSE TIME        | <b>=</b>      |
| lean system check                | (ass / Fail / NA | C-lib-sii- C-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                      | Spa           |
| theck valve chatter)             |                  | Calibration Gas, p 90% of Calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | 450           |
| lz supply pressure gauge         | Fas / Fail / NA  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | attain 90% of Cal (  |               |
| acceptable range 9.5 - 12)       |                  | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5                    | •             |
| Date of last factory calibration | 10-2-21          | 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6                    |               |
|                                  |                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>6</u>             |               |
| actory calibration record        | Fass / Fail      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nan 30 seconds?      | N N           |
| THE STREET WILLIAM STREET        |                  | Instrument calibra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      | _ gas.        |
| Comments:                        | - W              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |               |
| 73 <b>7</b> 000                  |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |               |



| Date: 10-2-21                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Time:                                                                                       | 0900          |                                        |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|---------------|----------------------------------------|
| Model # <u>+C/+ 1000</u><br>Serial # <u>#10 10363</u>                                                                                                                                              | The state of the s |                                                                                             |               |                                        |
| INSTRUMENT INTEGRIT                                                                                                                                                                                | CHECKLIST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | INST                                                                                        | RUMENT CALIBR | RATION                                 |
| Reading following ignition  Leak test  Clean system check check valve chatter)  1/2 supply pressure gauge acceptable range 9.5 - 12)  Date of last factory calibration  Factory calibration record | Pass / Fail / NA Pass / Fail / NA Pass / Fail / NA  10-2-2 ( Pass / Fail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Calibration Gas (ppm)  Calibration Gas, 90% of Calibratio Time required to 1. 2. 3. Average |               | Accuracy  LOO Y  IE  SOO  USO  Gas ppm |
| v/instrument within 3 months                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                             | ated to Clfy  |                                        |



| perator:                                           |                  | Time:                 | 910                 |                                            |
|----------------------------------------------------|------------------|-----------------------|---------------------|--------------------------------------------|
| odel #_ TVA 1000 P                                 |                  |                       |                     |                                            |
| rial# #    /03634                                  | 6114             |                       |                     |                                            |
| INSTRUMENT INTEGRITY                               | CHECKLIST        | INST                  | RUMENT CALIBR       | ATION                                      |
|                                                    |                  |                       | LIBRATION CHE       | CK                                         |
| ittery test                                        | Pass / Fail      | Calibration Gas (ppm) | Actual              | %<br>^==================================== |
| ading following ignition                           | 2,3 ppm          | Gas (ppin)            | (ppm)               | Accuracy                                   |
|                                                    | ~                | 500                   | 500                 | 100%                                       |
| ak test                                            | Pass / Fail / NA |                       | RESPONSE TIME       | ·                                          |
| ean system check                                   | Pass / Fail / NA |                       |                     |                                            |
| neck valve chatter)                                | (30) ( 2 ( 10)   | Calibration Gas,      |                     | 500                                        |
|                                                    | -                | 90% of Calibratio     |                     | 450                                        |
| supply pressure gauge<br>coeptable range 9.5 - 12) | (ass / Fail / NA |                       | attain 90% of Cal ( | Gas ppm                                    |
| Cooptable range 9.5 - (2)                          | _                | 1                     | 2                   |                                            |
| ate of last factory calibration                    | 10-2-21          | 4.                    | 5                   |                                            |
| ·                                                  | ~                | <u> </u>              |                     |                                            |
| ctory calibration record                           | ast / Fail       | Average               | 20 accorde3         | (F) N                                      |
| instrument within 3 months                         | •                | Instrument calibra    |                     | gas.                                       |
|                                                    |                  | THOUSAND COMMEN       | 200 10              | gas.                                       |
| omments:                                           |                  |                       |                     |                                            |



| Operator:                                                            |                   | Time:                                     | <b>0930</b>                           |                     |
|----------------------------------------------------------------------|-------------------|-------------------------------------------|---------------------------------------|---------------------|
| Model # 412 10362°                                                   | <u>B</u><br>16411 | . 1/4.2.3                                 |                                       |                     |
| INSTRUMENT INTEGRITY CHECKLIST                                       |                   | INSTRUMENT CALIBRATION                    |                                       |                     |
| Battery test                                                         | Pass / Fail       | Calibration<br>Gas (ppm)                  | LIBRATION CHE<br>Actual<br>(ppm)      | CK<br>%<br>Accuracy |
| Reading following ignition<br>Leak test                              | Pass / Fail / NA  | 500                                       | 500<br>RESPONSE TIME                  | 1004,               |
| Clean system check<br>check valve chatter)                           | Pass / Fail / NA  | Calibration Gas, p                        |                                       | 900<br>1450         |
| rl <sub>2</sub> supply pressure gauge<br>(acceptable range 9.5 - 12) | Fass / Fail / NA  | Time required to a  1. 2.                 | attain 90% of Cal (<br>7              | Gas ppm             |
| Date of last factory calibration Factory calibration record          | 10-2-2-(          | 3. Average                                | 3                                     |                     |
| w/instrument within 3 months                                         |                   | Equal to or less to<br>Instrument calibra | han 30 seconds?<br>ated to <u>CW1</u> | _ gas.              |
| Comments:                                                            |                   |                                           |                                       |                     |



| Site:                                                               |                  |                                                                                      |                          |             |  |
|---------------------------------------------------------------------|------------------|--------------------------------------------------------------------------------------|--------------------------|-------------|--|
| Purpose:                                                            | 1 24-            |                                                                                      |                          |             |  |
| Operator:                                                           | MI ( JU          |                                                                                      |                          |             |  |
| Date://0-2-2/                                                       |                  | Time:                                                                                | 0945                     |             |  |
| Model #                                                             | 2                |                                                                                      |                          |             |  |
| Serial # #13 11027                                                  | 46775            |                                                                                      |                          |             |  |
| INSTRUMENT INTEGRITY CHECKLIST                                      |                  | INSTRUMENT CALIBRATION                                                               |                          |             |  |
| Battery test                                                        | Pass/ Fail       | Calibration                                                                          | ALIBRATION CHE<br>Actual | %           |  |
| Reading following ignition                                          | 2.8 ppm          | Gas (ppm)                                                                            | (ppm)                    | Accuracy    |  |
| eak test                                                            | Pass / Fail / NA | Soo                                                                                  | 500                      | 100%        |  |
| Clean system check<br>check valve chatter)                          | Fail / NA        | Calibration Gas, p                                                                   |                          | 500         |  |
| H <sub>2</sub> supply pressure gauge<br>(acceptable range 9.5 - 12) | Fass / Fall / NA | 90% of Calibration Gas, ppm <u>USD</u> Time required to attain 90% of Cat Gas ppm 1. |                          |             |  |
| Date of last factory calibration                                    | 10-2-21          | 2. 6<br>3. 6                                                                         |                          |             |  |
| Factory calibration record within 3 months                          | gass / Fail      | Average                                                                              |                          | y N<br>gas. |  |
| Comments:                                                           |                  |                                                                                      |                          |             |  |
|                                                                     |                  |                                                                                      |                          | 7.0         |  |
|                                                                     |                  |                                                                                      |                          |             |  |



| Site:                                |                      |                          |                                   |                   |
|--------------------------------------|----------------------|--------------------------|-----------------------------------|-------------------|
| Purpose:                             | - 0.                 |                          |                                   |                   |
| Operator:                            | The M                |                          |                                   |                   |
| Date: 10-2-21                        |                      | Time:                    | 1000                              |                   |
| Model # 401-10001                    | 3                    |                          |                                   |                   |
| Serial # #14 (036)                   | 346771               |                          |                                   |                   |
| INSTRUMENT INTEGRI                   | TY CHECKLIST         | INSTF                    | RUMENT CALIBR                     | ATION             |
|                                      | ^                    |                          | LIBRATION CHE                     |                   |
| Battery test                         | (as) / Fail          | Calibration<br>Gas (ppm) | Actual (ppm)                      | %<br>Accuracy     |
| Reading following ignition           | 2,1 ppm              | Gas (ppin)               | (ppni)                            | Accuracy          |
|                                      | ~                    | 5000                     | 500                               | 100%              |
| eak test                             | (Fass / Fait / NA    |                          | RESPONSE TIME                     | =                 |
| Clean system check                   | s / Fail / NA        |                          |                                   |                   |
| check valve chatter)                 |                      | Calibration Gas, p       |                                   | <u>500</u><br>450 |
| H <sub>2</sub> supply pressure gauge | Fass / Fail / NA     | 90% of Calibration       | n Gas, ppm<br>attain 90% of Cal ( |                   |
| acceptable range 9.5 - 12)           | (3,577, 0,177, 1,077 | 1.                       | 2                                 | эвэ рртп          |
|                                      | 10-2-21              | 2.                       | <u> </u>                          |                   |
| Date of last factory calibration     | 10-2-04              | 3                        |                                   |                   |
| Factory calibration record           | Pass / Fall          |                          | 3.3                               | 0                 |
| w/instrument within 3 months         |                      | Equal to or less th      |                                   | Ø N               |
|                                      |                      | Instrument calibra       | ited to Levy                      | _ gas.            |
| Comments:                            |                      |                          |                                   |                   |
|                                      |                      |                          |                                   |                   |
|                                      |                      |                          |                                   |                   |



| Purpose:                                                                          |                  |                     |                    | :        |  |
|-----------------------------------------------------------------------------------|------------------|---------------------|--------------------|----------|--|
| Operator:                                                                         | M                |                     |                    |          |  |
| Date: 10-2-2(                                                                     |                  | Time:               | 1015               |          |  |
| Hodel # JUA 1000 B                                                                |                  |                     |                    |          |  |
| Serial # #15 103634                                                               | 6772             |                     |                    |          |  |
| INSTRUMENT INTEGRITY C                                                            | HECKLIST         | INSTR               | UMENT CALIBRA      | ATION    |  |
|                                                                                   | $\alpha$         | CA                  | LIBRATION CHE      | CK       |  |
| Sattery test                                                                      | Pass / Fail      | Calibration         | Actual             | %        |  |
| teading following ignition                                                        | 2.5 ppm          | Gas (ppm)           | (ppm)              | Accuracy |  |
| Seeing tollowing ightport                                                         |                  | 500                 | 500                | 100%     |  |
| eak test                                                                          | @ass / Fail / NA |                     |                    |          |  |
| clean system check                                                                | Pas / Fail / NA  |                     | RESPONSE TIME      |          |  |
| check valve chatter)                                                              | GIST FBIIT NA    | Calibration Gas, p  | pm                 | S00      |  |
|                                                                                   | 62 -             | 90% of Calibration  |                    | 450      |  |
| H <sub>2</sub> supply pressure gauge Réss / Fail / NA (acceptable range 9.5 - 12) |                  |                     |                    |          |  |
| acceptable latige 5.5 - 12)                                                       | 1                | 1                   | <del>,</del>       |          |  |
| Pate of last factory calibration                                                  | 10-2-21          | 3.                  |                    |          |  |
| actory calibration record                                                         | Pass / Fail      | 1 · · · · · ·       |                    | •        |  |
| v/instrument within 3 months                                                      | Case / Fall      | Equal to or less th | an 30 seconds?     | Ø N      |  |
|                                                                                   |                  | Instrument calibra  | ited to <u>C44</u> | _ gas.   |  |
| Comments:                                                                         |                  |                     |                    |          |  |
|                                                                                   |                  |                     |                    |          |  |
|                                                                                   |                  |                     |                    |          |  |



|                                       |                                                                                              | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                              |  |  |
|---------------------------------------|----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                       |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                              |  |  |
| 1/11/18                               | 1                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                       | Time:                                                                                        | 1010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                              |  |  |
| 3                                     |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                              |  |  |
| 6716                                  |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                              |  |  |
| INSTRUMENT INTEGRITY CHECKLIST        |                                                                                              | INSTRUMENT CALIBRATION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                              |  |  |
| Pass / Fail                           | Calibration                                                                                  | Actual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CK<br>%<br>Accuracy                                                                                                                                                                                                                                                                                                                          |  |  |
| 2,6 ppm                               |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100%                                                                                                                                                                                                                                                                                                                                         |  |  |
| (Pass / Fail / NA                     | 140                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                      |  |  |
| Fail / NA                             | Calibration Gas, ppm 900                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                              |  |  |
| as / Fail / NA                        | Time required to attain 90% of Cal Gas ppm                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                              |  |  |
| 10-2-21                               | 2.<br>3.                                                                                     | <u>6</u><br>b ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                              |  |  |
| Cass / Fail                           |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                              |  |  |
| · · · · · · · · · · · · · · · · · · · |                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                              |  |  |
|                                       | Pass / Fail  2,6 ppm  Pass / Fail / NA  Pass / Fail / NA  Pass / Fail / NA  Pass / Fail / NA | Y CHECKLIST  Pass / Fail  2,6 ppm  Pass / Fail / NA  Pass / Fail / NA  Calibration Gas, pow of Calibration Time required to 1.  2.  3.  Average General Security Construment calibration C | Y CHECKLIST  INSTRUMENT CALIBRATION CHE Calibration Gas (ppm)  Pass / Fail / NA Pass / Fail / NA Calibration Gas, ppm 90% of Calibration Gas, ppm 90% of Calibration Gas, ppm Time required to attain 90% of Calibration Gas, ppm 1. 2. 3. 4. 4. 4. 4. 4. 4. 4. 5. 5. 6. 7. 8. 8.  4.  4.  4.  5.  6.  7.  8.  8.  8.  8.  8.  8.  8.  8.  8 |  |  |



520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

#### CERTIFICATE OF ANALYSIS

Composition Certification **Analytical Accuracy** Air - Zero

THC < 2 PPM

Oxygen 20.9% ± 2%

Nitrogen Balance

Lot# 19-6779

Mfg. Date: 4/3/2019

Parent Cylinder ID 001739, 02268

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled

#### Method of Analysis:

This mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

> Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 4/3/2019





520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

#### CERTIFICATE OF ANALYSIS

Composition

Methane Air Certification

25 ppm

Balance

Analytical Accuracy

 $\pm 5\%$ 

Lot#

17-6074

Mfg. Date:

10/16/2017

Parent Cylinder ID

17161

Number:

**Method of Preparation:** 

Gravimetric/Pressure Transfilled

#### Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 10/16/2017





520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

## CERTIFICATE OF ANALYSIS

Composition

Methane

Air

Certification

25 ppm

Balance

**Analytical Accuracy** 

 $\pm 5\%$ 

Lot#

17-6074

Mfg. Date:

10/16/2017

Parent Cylinder ID 17161

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled

### Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

> Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 10/16/2017

Service
INC.
Accuracy
+/-5% asupply mention (Mole%) O4) · 25 ppm . Balance 360 6 70°F and 1,000 PSIG Lots: 17-6074 P/N:23-0025 103 L Avenue, Irvine, CA 92614 (c. 1800) 201-8150 Fax (949) 757-036

### Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com



"Your calibration gas manufacturer since 1992"

## CERTIFICATE OF ANALYSIS

Composition Analytical Accuracy (+/-) Certification Methane 500 ppm 2% Oxygen 20.9 % 2% Nitrogen Balance UHP

Lat#

Mfg. Date: 7/10/2020

**Expiration Date:** 

Transfill Date: see cylinder

Parent Cylinder ID TWC001763

Number:

#### Method of Preparation:

Gravimetric/Pressure Transfilled

#### Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By:

**Tony Janquart** Title: Quality Assurance Manager

Certificate Date:

7/10/2020





520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

#### CERTIFICATE OF ANALYSIS

Composition

Methane

Air

Certification

500 ppm

Balance

Analytical Accuracy

± 2%

Lot#

19-6955

Mfg. Date:

7/24/2019

Parent Cylinder ID

001763

Number:

### Method of Preparation:

Gravimetric/Pressure Transfilled

#### Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 7/24/2019



## Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com



"Your calibration gas manufacturer since 1992"

### CERTIFICATE OF ANALYSIS

 Composition
 Certification
 Analytical Accuracy (+/-)

 Methane
 500 ppm
 2%

Oxygen 20.9 % 2%

Nitrogen Balance UHP

Lot # 18-6641

Mfg. Date: 12/18/2018

Expiration Date:

Transfill Date: see cylinder

Parent Cylinder ID 001763

Number:

#### Method of Preparation:

Gravimetric/Pressure Transfilled

#### Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By:

**Tony Janquart** 

Title:

Quality Assurance Manager

Certificate Date: 12/18/2018



Appendix B GCCS Map



