August 14, 2023

Ventura County Air Pollution Control District 4567 Telephone Road, 2nd Floor Ventura, California 93003 805-303-4005

Mr. Matt Salazar Air Enforcement Office US EPA, Region IX 75 Hawthorne Street San Francisco, CA 94105

RE: 40 CFR 63, Subpart AAAA Semi-Annual Report Simi Valley Landfill and Recycling Center, Simi Valley, California January – June 2023

To Whom it May Concern,

Pursuant to Title 40 Code of Federal Regulations 63.1981(h), Waste Management of California, Inc. is submitting the Semi-Annual Report for the Simi Valley Landfill and Recycling Center (SVLRC). This report covers the period from January 1, 2023 to June 30, 2023.

If you have any questions or comments regarding this document, please call Collin Pavelchik at (510) 714-6098 (cpavelch@wm.com).

I certify that I have knowledge of the facts herein set forth, that the same are true, accurate and complete to the best of my knowledge and belief, and that all information not identified by me as confidential in nature shall be treated by the Ventura County Air Pollution Control District as public record.

Sincerely,

Nicole Stetson District Manager

Waste Management

cc Mr. Christian Colline, Waste Management

Ms. Jayna Morgan, Waste Management

Mr. Dustin Colyar, Waste Management

Mr. Matthew Darr, Waste Management

AUGUST 2023

40 CFR 63, SUBPART AAAA SEMI-ANNUAL REPORT JANUARY – JUNE 2023

SIMI VALLEY LANDFILL AND RECYCLING CENTER

Ventura, California

2801 Madera Road, Simi Valley, CA 93065 Facility No. 01395

EXECUTIVE SUMMARY

The Simi Valley Landfill and Recycling Center (SVLRC) is a municipal solid waste (MSW) landfill located in Ventura, California in Ventura County and is owned/operated by Waste Management of California, Inc. The facility is subject to the requirements of the United States Environmental Protection Agency's (USEPA) *Standards of Performance for Municipal Solid Waste Landfills*; 40 Code of Federal Regulations (CFR) Part 63, Subpart AAAA and as such is submitting this NESHAP AAAA Report.

On June 21, 2021, new requirements from 40 CFR 62.1115(b)(2) incorporated monitoring, recordkeeping, and reporting requirements for landfill gas temperatures at wellheads from sections of 40 CFR 62, Subpart OOO that were incorporated into the California State Plan 40 CFR 62 Subpart F. As of September 27, 2021, SVLRC began complying with 40 CFR 63, Subpart AAAA in lieu of the 40 CFR 62 Subpart OOO sections that were incorporated into the 40 CFR 62 Subpart F California State Plan.

TABLE OF CONTENTS

1.0	40 C	FR 6	53.1981(H) SEMI-ANNUAL REPORT	1
1.	.1	Exc	eedance of Applicable Parameters §63.1981(h)(1)	1
	1.1.1	L	Wells Operating Under Positive Pressure §63.1958(b)	1
	1.1.2	2	Wells with Temperatures >145°F or HOV §63.1958(c)	3
	1.1.3	3	Surface Emissions Monitoring §63.1958(d)	5
	1.1.4	ļ	Treatment System Monitoring §63.1981(h)(1)(iii)	5
1.	.2	Gas	Stream Diversion §63.1981(h)(2)	6
1.	.3	Cor	ntrol or Treatment System Downtime Events §63.1981(h)(3)	6
1.	4	Col	lection System Downtime Events §63.1981(h) (4)	8
1.	.5	Sur	face Emissions Monitoring §63.1981(h)(5)	9
1.	.6	Sys	tem Expansion §63.1981(h)(6)	10
1.	.7	Roc	ot Cause / Corrective Action Analyses §40 CFR 63.1981(h)(7)	11
1.	.8	Enh	nanced Monitoring §40 CFR 63.1981(h)(8)	12
	1.8.1	L	Enhanced Monitoring for Wellhead Temperature Exceedances	12
	1.8.2	2	Summary Trend Analyses for Wells Subject to Enhanced Monitoring Requirements	12
	1.8.3	3	Visual Observations for Wells to Enhanced Monitoring Requirements	12
1.	.9	Enc	losed Combustor Monitoring §63.1983(c)	12
Арр	endix	κA	GCCS Map	
App	endix	۲В	SEM Data	

1.0 40 CFR 63.1981(h) SEMI-ANNUAL REPORT

SVLRC is submitting this Report because the existing MSW landfill owns and/or operates an active landfill gas collection and control system. The following summarizes the report requirements pursuant to §63.1981(h). This report covers from January 1, 2023 through June 30, 2023.

1.1 Exceedance of Applicable Parameters §63.1981(h)(1)

§63.1981(h)(1) Number of times that applicable parameters monitored under §63.1958(b), (c), and (d) were exceeded and when the gas collection and control system was not operating under §63.1958(e), including periods of SSM. For each instance, report the date, time, and duration of each exceedance.

(i) Where an owner or operator subject to the provisions of this subpart seeks to demonstrate compliance with the temperature and nitrogen or oxygen operational standards in introductory paragraph §63.1958(c), provide a statement of the wellhead operational standard for temperature and oxygen you are complying with for the period covered by the report. Indicate the number of times each of those parameters monitored under §63.1961(a)(3) were exceeded. For each instance, report the date, time, and duration of each exceedance.

(ii) Where an owner or operator subject to the provisions of this subpart seeks to demonstrate compliance with the operational standard for temperature in §63.1958(c)(1), provide a statement of the wellhead operational standard for temperature and oxygen you are complying with for the period covered by the report. Indicate the number of times each of those parameters monitored under §63.1961(a)(4) were exceeded. For each instance, report the date, time, and duration of each exceedance.

(iii) Beginning no later than September 27, 2021, number of times the parameters for the site-specific treatment system in §63.1961(g) were exceeded.

1.1.1 Wells Operating Under Positive Pressure §63.1958(b)

§63.1958(b) Operate the collection system with negative pressure at each wellhead except under the following conditions:

(1) A fire or increased well temperature. The owner or operator must record instances when positive pressure occurs in efforts to avoid a fire. These records must be submitted with the semi-annual reports as provided in §63.1981(h);

- (2) Use of a geomembrane or synthetic cover. The owner or operator must develop acceptable pressure limits in the design plan;
- (3) A decommissioned well. A well may experience a static positive pressure after shut down to accommodate for declining flows. All design changes must be approved by the Administrator as specified in §63.1981(d)(2);

SVLRC operated in compliance with all wellhead monitoring standards listed in §63.1958(b) during the reporting period. All instances of positive pressure were corrected within applicable Subpart AAAA timelines.

On a monthly basis operations and maintenance personnel measure the gauge pressure, temperature, and oxygen concentration at each well head. The gauge pressure taken at the wellhead is used in determining the presence of vacuum at the collector. Measurements are taken with a portable meter which is calibrated per the manufacturer's specifications.

Wells that were found to be operating at positive pressures are summarized in the following table.

Wells Operating Under Positive Pressure

	Initial Reading			5-Day	Final Reading		
Name	Date	Value ("H₂0)	Corrective Action Date	Corrective Action	Date	Value ("H₂0)	Duration (days)
1778S	1/2/23	2.33	1/2/23	Inc. Flow/Vac	1/2/23	-3.56	<1
1938S	2/7/23	0.03	2/7/23	Inc. Flow/Vac	2/7/23	-0.08	<1
2001B	1/6/23	0.01	1/6/23	Inc. Flow/Vac	1/6/23	-0.34	<1
2052S	1/2/23	0.42	1/2/23	Inc. Flow/Vac	1/2/23	-0.95	<1
2105A	1/13/23	0.52	1/13/23	Inc. Flow/Vac	1/13/23	-0.74	<1
2107A	1/13/23	0.44	1/13/23	Inc. Flow/Vac	1/13/23	-0.26	<1
2123A	4/18/23	0.67	4/18/23	Inc. Flow/Vac	4/18/23	-0.19	<1
2123A	4/21/23	0.92	4/21/23	Inc. Flow/Vac	5/3/23	-0.94	12
2125A	4/18/23	0.79	4/18/23	Inc. Flow/Vac	5/3/23	-0.31	15
2126A	4/18/23	4.67	4/18/23	Inc. Flow/Vac	5/3/23	-1.36	15

Wells Operating Under Positive Pressure

	Initial Reading			5-Day	Final Reading			
Name	Date	Value ("H₂0)	Corrective Action Date	Corrective Action	Date	Value ("H₂0)	Duration (days)	
2127A	4/18/23	2.59	4/18/23	Inc. Flow/Vac	5/3/23	-0.23	15	
2128A	4/18/23	1.20	4/18/23	Inc. Flow/Vac	5/3/23	-0.34	15	
2129A	4/18/23	0.49	4/18/23	Inc. Flow/Vac	5/3/23	-1.21	15	
2199A	1/18/23	0.17	1/18/23	Inc. Flow/Vac	1/18/23	-0.39	0	
1785	1/17/23	0.3	1/17/23	Inc. Flow/Vac	1/17/23	-0.09	0	
1802	1/2/23	0.17	1/2/23	Inc. Flow/Vac	1/2/23	-0.3	0	
1813	1/18/23	0.12	1/18/23	Inc. Flow/Vac	1/18/23	-1.31	0	
2045	1/17/23	0.29	1/17/23	Inc. Flow/Vac	1/17/23	-0.14	0	
2215	1/18/23	2.16	1/18/23	Inc. Flow/Vac	1/18/23	-0.25	0	
2221	1/6/23	1.54	1/6/23	Inc. Flow/Vac	1/6/23	-1.04	0	
2135A	6/29/23	0.09	6/29/23	Inc. Flow/Vac	6/29/23	-0.27	0	
2135B	6/29/23	0.03	6/29/23	Inc. Flow/Vac	6/29/23	-0.16	0	
2337A	6/29/23	1.69	6/29/23	Inc. Flow/Vac	6/29/23	-0.46	0	
2338A	6/29/23	1.92	6/29/23	Inc. Flow/Vac	6/29/23	-0.19	0	
2339A	6/29/23	1.29	6/29/23	Inc. Flow/Vac	6/29/23	-0.35	0	
2340A	6/29/23	0.56	6/29/23	Inc. Flow/Vac	6/29/23	-0.25	0	

1.1.2 Wells with Temperatures >145°F or HOV §63.1958(c)

\$63.1958(c) Operate each interior wellhead in the collection system as specified in 40 CFR 60.753(c), until the landfill owner or operator elects to meet the operational standard for temperature in paragraph (c)(1) of this section.

- (1) Beginning no later than September 27, 2021, operate each interior wellhead in the collection system with a landfill gas temperature less than 62.8 degrees Celsius (145 degrees Fahrenheit).
- (2) The owner or operator may establish a higher operating temperature value at a particular well. A higher operating value demonstration must be submitted to the Administrator for approval and must include supporting data demonstrating that the elevated parameter neither causes fires nor significantly inhibits anaerobic decomposition by killing methanogens. The demonstration must satisfy both criteria in order to be approved (i.e., neither causing fires nor killing methanogens is acceptable).

The applicable standard for temperature and oxygen during this reporting period was §63.1958(c)(1), [62.8°C (145°F) or higher operating value (HOV), no oxygen limits]. SVLRC operated in compliance with all wellhead monitoring standards listed in §63.1958(c) during the reporting period. There were no instances of temperatures greater than 145°F (or HOV).

Each landfill gas collector is equipped with an access port allowing for measuring temperature at each wellhead. On a monthly basis operations and maintenance personnel measure the gauge pressure, temperature, and oxygen concentration at each well head. Measurements are taken with a portable meter which is calibrated per the manufacturer's specifications.

Wells with Landfill Gas Temperature Greater than 145°F or HOV

Nama	Initial Re	ading	5-Day	Final Re	ading	Duration (days)	
Name	Date	Temp (°F)	Corrective Action	Date	Temp (°F)		
	N/A						

A list of all current HOVs (greater than 145°F) is presented in the following table:

Wells with Temperature HOVs

Device	Date	HOV
SIM1778D	6/18/2021	150
SIMW1779	6/18/2021	150

Device	Date	HOV
SIMW1232	6/18/2021	150
SIMW1233	6/18/2021	150

*SVLRC also has seventy-two (72) existing HOVs for temperatures equal or greater than 131°F and equal or less than 145°F.

1.1.3 Surface Emissions Monitoring §63.1958(d)

§63.1958(d)(1) Operate the collection system so that the methane concentration is less than 500 parts per million (ppm) above background at the surface of the landfill. To determine if this level is exceeded, the owner or operator must conduct surface testing around the perimeter of the collection area and along a pattern that traverses the landfill at no more than 30-meter intervals and where visual observations indicate elevated concentrations of landfill gas, such as distressed vegetation and cracks or seeps in the cover. The owner or operator may establish an alternative traversing pattern that ensures equivalent coverage. A surface monitoring design plan must be developed that includes a topographical map with the monitoring route and the rationale for any site-specific deviations from the 30-meter intervals. Areas with steep slopes or other dangerous areas may be excluded from the surface testing.

- (2) Beginning no later than September 27, 2021, the owner or operator must:
 - (i) Conduct surface testing using an organic vapor analyzer, flame ionization detector, or other portable monitor meeting the specifications provided in §63.1960(d).
 - (ii) Conduct surface testing at all cover penetrations. Thus, the owner or operator must monitor any cover penetrations that are within an area of the landfill where waste has been placed and a gas collection system is required.
 - (iii) Determine the latitude and longitude coordinates of each exceedance using an instrument with an accuracy of at least 4 meters. The coordinates must be in decimal degrees with at least five decimal places.

Surface emissions monitoring is discussed in Section 1.5.

1.1.4 Treatment System Monitoring §63.1981(h)(1)(iii)

§63.1981(h)(1) (iii) Beginning no later than September 27, 2021, number of times the parameters for the site-specific treatment system in §63.1961(g) were exceeded.

§63.1961(g) Each owner or operator seeking to demonstrate compliance with §63.1959(b)(2)(iii)(C) using a landfill gas treatment system must calibrate, maintain, and operate according to the manufacturer's specifications a device that records flow to the treatment system and bypass of the treatment system (if applicable). Beginning no later than

September 27, 2021, each owner or operator must maintain and operate all monitoring systems associated with the treatment system in accordance with the site-specific treatment system monitoring plan required in §63.1983(b)(5)(ii). The owner or operator must:

- (1) Install, calibrate, and maintain a gas flow rate measuring device that records the flow to the treatment system at least every 15 minutes; and
- (2) Secure the bypass line valve in the closed position with a car-seal or a lock-and-key type configuration. A visual inspection of the seal or closure mechanism must be performed at least once every month to ensure that the valve is maintained in the closed position and that the gas flow is not diverted through the bypass line.

SVLRC does not operate a treatment system and therefore, is not subject to the requirements of §63.1981(h)(1)(iii).

1.2 Gas Stream Diversion §63.1981(h)(2)

§63.1981(h)(2) Description and duration of all periods when the gas stream was diverted from the control device or treatment system through a bypass line or the indication of bypass flow as specified under §63.1961.

The gas collection system is not designed nor equipped to bypass the control device(s); therefore §63.1981(h)(2) is not applicable.

1.3 Control or Treatment System Downtime Events §63.1981(h)(3)

\$63.1981(h)(3) Description and duration of all periods when the control device or treatment system was not operating and length of time the control device or treatment system was not operating.

Control device and treatment system downtime events were recorded in compliance with §63.1981(h)(1) and (3) during the reporting period. The following tables summarize all the periods when the control devices and/or treatment system were not operating.

Enclosed	Flare No	o. 3 Dov	vntime	Events

Shutdown	Startup	Duration (hours)	Reason
1/13/2023 15:05	1/13/2023 16:05	1.00	High Burner Temp
1/21/2023 23:32	1/22/2023 12:32	13.00	Combustion Air Blower
1/23/2023 8:04	1/23/2023 15:46	7.70	Manual Shut Down for Maintenance
1/24/2023 20:16	1/25/2023 6:14	9.97	Power Outage

Enclosed Flare No. 3 Downtime Events

Shutdown	Startup	Duration (hours)	Reason
1/27/2023 10:02	1/27/2023 12:42	2.67	Install Replacement VFD
2/1/2023 10:34	2/1/2023 15:02	4.47	Low Stack Temp
2/22/2023 23:22	2/23/2023 10:58	11.60	Condensate Sumps Backed Up
3/16/2023 2:52	3/16/2023 7:40	4.80	High Burner Temp Flare 4 Shut Down
3/18/2023 12:10	3/18/2023 17:36	5.43	Condensate Sump 4 Pump Failure
3/20/2023 6:50	3/23/2023 12:06	77.27	Sump Surging/ Shut Down to Clean Pump
4/11/2023 15:00	4/11/2023 17:40	2.67	Combustion Air Blower Filter Change Out
5/13/2023 6:46	5/13/2023 12:36	5.83	Blown Fuse Flare 3 CAB VFD
5/17/2023 1:36	5/17/2023 9:06	7.50	Power Outage
5/18/2023 7:46	5/18/2023 13:20	5.57	Manual Shut Down for Maintenance
6/5/2023 23:30	6/6/2023 8:50	9.33	Coupling Failed on H2S Vessel
6/8/2023 7:05	6/8/2023 12:50	5.75	Maintenance on Louver
6/22/2023 4:20	6/22/2023 17:15	12.92	Manual Shut Down for Maintenance

Enclosed Flare No. 4 Downtime Events

Shutdown	Startup	Duration (hours)	Reason
1/13/2023 15:05	1/13/2023 16:05	1.00	High Burner Temp
1/21/2023 23:32	1/22/2023 12:32	13.00	Combustion Air Blower
1/23/2023 8:04	1/23/2023 15:46	7.70	Manual Shut Down for Maintenance
1/1/2023 0:00	1/27/2023 13:42	637.70	VFD Arc Flash
2/11/2023 10:54	2/13/2023 11:12	48.30	Thermocouple Failure
2/23/2023 0:30	2/23/2023 12:05	11.58	Condensate Sumps Backed Up

3/16/2023 9:56	3/17/2023 13:58	28.03	High Burner Temp / Replaced Burner
3/18/2023 12:10	3/18/2023 17:36	5.43	Condensate Sump 4 Pump Failure
3/20/2023 6:50	3/20/2023 12:45	5.92	Sump Surging
3/22/2023 7:24	3/22/2023 20:16	12.87	Shut Down to Clean Sump
4/11/2023 15:00	4/11/2023 16:28	1.47	Combustion Air Blower Filters
4/23/2023 18:42	4/24/2023 8:50	14.13	Thermocouple Failure
4/24/2023 18:26	4/25/2023 9:56	15.50	Thermocouple Failure
5/13/2023 9:38	5/13/2023 11:42	2.07	Blown Fuse Flare 3 CAB VFD
5/17/2023 1:36	5/17/2023 8:10	6.57	Power Outage
5/18/2023 8:26	5/18/2023 15:48	7.37	Manual Shut Down for Maintenance
6/5/2023 23:20	6/6/2023 13:01	13.68	Coupling Failed on H2S Vessel
6/22/2023 4:25	6/23/2023 6:50	26.42	CAB 220 Failure

1.4 Collection System Downtime Events §63.1981(h) (4)

§63.1981(h)(4) All periods when the collection system was not operating.

§63.1958(e) Operate the system as specified in § 60.753(e) of this chapter, except:

- (1) Beginning no later than September 27, 2021, operate the system in accordance to §63.1955(c) such that all collected gases are vented to a control system designed and operated in compliance with §63.1959(b)(2)(iii). In the event the collection or control system is not operating:
 - (i) The gas mover system must be shut down and all valves in the collection and control system contributing to venting of the gas to the atmosphere must be closed within 1 hour of the collection or control system not operating; and
 - (ii) Efforts to repair the collection or control system must be initiated and completed in a manner such that downtime is kept to a minimum, and the collection and control system must be returned to operation.

The gas collection system was operated in accordance with §63.1955(c) during the reporting period to in a manner consistent with safety and good air pollution control practices to minimize emissions and downtime. All collected gases were vented to a control system design and operated in compliance with §63.1959(b)(2)(iii). In the event of collection or control system downtime the gas mover system is shut down and all valves in the collection and control system contributing to the venting of gas to the atmosphere are closed within 1 hour of the collection or control system not operating. Efforts to repair the collection or control system are initiated and completed pursuant to the work practice standards of Section 112(h) of the Clean Air Act such that downtime is kept to a minimum, and the collection and control system is returned to operation.

Collection System Downtime Events

Shutdown	Startup	Duration (hours)	Reason
2/23/23 0:30	2/23/23 12:05	11.58	Condensate Sumps Backed Up
3/18/23 12:10	3/18/23 17:36	5.43	Condensate Sump 4 Pump Failure
3/20/2023 6:50	3/20/2023 12:45	5.92	Sump Surging
3/22/2023 7:24	3/22/2023 20:16	12.87	Shut Down to Clean Sump
4/11/2023 15:00	4/11/2023 16:28	1.47	Combustion Air Blower Filters
5/13/2023 9:38	5/13/2023 11:42	2.07	Blown Fuse FI 3 CAB VFD
5/17/23 1:36	5/17/23 8:10	6.57	Power Outage
5/18/2023 8:26	5/18/2023 13:20	4.90	Manual Shut Down for Maintenance
6/5/2023 23:30	6/6/2023 8:50	9.33	Coupling Failed on H2S Vessel
6/22/2023 4:20	6/22/2023 17:15	12.92	Manual Shut Down for Maintenance

1.5 Surface Emissions Monitoring §63.1981(h)(5)

§63.1981(h)(5) The location of each exceedance of the 500-ppm methane concentration as provided in §63.1958(d) and the concentration recorded at each location for which an exceedance was recorded in the previous month. Beginning no later than September 27, 2021, for location, you record the latitude and longitude coordinates of each exceedance using an

instrument with an accuracy of at least 4 meters. The coordinates must be in decimal degrees with at least five decimal places.

Surface emissions monitoring was completed in compliance with §63.1960(c) during the reporting period. Monitoring included the perimeter of the landfill, the serpentine path with a 30-meter spacing, penetration and openings monitoring and per Method 21 requirements areas where visual observations indicate possible elevated concentrations of landfill gas, such as distressed vegetation and cracks or seeps in the cover are monitored.

Monitoring for the First Quarter 2023 was completed during the reporting period. There were fifty (50) locations with recorded methane concentrations greater than 500 ppm as methane. All locations were remediated within §63.1960(c)(4) timelines. Applicable monitoring data, including the location information plus initial and final remediated methane concentrations are presented in Appendix B.

Monitoring for the Second Quarter 2023 was also completed during the reporting period. There were one-hundred and seven (107) locations with recorded methane concentrations greater than 500 ppm as methane. All locations were remediated within §63.1960(c)(4) timelines. Applicable monitoring data, including the location information plus initial and final remediated methane concentrations are presented in Appendix B.

1.6 System Expansion §63.1981(h)(6)

\$63.1981(h)(6) The date of installation and the location of each well or collection system expansion added pursuant to \$63.1960(a)(3) and \$(4), \$(b), and \$(c)(4).

SVLRC complied with the requirements of §63.1960(a)(3) and (4), (b), and (c)(4).

SVLRC continually looks for ways to optimize the collection system and additional wells or collectors are installed on an as needed basis maintain collection efficiency. The following table summarizes the locations of the wells added to the collection system during the reporting period. Locations of the wells are shown on the GCCS Map included in Appendix A.

Wellfield Expansions to Comply with §63.1960(a)(3) (Pressure Exceedances)

Well ID	Startup Date
N/A, no expansions were required	d to correct pressure exceedances

Wellfield Expansions to Comply with §63.1960(a)(4) (Temperature Exceedances)

Well ID	Startup Date
N/A, no expansions were required t	o correct temperature exceedances

Wellfield Expansions to Comply with §63.1960(b) (Collection System Coverage)

Well ID	Startup Date
2123A, 2124A, 2125A, 2126A, 2127A, 2128A, 2129A	4/18/23
2213, 2217	5/4/23
2211	5/2/23
2212, 2214, 2218	5/10/23
2216	6/26/23

Wellfield Expansions to Comply with §63.1960(c)(4) (Surface Emissions)

Well ID	Startup Date
N/A, no expansions were required to o	correct surface emissions exceedances

1.7 Root Cause / Corrective Action Analyses §40 CFR 63.1981(h)(7)

§63.1981(h)(7) For any corrective action analysis for which corrective actions are required in §63.1960(a)(3)(i) or (a)(5) and that take more than 60 days to correct the exceedance, the root cause analysis conducted, including a description of the recommended corrective action(s), the date for corrective action(s) already completed following the positive pressure or high temperature reading, and, for action(s) not already completed, a schedule for implementation, including proposed commencement and completion dates.

SVLRC complied with the requirements of §63.1960(a)(3)(i) and (a)(5). No root cause or corrective action analyses were required during the reporting period. During the reporting period all wells with positive pressures or temperatures greater than 145°F (or applicable HOV) were corrected within 0 to 60 days.

1.8 Enhanced Monitoring §40 CFR 63.1981(h)(8)

§63.1981(h)(8) Each owner or operator required to conduct enhanced monitoring in §63.1961(a)(5) and (6) must include the results of all monitoring activities conducted during the period.

- (i) For each monitoring point, report the date, time, and well identifier along with the value and units of measure for oxygen, temperature (wellhead and downwell), methane, and carbon monoxide.
- (ii) Include a summary trend analysis for each well subject to the enhanced monitoring requirements to chart the weekly readings over time for oxygen, wellhead temperature, methane, and weekly or monthly readings over time, as applicable for carbon monoxide.
- (iii) Include the date, time, staff person name, and description of findings for each visual observation for subsurface oxidation event.

1.8.1 Enhanced Monitoring for Wellhead Temperature Exceedances §63.1961(a)(5)

The enhanced monitoring requirements of §63.1961(a)(5) for temperature exceedances were not applicable during the reporting period.

1.8.2 Summary Trend Analyses for Wells Subject to Enhanced Monitoring Requirements

No wells were subject to the enhanced monitoring requirements of §63.1961(a)(5) during the reporting period.

1.8.3 Visual Observations for Wells to Enhanced Monitoring Requirements

No wells were subject to the enhanced monitoring requirements of §63.1961(a)(5) during the reporting period.

1.9 Enclosed Combustor Monitoring §63.1983(c)

§63.1983(c) Except as provided in §63.1981(d)(2), each owner or operator of a controlled landfill subject to the provisions of this subpart must keep for 5 years up-to-date, readily accessible continuous records of the equipment operating parameters specified to be monitored in §63.1961 as well as up-to-date, readily accessible records for periods of operation during which the parameter boundaries established during the most recent performance test are exceeded.

- (1) The following constitute exceedances that must be recorded and reported under §63.1981(h):
 - (i) For enclosed combustors except for boilers and process heaters with design heat input capacity of 44 megawatts (150 million Btu per hour) or greater, all

3-hour periods of operation during which the average temperature was more than 28 degrees Celsius (82 degrees Fahrenheit) below the average combustion temperature during the most recent performance test at which compliance with §63.1959(b)(2)(iii) was determined.

(ii) For boilers or process heaters, whenever there is a change in the location at which the vent stream is introduced into the flame zone as required under paragraph (b)(3) of this section.

The SVLRC operated in compliance with all enclosed combustor monitoring standards listed in §63.1983(c) during the reporting period. There were no reportable exceedances under §63.1983(c)(1)(i).

SVLRC operates two enclosed combustors in accordance with the Part 70 Title V Permit No. 01395 and the Temporary Permit to Operate (TPTO) No. 1395-351, issued by the Ventura County Air Pollution Control District (VCAPCD). As required, the enclosed combustors are equipped with thermocouple(s) that serve as the temperature monitoring device(s). The thermocouples send temperature monitoring data to the digital data recorder. Temperature data is continuously monitored and recorded at least once every 15 minutes.

The enclosed combustors are equipped with flow meters which monitor flow to the enclosed combustors. The flow meters send the data to the digital data recorder, which must record flow rate at least once every 15 minutes.

The enclosed flares are subject to a minimum operating temperature of 28°C (50°F) below the average combustion temperature during the most recent source test (3-hr block averages). The following thresholds apply to the enclosed flares during the reporting period:

Applicable 3-hr Block Average Temperature Limits Flare No. 3

Parameter	June 29, 2021 Source Test Report
Avg. Test Temperature	1,554 °F
3-hr Min Combustion Temperature	1,504°F

Flare No. 4

Parameter	June 30, 2022 Source Test Report
Avg. Test Temperature	1,550 °F
3-hr Min Combustion Temperature	1,500°F

Appendix A GCCS MAP

Appendix B
SEM DATA

WASTE MANAGEMENT

May 1, 2023

Mr. Mark Grady 2801 Madera Road Simi Valley, California 93065 8491 Fruitridge Road Sacramento, CA 95826 (510) 714-6098

First Quarter 2023 Surface Emissions and Component Leak Monitoring Report for the Simi Valley Landfill and Recycling Center

Dear Mr. Grady:

This monitoring report for the "Simi Valley Landfill and Recycling Center (SVLRC)" contains the results of the First Quarter 2023 Integrated and Instantaneous Surface Emissions Monitoring (SEM) and Component Leak Monitoring. Initial surface emissions monitoring was performed by Roberts Environmental Services, LLC. (RES). Re-monitoring of site-wide surface emissions and component leak monitoring was also conducted by RES personnel.

APPLICABLE REQUIREMENTS

The monitoring discussed in this report was conducted in accordance with the following requirements:

Surface Emission Monitoring (SEM)

- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).
- New Source Performance Standard (NSPS), Title 40 of the Code of Federal Regulations (CFR) §60.755 (c) and (d), 40 CFR 60, Appendix A Method 21; and updated Title 40 CFR part 63, Subpart AAAA (63.1960), promulgated by the United States Environmental Protection Agency (USEPA).
- Ventura County Air Pollution Control District (VCAPCD) Rule 74.17.1 (Municipal Solid Waste Landfills)

Component Leak

• California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).

SVLRC Plan and Alternative Compliance Measures

An Alternative Compliance Option (ACO) Request was submitted to the California Air Resources Board (CARB) on May 24, 2011. A response from the CARB was not received to the ACO Request within 120 days from the date of submittal, therefore SVLRC assumes that the alternative compliance measures, monitoring requirements, and test measures and procedures were deemed acceptable as of September 21, 2011, per CCR Title 17 §95468(c).

All monitoring and reporting was completed in accordance with the 2011 SVLRC AB-32 SEM Plan.

PROCEDURES

General

The surface of the SVLRC disposal area has been divided into one-hundred eighty-five (185), (approximately) 50,000 square foot monitoring grids. The entire landfill surface is monitored with the exception of active portions of the Landfill, slope areas, and as requested in the approved ACO, areas containing only asbestos-containing waste, inert waste and/or non-decomposable waste which are excluded for safety as allowed by CCR Title 17 §95466.

Field personnel walked the surface of the landfill following the walking pattern as depicted the 2011 SVLRC AB-32 SEM Plan, which traverses each monitoring grid. Additionally, in accordance with the provisions of 40 CFR 60.753(d) and 60.755(c)(1-3) and 63.1960, the entire perimeter of the landfill surface was monitored. During the event, special attention was given to monitoring unusual cover conditions (stressed vegetation, cracks, seeps, etc.) and any areas with unusual odors. In addition, penetrations were monitoring per Title 40 CFR part 63, Subpart AAAA (63.1960).

Instantaneous Surface Emissions Monitoring

The Instantaneous SEM was conducted using a Toxic Vapor Analyzer (TVA) 1000 flame ionization detector (FID), which was calibrated to 500 parts per million by volume (ppmv) methane, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a). The FID was calibrated prior to use in accordance with the United States Environmental Protection Agency (USEPA) Method 21 requirements. The Instantaneous SEM procedures followed the requirements of 40 CFR 60.755 (c) and (d), CCR Title 17 §95471(c)(2), VCAPCD Rule 74.1.7, and 40 CFR part 63, Subpart AAAA 63.1960.

RES personnel walked the surface of the landfill on a grid-by-grid basis with the wand tip held at 3 inches from the landfill surface. While sampling the grid, the technicians also checked any surface impoundments (wells or otherwise) for leaks. Technicians also checked any surface cracks, seeps, or other areas that show evidence of surface emissions (odors or distressed vegetation). Active and sloped areas excluded for safety were documented on field data sheets and maps.

All instantaneous surface monitoring was performed in accordance with the applicable requirements referenced in this report. Any detections of methane above 200 ppmv (areas of concern) or 500 ppmv (exceedances) for instantaneous were recorded, flagged, and marked on an SEM Map, which, wherever required, is included in the Attachments of this report. Applicable corrective action and re-monitoring timelines are listed below:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
 - o If the re-monitoring event shows the exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance.
 - o If the 1-month re-monitoring event shows the location is still corrected, all remonitoring requirements have been completed.
- If either the first 10-day or 1-month re-monitoring events show a second exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance. If the 1-month re-monitoring event shows the area is still corrected, monitoring requirements have been completed.
- If any location shows three exceedances, an additional well shall be installed within 120 days of the initial exceedance.

Integrated Surface Emissions Monitoring

The Integrated surface monitoring was conducted using a TVA 1000 calibrated to 25 ppmv for the integrated monitoring, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a). The field technician traversed the grid walking path over a continuous 25-minute period using the TVA 1000 held at 3 inches above the landfill surface. The Integrated monitoring procedures followed the requirements of CCR Title 17 §95471(c)(2).

Grids with results greater than 25 ppmv were recorded, marked on the SEM map, and flagged for remediation. Any grids with integrated concentrations greater than 25 ppmv are subject to the following corrective action and re-monitoring timeline:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
- If the 10-day re-monitoring event shows the exceedance is corrected, all re-monitoring requirements have been completed.

- If either the first 10-day re-monitoring event shows a second grid exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, all re-monitoring requirements have been completed.
- If the second 10-day re-monitoring event shows a third grid exceedance, an additional well shall be installed within 120 days of the initial exceedance.

Component Leak Monitoring Procedures

RES personnel monitored the exposed LFG components under positive pressure (pipes, wellheads, valves, blowers, and other mechanical appurtenances) using a TVA 1000 calibrated to 500 ppmv. All leaks measured one half inch or less from the component exceeding the compliance limit of 500 ppmv per requirements outlined in pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B) were recorded. Applicable corrective action and re-monitoring timelines are listed below:

• Leaks at or above 500 ppmv must be corrected and re-monitored within 10 days of the initial exceedance.

FIRST QUARTER SEM AND COMPONENT LEAK RESULTS

The following is a summary of the SEM and Component leak monitoring results completed during the First Quarter 2023.

Instantaneous Surface Emission Monitoring Results

The Instantaneous surface monitoring was performed on March 7, 13, 16, 17, 23, 25 and 31, 2023 in accordance with the NSPS NESHAP, Rule 74.1.17, CCR Title 17 §95469 and ACO. Results and data from the monitoring are presented in Attachment A.

Initial Monitoring Event Exceedances of 500 ppmv

There were fifty (50) exceedances of 500 ppmv as methane detected during the initial monitoring events conducted on March 7, 13, 16, 17, 23, 25 and 31, 2023. RES personnel remediated the locations, and the following re-monitoring was conducted as described below.

First Ten-Day Re-Monitoring Results

RES personnel performed the first ten-day re-monitoring events on March 17, 23, 25, and April 3, 5 (pushed back due to filling activities in the wet deck) and 10, 2023. No exceedances were observed during the first ten-day re-monitoring events.

Thirty-Day Re-Monitoring Results

RES personnel performed the thirty-day monitoring events on April 5, 12, 18 (pushed back due to filling activities in the wet deck), 21 and 27, 2023. No exceedances were observed during the thirty-day re-monitoring events.

Readings between 200 ppmv and 499 ppmv (Initial and Re-monitored)

There were fifty (50) readings between 200 ppmv and 499 ppmv, measured as methane detected during the initial monitoring events on March 13, 16, 17 and 18, 23, 25 and 31, 2023, respectively. Pursuant to CCR Title 17 §95471(c), instantaneous surface emissions exceeding 200 ppmv but below 500 ppmv are required to be recorded. As a best management practice, if these readings occur, SVLRC voluntarily addresses these locations by remediating and remonitoring all those within this range, during the 10-day re-checks. Therefore, SVLRC and RES personnel performed ten-day re-checks on March 23, 25, 31 and April 3 and 10, 2023, respectively, and the fifty (50) readings were below 200 ppmv. The goal of this is effort is to reduce any future exceedances to improve and reduce overall odors/emissions. Results, if applicable, are summarized in Attachment A.

Integrated Surface Emissions Monitoring Results

The Integrated surface sampling (ISS) was performed on March 23, 24, 25 and 31, 2023, in accordance with the ACO, requirements outlined in CCR Title 17 §95469, and VCAPCD Rule 74.1.17. See Attachment B for details.

Initial Monitoring Event Exceedances of 25 ppmv

There were five (5) grids with an exceedance above 25 ppmv as methane detected during the initial monitoring events conducted on March 23, 24 and 25, 2023. SVLRC personnel remediated the locations, and the following re-monitoring was conducted as described below.

Ten-Day Re-Monitoring Results

RES personnel performed the ten-day re-monitoring events on March 31 and April 1, 2023. No exceedances were observed during the ten-day re-monitoring events.

The average methane concentration of each grid was recorded during the monitoring event per applicable requirements. See Attachment B for details.

Component Leak Monitoring Results

Component leak monitoring was conducted per the applicable requirements on March 17, 2023. There were zero (0) locations with a component leak detection of greater than 500 ppmv. See Attachment C for details.

WEATHER CONDITIONS

Wind Speed Conductions during the Surface Emission Monitoring Events

Wind speeds during initial monitoring were monitored using a portable weather station. The station has a strip chart that records the wind speed and direction. After completion of monitoring, the strip chart is reviewed by RES office staff to determine the average and maximum wind speeds during the monitoring and the average wind direction during each grid and ensure that the wind speed requirements are met (no gusts greater than 20 mph, average wind speed cannot exceed 10 mph). These values are documented in the field data sheets. The chart data is scanned and included in Attachment D.

Precipitation Requirements

Per the SVLRC's ACO, the initial monitoring event was carefully scheduled so that it could be conducted in compliance with the precipitation requirements (no measurable precipitation within 24 hours). Re-monitoring events are required to adhere to strict timelines. Any conflicts with precipitation requirements are discussed in the results section of this document.

EQUIPMENT CALIBRATION

The portable analyzers were calibrated to meet the instrument specifications requirements of U.S. EPA Method 21. The calibration gas used was methane, diluted to a nominal concentration of 25 ppmv in air for integrated sample analyses and 500 ppmv in air for instantaneous monitoring to comply with the requirements.

All analyzers were calibrated prior to use with required response time and precision related instrument checks. Calibration records include the following: One time response time test record; One time response factor determination for methane; Calibration Precision test records (test to be performed every 3 months); and Daily Instrument Calibration and Background test records for each gas meter that was used during the quarterly monitoring event. The calibration log records are included in Attachment E.

All monitoring was completed in accordance with the applicable regulatory requirements or approved alternatives. If you have any questions regarding this report, please do not hesitate to contact the undersigned at (510) 714-6098.

Thank you, Waste Management

Collin Parelil

Collin Pavelchik

Environmental Protection Air Quality Specialist

Attachment A – Instantaneous Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- Surface Monitoring Weather Data
- SEM Map

Attachment B – Integrated Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- Surface Monitoring Weather Data
- SEM Map

Attachment C – Component Leak Monitoring Event Records

• Component Leak Exceedances and Monitoring Logs

Attachment D – Weather Station Data

• Strip Chart Data and Legend

Attachment E – Calibration Records

• Instrument and Gas Calibration Records

Attachment A

Instantaneous Surface Emission Monitoring Event Records

Personnel: J. Medina K. Wallen	G. Lopez
G, RoBles	Cal. Gas Exp. Date: 3/25
Date: 3-13-23 Instrument Use	ed: FASPECTOIL Grid Spacing: 25FT
Temperature: 49° Precip:	Upwind BG: 1. 5 Downwind BG: 2. C

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	MATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	1561171116
106	JM	0737	0752	69.90	3	4	14	
107	Jm	0756	0811	84.50	2	3	14	
89	JM	0815	0826	24.50	3	5	14	
67	JM	0832	0845	22,00	3	5	- 11	
68	JM	0848	0903	33.50	4	6	10	
88	JM	0915	0926	3,60	4	5	10	
108	JM	0930	0944	80,40	6	7	16.	Puddles
109	JM	0946	0956	12.90	5	7	(1	Vegetation
87	Jm	1004	1014	7.20	5	8	11	HAIFGRId Vegeting
69	Jm	1020	1035	42,50	5	7	11	
40	Jm.	1050	1105	11.90	5	7	10	
39	JM	1108	1123	3.80	5	7	10	
93	KW	0733	0820	32.00	3	5	14	
63	KW	0822	0843	126,50	3	5	11	
64	kw	0845	0901	6,20		6	10	
92	kw	0903	0934	9,70	4	5	lo	
104	KW	0935	0949	134.20	6	7	11	
105	KW	0952	0958	11.00	5	7	U	
91	KW	1006	1028	7.40	5	7	11.	
65	KW	1034	1057	8,20	5	7	10	
66	KW	1058	1123	32,50	5	7	10	
110	GR	0914	0929	429.00	4	5	10	
86	GR	0936	0946	(6.30	V2	7	11	STECKPILE
70	(1R	0951	1003	8.30	5	7	11	Mulch
71	GR	1006	1020	25.10	5	7	11	
85	GR	1025	1032	5,10	5	7	II.	obstruction
111	GR	1037	1051	475,20	5	7	10	
112	(1L	0919	0978	559.70		5	10	ACTUR TRASIS
84	GL	0937	0951	20,10	5	1	11	muddy
72	61	1000	1037	27,10	5	7	11	moddy Pudelle

Attach Calibration Sheet Attach site map showing grid ID

Page ___ of __ Z

	J. Med k. WAI G. ROB							Exp. Date: _	
ate: <u>3</u>	-13-23	Instrur	nent Use	d: Insper	719K	Gri	d Spacing:	25PT	
emperat	ure:	Pred	cip:	Upv	vind BG:		Downw	ind BG:	1 1/4
GRID ID	STAFF	START STOP	STOP TOC WIND INFORMA			MATION	REMA	DKC	
J. 115 15	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEMA	KKS
35	GL	1044	1100	4.30	5	7	10	Muddy	Pudo
						·	777	<u> </u>	
							PE		
									8
				f Allege					

Attach Calibration Sheet
Attach site map showing grid ID

Page Z of Z

Personnel: T. Carsin J. Medina K. WAMEN	
K. WAMEN	Cal. Gas Exp. Date: 3/25
Date: 3-17-23 Instrument Used: TASPECTENS Gr	rid Spacing: 251
Temperature: 41° Precip:	Downwind BG: 2/6

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	NOITAN	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KENAKKO
1	TC	0308	0823	27.30	4	6	15	2
2	TC	0325	0840	58,40	3	5	15	Veg
3 4	TC	0842	0857		3	4	16	veg
4	TC	0855	O13	2,60	4	5	14	Veg
5	TC	0914	0929	2.00	3	4	16	
6	TC	0930	0945	2.20	3	4	16	Veg
7	TL	0946	1001	2.50	3	5	15	
8	TC	1002	10.17	9.80	+	6	15	Veg
9	TC	1018	1033	6.40	3	5	15	Veg
10	TC	1034	1049	77.20	2	3	16	veg
11	TL	1050	1055	32.30	3	5	16	Veg
12	TC	1056	llot	75.20	3	5	16	Veg
13	TC	1106	1113	165.40	3	5	160	Veg
14	TC	1114	1124	103.40	5	1	16	Veg
26	JM	0718	0732	257,10	5	7	15	vegetation
25	JM	038	0753	112,90	4	7	15	Veg
24	Jm	0800	0815	310.20	4	4	15	7
33	m	0822	0836	10,90	3	5	14	
34	JM	0839	0854	37.00	3	4	16	
23	JM	0858	0913	193.60	4	5	16	
22	Jm	0917	0932	88.90	3	4	16	
21	Jm	0936	0949	296.30	3	4	16	
20	JM	1002	1017	63,50	4	4	15	
36	5m	1025	1040	21.60	3	5	16	
37	Jm	1043	1057	15,00	3	5	16	
19	Jm	1100	1115	754.20	3	5	160	
79	KW	0741	0803	2,152.40	4	6	15	
78	KW	0808	0825	715.40	4	6	15	
8්ප	KW	0824	0841	830.10	3	5	15	TYAFFIC
77	KW	0842	0856	836.60	3	4	16	veg

Attach Calibration Sheet

Attach site map showing grid ID

Page 1 of Z

DIRECTION 16 POINT 14 14 14 15 15	vind BG: REMARKS Veg Veg
DIRECTION 16 POINT 14 14 14 15 15	REMARKS
DIRECTION 16 POINT 14 14 14 15 15	
16 POINT 16 16 16 15 15	
19 15 15	Veg
19 15 15	1100
15	1100
15 15	
15	7:7
15	Traffic
16	veg
16	9

Attach Calibration Sheet Attach site map showing grid ID

Page 2 of 2

Personnel:	KWAllen					
	TI CARSO					
	J. Medin	61		Cal. Gas	_ Cal. Gas Exp. Date: <u>3/25</u>	
Date: _	3-18-23	_ Instrument Used:	Inspectua	Grid Spacing	: 25FT	
Temper	ature: _57°	Precip: 0	Upwind BG:	45 Down	wind BG: 266	

GRID ID	STAFF INITIALS	START TIME	STOP TIME	TOC PPM	WIND INFORMATION			REMARKS
					AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEMAKKS
54	kw	0770	0736	11.20	2	5	12	Vecje
53	KW	0740	0749	13.80	2	4	14	Vace
52	KW	0750	0809	41.00	3	4	14	Vege
51	Kw	0810	0821	275.20	5	7	14	
50	KW	0915	0926	158.10	1	3	2	Veg
49	KW	0928	0938	70,70	3	5	14	Veg
48	KW	0940	0947	15,00	3	5	15.	Ves
58	KW	0952	0958	11.40	5	6	14	3/4 GREDIN VER
59	KW	1006	1017	33.90	4	5	15	Veg
60	kw	1000	1026	21,90	4	5	16	Ven
61	KW	1028	1037	15,90	3	4	15	VZI
62	KW	1039	1045	74.40	5	10	16	Vea
90	kw	1124	1138	24.30	5	b	2	STOCK PILE CONCRET
		*						
			1					
			,					
83	TC	11.13	1131	236.30	4	5	2	
87	†c	1146	1159	230,40	3	5	16	Veg
81	TC	1200	1210-	218.90	2	3	14	Vey
18	JM	0742	0752	84.60	2	4	14	Veg

Attach Calibration Sheet
Attach site map showing grid ID

Page of Z

Personnel: KiwAllen	
T. Carsew I. medina	Cal. Gas Exp. Date: 3/2 5
Date: 3-18-23 Instrument Used: INSPectra Gri	
Temperature: <7° Precip: Unwind BG:	Downwind BG:

GRID ID	STAFF INITIALS	START TIME	STOP TIME	TOC PPM	WIND INFORMATION			REMARKS
					AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	110111111111111111111111111111111111111
38	JM	0800	0815	7.80	4	6	14	
17	JM	0820	0832	8,30	3	4	14	
16	JM	0836	0842		2	4	2	
15	JM	0848	0853	24.90	3	3	2	
41	5m	0908	0923	30.70	0		2	
42	JM	0925	0936	8.80	3	4	14	
43	JM	0945	0957	4,47		b	14	
44	JM	0959	10'04	3.81	4	5	16	
45	5m	1006	1020	7.30	4	5	16	
46	JM	1028	1031	9,96	4	5	15	
47	JM	1038	1041	15,20	3	4	16	
73	JM	1122	1137	4.55	5	6	2	
74	JM	1141	1156	31.30	3	4	160	
					,			
		Lan Ten						42
						1	Mary 1	
			16.00					

Attach Calibration Sheet Attach site map showing grid ID

Page Z of Z

							Cal. Gas	Exp. Date: 3/25
ate:3	- 23-23	Instrur	nent Use	d: luspiech	pA-	Gri	d Spacing:	25'
emperat	ure: _ 4 (Pred	cip:€	2 Upw	ind BG:	1.3	Downw	vind BG: 2,6
GRID ID	STAFF INITIALS	START TIME	STOP TIME	TOC PPM	AVG	ID INFORM	DIRECTION	REMARKS
115	mo	1207	1216	150,10	SPEED	SPEED 1	16 POINT	576 0 510005
143	mo	1223	1227	A 200	+	6	4	Road Expo
144	mo	1229	1233	50.20	5	7	9	Road Hewy
145	mo	1234	1241	93,60	4		6	STEE P STOPES ROOM / ENPL CONSTRUCTION / THA ROAD / HEAVE CONSTRUCTION / FOR UTE
103	mo	1755	1310	55,40	5	10	7	
10.3	7770	1633	1376	37120	7		-/-	Vege
				190				
= 1, ,								
							_===	
					14 6			
			1					
		5 4						
						4		
			- 1					

Attach Calibration Sheet Attach site map showing grid ID

Personnel: (-1, Robles N, TAPPESCU)

T, CARSON LI BETEMCOURT

K. WAILEN A, LOPEZ Cal. Gas Exp. Date: 3/25

Date: 3-25-23 Instrument Used: TAPPECTAN Grid Spacing: 25

Temperature: 50 Precip: 0 Upwind BG: 1.5 Downwind BG: 2.4

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	NOITAN	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEIVIKKS
188	(12	0837	0850	563.90	0	0	4	
183	(1R	0851	0905	1,728.40	1	2	5	obstruction
182	GR	0907	0915	21.30	2	2.	4	obstruction
189	GR	0822	0833	118.60	-	3	14	mulen
190	(92	0806	1280	56,70	4	4	13	STOCKPILE
181	(TR	0917	0928	24.00	2	2	6	moddy
169	TC	0754	0800	49.40	4	6	12	Acture/Slope
170	TC	0802	0807	61.10	3	5	13	Active
171	tc	0809	0817	185.10	4	6	13	Acture
200	TC	0823	0831	42,00		3	14	Acfure
199	72	0832	0838	47.50	2	3	6	Actub
172	TC	0842	0857	77.90	D	0	4	
175	kw	0903	0919	16.70	2	2	4	Heavy Equipmen
174	KW	0920	0933	41.60	2	2	6	Unen
197	KW	0935	0953	60.40	2	2	2	Uner
198	kw	0956	1609	297.90	2	3	2	Umen
173	kw	1011	1028	229.30	1	2	2	Muddy
193	NJ	0831	0836	131.10	2	3	6	muddy
192	NJ	0839	0846	12.60	b	1	4	Actus /midd
180	NJ	0850	0900	17.30	1	2_	4	Acture/modely
191	NJ	0900	0910	28.90	1	2.	4	modely
167	LB	0750	0805	11.60	4	4	12	muddy
162	LB	0805	0820	11.60	4	6	13	moddy
160	LB	0826	0835	11.80	l	3	14	muldy
159	LB	0835	0850	12.30	U	0	6	liner
161	LB	0850	0905	12,20	(2	5	Liner
176	AL	0752	0807	3,209,40	3	5	13	muddy
196	AL	0815	0830	803.90		3	14	modely
195	AL	0831	0846	224,00	0	1	ما	TRASH
194	AL	0849	0906	10,734.		2	5	TRASH

Attach Calibration Sheet

Attach site map showing grid ID

Page _____ of ______

Personnel: (4, Rubles	NITAMERSON	G. Lopez
Ky WATTEN	1. Lopez	Cal. Gas Exp. Date: 3/25
Date: 3-25-23 Instrument Us	ed: INSPACTION	Grid Spacing: 25
Temperature: <u>50°</u> Precip: <u>4</u>	Upwind BG:	Downwind BG:

GRID ID	STAFF	START	STOP	тос	WIN	ID INFOR	MATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
177	AL	0907	0914	25.20	2	2	4	modely/11non
184	91	0819	0824	372.30	3	5	14	
187	GL	0848	0857	25,90	0	U		
186 185	GIL	0900	0912	29.00	1	2	4	
	GL.	0914	0930	8630	2	2	6	
148	61	0937		61.30	2	3	2.	
149	GL	0950		216,70	1	2	2	
				11				
V DIN		THE STATE OF			/			
	1 - 4				1 - 1 -			
-		-					,	
			1.37					
							- Y	
		His			_111			
	n		4			15.		
			Page 1					

Attach Calibration Sheet Attach site map showing grid ID

Page 2 of 2

							_ Cal. Gas	Exp. Date:
ate: <u>3</u>	-25-23	Instrur	nent Used	l:		Gri	d Spacing:	
emperat	ure:	Pred	cip:	Up	wind BG:		Downv	vind BG:
GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	MATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
123			75-178					STEEP Slopes/LineR
124								A AL
175								
126						- 4		
127								
128								
129								
130								
131								110
132								1
133								
134								
150								
151	La company							The state of the s
152								
153								
154								
155			No2016					
156								
168								
201								
202								
203								V
118								Heavy Egypmi
119								
120								
114								
138								
131							No. of the last	1

Attach Calibration Sheet Attach site map showing grid ID

Page _____ of ______

ate: _3	-25-23	Instrun	nent Used	:		Grid	d Spacing:	
emperat	ure:	Pred	cip:	Up	wind BG:		Downw	ind BG:
GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	IATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
141								Berry Gunan
142								1
176								Acture TRAS
121								16,50
122						(1)		
135								
136								
137								
157								
158		-						
163								
164								
165								
166								
178								
179						<u></u>		
117								1
146								Heavy 6gun
147								No was a second
								-
				3				

Attach site map showing grid ID

Page 2 of 2

Personnel: T. Capscu M. Dymman	J. modina		
M. Domingez G. Lopez		Cal. Gas Exp	. Date: 3/25
Date: 3-31-23 Instrument Use	ed: Inspectra	Grid Spacing:	2587
Temperature: 49° Precip: C	D Upwind BG: _	1,2 Downwind	BG: 2.6

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	ATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
55	TC	1015	1021	2.40	3	5	1	Flooded
56	TC	1023	1030	2,60	5	7	16	Vege.
57	TC	1035	1046	4.80	5	7	16	Vege / Flooder
98	TC	1050	1053	26.60	6	8	16	
99	MD	1025	1032	2.80	4	7	16	Vege
100	m_D	1033	1039	3.30	4	6	16	vere
101	MD	1040	1047	2,50	6	7	16	Veye Veye Vecy
102	MD	1047	1058	2,00	6	9	16	Vecy
113	66	1038	1051	150,90	6	7	160	1
97	JM	1029	1043	47,90	5	7	16	New
96	JM	1046	1056	44.90	6	Q	1 1	Vere.
95	JM	1103	1103	24.30	5	7	16	Var
94	Tm	1112	1BZ	41.50	5	7	16	Nege Vege Vege
	U							
							/ I= 0	
							_	
			`					
	bration Ch							

Attach Calibration Sheet Attach site map showing grid ID

Page _____ of _____

Stur valley 15t am 2023 Pra 606

AverageCH4	2875.87	97.25	57.49	570.77	139.56	15.52	153.00	20.58	51.84	81.47	18.53	73.35	140.35	56.48	56.16	55.19	52.50	23.48	60.54	64.19	23.78	54.16	32.48	59.98	21.98	24.78	8.19	4.59	11.56	21.52	28.27	10.83	17.69	31.96	20.92	6.22	32.59	8.32	16.48	35,43	9.21	3.12	28.01	13.31	8.63	14.56
MaxCH4 Ave	8098.00	2367.00	1893.60	1607.70	766.50	736.40	687.20	672.90	278.60	276.10	259.30	234.50	198.30	174.10	166.30	153.00	137.70	112.60	109.50	104.60	99.30	96.40	94.50	89.50	85.70	65.70	62.70	58.40	57.40	56.70	54.00	52.50	46.50	44.40	44.40	44.30	43.60	39.30	36.50	36.40	34.60	33.90	31.00	30.10	28.50	28.30
SerialNuml ReadingTypeDetails	1001221 SIMW709D	1001221 SIMW09RD	1011221 SIMW2008	1001221 SIMW709S	1001221 SIMW2005	1011221 SIMW0003	811121 SIM1789S	1011221 SIMW1561	1001221 SIMW2078	1001221 SIMW1015	1001221 SIMW115S	811121 SIM2043D	2991022 SIH02124	761121 SIMW2055	1001221 SIMW2008	761121 SIMW010R	761121 SIMW2097	761121 SIM1793D	2991022 SIMW1101	1001221 SIMW2094	1001221 SIMW0708	1001221 SIMWO9RS	811121 SIH2115E	1001221 SIMW2093	1011221 SIMLROOB	761121 SIMW2233	881221 SIM1570D	761121 SIMW2048	761121 SIMW1227	1011221 SIMW0818	811121 SIM1780S	761121 SIMW2058	811121 SIMW2234	1011221 SIMW0817	811121 SIM1938S	881221 SIMW2041	1011221 SIMSVE02	811121 SIH02108	1001221 SIM1778D	1001221 SIMW1817	761121 SIM1938S	881221 SIM1937S	2991022 SIH02004	1001221 SIMW2077	2991022 SIM1933S	811121 SIMHL001
LastReadingDateTime Type	03/07/2023 08:22 AM InspectraBLE	03/07/2023 08:29 AM InspectraBLE	03/07/2023 09:44 AM InspectraBLE	03/07/2023 08:23 AM InspectraBLE	03/07/2023 10:33 AM InspectraBLE	03/07/2023 08:16 AM InspectraBLE	03/07/2023 08:46 AM InspectraBLE	03/07/2023 10:58 AM InspectraBLE	03/07/2023 11:15 AM InspectraBLE	03/07/2023 08:15 AM InspectraBLE	03/07/2023 10:51 AM InspectraBLE	03/07/2023 08:49 AM InspectraBLE	03/16/2023 11:37 AM InspectraBLE	03/07/2023 09:32 AM InspectraBLE	03/07/2023 08:44 AM InspectraBLE	03/07/2023 07:57 AM InspectraBLE	03/07/2023 11:17 AM InspectraBLE	03/07/2023 08:01 AM InspectraBLE	03/16/2023 08:10 AM InspectraBLE	03/07/2023 11:17 AM InspectraBLE	03/07/2023 08:33 AM InspectraBLE	03/07/2023 08:26 AM InspectraBLE	03/07/2023 10:44 AM InspectraBLE	03/07/2023 11:16 AM InspectraBLE	03/07/2023 09:50 AM InspectraBLE	03/07/2023 07:34 AM InspectraBLE	03/07/2023 09:06 AM inspectraBLE	03/07/2023 07:39 AM InspectraBLE	03/07/2023 08:55 AM InspectraBLE	03/07/2023 07:59 AM InspectraBLE	03/13/2023 09:55 AM InspectraBLE	03/07/2023 09:18 AM InspectraBLE	03/07/2023 09:50 AM inspectraBLE	03/07/2023 08:01 AM InspectraBLE	03/07/2023 07:35 AM InspectraBLE	03/07/2023 08:23 AM InspectraBLE	03/07/2023 09:53 AM InspectraBLE	03/07/2023 10:44 AM InspectraBLE	03/07/2023 11:05 AM InspectraBLE	03/07/2023 07:34 AM InspectraBLE	03/07/2023 09:30 AM InspectraBLE	03/07/2023 09:35 AM InspectraBLE	03/16/2023 11:25 AM InspectraBLE	03/07/2023 11:11 AM InspectraBLE	03/16/2023 10:42 AM InspectraBLE	03/13/2023 08:15 AM InspectraBLE
FirstReadingDateTime L	03/07/2023 08:22 AM	03/07/2023 08:27 AM	03/07/2023 09:40 AM	03/07/2023 08:23 AM	03/07/2023 10:33 AM	03/07/2023 08:13 AM	03/07/2023 08:46 AM	03/07/2023 10:57 AM	03/07/2023 11:14 AM	03/07/2023 08:14 AM	03/07/2023 09:05 AM	03/07/2023 08:49 AM	03/16/2023 11:37 AM	03/07/2023 09:32 AM	03/07/2023 08:44 AM	03/07/2023 07:57 AM	03/07/2023 11:16 AM	03/07/2023 08:01 AM	03/16/2023 08:10 AM	03/07/2023 11:17 AM	03/07/2023 08:33 AM	03/07/2023 08:26 AM	03/07/2023 07:34 AM	03/07/2023 11:16 AM	03/07/2023 09:49 AM	03/07/2023 07:34 AM	03/07/2023 09:05 AM	03/07/2023 07:39 AM	03/07/2023 07:54 AM	03/07/2023 07:58 AM	03/13/2023 09:54 AM	03/07/2023 09:18 AM	03/07/2023 09:50 AM	03/07/2023 08:00 AM	03/07/2023 07:34 AM	03/07/2023 08:23 AM	03/07/2023 09:53 AM	03/07/2023 10:44 AM	03/07/2023 11:04 AM	03/07/2023 07:33 AM	03/07/2023 09:30 AM	03/07/2023 09:35 AM	03/16/2023 11:25 AM	03/07/2023 11:11 AM	03/16/2023 10:42 AM	03/13/2023 08:15 AM
UserId	RES001	RES001	RES003	RES001	RES001	RES003	RES005	RES003	RES001	RES001	RES001	RES005	RESrent3	RES004	RES001	RES004	RES004	RES004	RESrent3	RES001	RES001	RES001	RES005	RES001	RES003	RES004	RES002	RES004	RES004	RES003	RES005	RES004	RES005	RES003	RES005	RES002	RES003	RES005	RES001	RES001	RES004	RES002	RESrent3	RES001	RESrent3	RES005
Name	2023Q1_Penetration	2023Q1 Penetration	2023Q1_Penetration																																											

					11111	
_	m	11:24 AM	03/16/2023 11:24 AM InspectraBLE	2991022 SIM1936S	11.70	96.6
	_	07:56 AM	03/07/2023 07:57 AM InspectraBLE	881221 SIMW1014	11.40	7.86
_	_	10:39 AM	03/07/2023 10:39 AM InspectraBLE	811121 SIH02125	11.30	10.30
		09:29 AM	03/07/2023 09:29 AM InspectraBLE	881221 SIMW2059	11.20	6.32
2023Q1_Penetration RESrent3	nt3 03/16/2023 08:33 AM	08:33 AM	03/16/2023 08:33 AM InspectraBLE	2991022 SIMW2084	10.70	10.11
2023Q1_Penetration RES002	2 03/07/2023 10:S6 AM	10:56 AM	03/07/2023 10:56 AM InspectraBLE	881221 SIMW1809	10.30	7.88
	_	07:27 AM	03/07/2023 07:28 AM InspectraBLE	1001221 SIM1937S	10.10	9.83
	Ī	08:05 AM	03/07/2023 08:06 AM InspectraBLE	1011221 SIMW0814	10.00	7.94
_	_	08:33 AM	03/07/2023 08:33 AM InspectraBLE	761121 SIMW1232	10.00	2.60
	_	08:31 AM	03/13/2023 08:31 AM InspectraBLE	811121 SIM1777D	9.80	8.37
		07:50 AM	03/07/2023 07:50 AM InspectraBLE	1001221 SIMW1014	9.70	8.45
		07:42 AM	03/07/2023 07:42 AM InspectraBLE	811121 SIMW2056	9.40	4.59
		08:10 AM	03/07/2023 08:10 AM InspectraBLE	1011221 SIMW2009	8.80	7.25
_	Ŭ	09:24 AM	03/16/2023 09:24 AM InspectraBLE	2991022 SIMH0225	8.60	6.14
N I	nt3 03/16/2023 12:27 PM	12:27 PM	03/16/2023 12:27 PM InspectraBLE	2991022 SIMWO9RS	8.60	6.22
		10:40 AM	03/07/2023 10:40 AM InspectraBLE	811121 SIH02109	8.40	7.69
		11:14 AM	03/07/2023 11:14 AM InspectraBLE	761121 SIMW2098	8.30	9.92
		10:39 AM	03/07/2023 10:39 AM InspectraBLE	811121 SIH2115D	8.30	5.53
	3 03/13/2023 10:01 AM	10:01 AM	03/13/2023 10:02 AM InspectraBLE	811121 SIM1805S	8.30	6.57
2023Q1_Penetration RES005	15 03/13/2023 08:23 AM	08:23 AM	03/13/2023 08:23 AM InspectraBLE	811121 SIMHL003	8.00	5.19
2023Q1_Penetration RESrent3	nt3 03/16/2023 10:16 AM	10:16 AM	03/16/2023 10:17 AM InspectraBLE	2991022 SIH1405B	7.80	4.64
		07:53 AM	03/07/2023 07:53 AM InspectraBLE	761121 SIMW1234	7.60	5.92
		07:31 AM	03/07/2023 07:31 AM InspectraBLE	761121 SIH02109	7.20	7.10
	_	07:48 AM	03/07/2023 09:03 AM InspectraBLE	811121 SIMW1790	7.20	3.60
		07:49 AM	03/07/2023 07:49 AM InspectraBLE	811121 SIMW2057	7.10	5.64
	0	09:18 AM	03/07/2023 09:18 AM InspectraBLE	811121 SIMW822D	7.10	2.00
	_	D7:53 AM	03/07/2023 07:53 AM InspectraBLE	1001221 SIMW810S	7.00	6.45
	_	07:54 AM	03/07/2023 07:54 AM InspectraBLE	1001221 SIMW810D	6.80	6.26
		39:10 AM	03/07/2023 09:10 AM InspectraBLE	761121 SIMW116R	6.70	3.04
		09:17 AM	03/07/2023 09:18 AM InspectraBLE	1001221 SIM1562D	9.60	5.01
	3	39:16 AM	03/16/2023 09:16 AM InspectraBLE	2991022 SIMW0708	09'9	5.89
		08:00 AM	03/07/2023 08:00 AM InspectraBLE	811121 SIMW1569	6.50	9.00
Ī	Ī	07:46 AM	03/07/2023 07:46 AM InspectraBLE	811121 SIMLR22A	6.40	6.11
		27:46 AM	03/07/2023 07:46 AM InspectraBLE	811121 SIMW1781	6.30	6.02
	3	11:28 AM	03/16/2023 11:28 AM InspectraBLE	2991022 SIMH022N	6.30	5.96
		38:08 AM	03/07/2023 08:08 AM InspectraBLE	1011221 SIMW0813	6.20	5.81
	_	09:24 AM	03/07/2023 09:24 AM InspectraBLE	761121 SIMW2225	6.20	4.39
	<u>س</u>	38:44 AM	03/16/2023 08:45 AM InspectraBLE	2991022 SIM1792D	6.20	5.85
		08:05 AM	03/07/2023 08:05 AM InspectraBLE	881221 SIMW703S	9009	5.68
		07:54 AM	03/07/2023 07:54 AM InspectraBLE	811121 SIM1805D	6.00	5.57
_		38:45 AM	03/16/2023 08:45 AM InspectraBLE	2991022 SIM1792S	00.9	5.78
	9	38:56 AM	03/16/2023 08:56 AM InspectraBLE	2991022 SIMW1791	9.00	5.29
		08:05 AM	03/07/2023 08:05 AM InspectraBLE	881221 SIMW810S	5.90	5.20
2023Q1_Penetration RES005	5 03/07/2023 07:59 AM	7:59 AM	03/07/2023 07:59 AM InspectraBLE	811121 SIH1359A	5.80	5.40
2023Q1_Penetration RESO05	5 03/07/2023 11:01 AM	11:01 AM	03/07/2023 11:01 AM InspectraBLE	811121 SIMM2089	00 1	3 30
				COCK AND THE PERSON	2.00	200

2023Q1_Penetration	RES005	03/07/2023 08:31 AM	03/07/2023 08:31 AM InspectraBLE	811121 SIMW012R	5.70	5.29
2023Q1_Penetration	RESrent3	03/16/2023 08:49 AM	03/16/2023 08:50 AM InspectraBLE	2991022 SIMW707D	5.70	5.31
2023Q1_Penetration	RES005	03/07/2023 11:03 AM	03/07/2023 11:03 AM InspectraBLE	811121 SIMW1812	2.60	3.48
2023Q1_Penetration	RES005	03/13/2023 10:57 AM	03/13/2023 10:58 AM InspectraBLE	811121 SIM1793S	5.50	3.31
2023Q1_Penetration	RES001	03/07/2023 09:17 AM	03/07/2023 09:17 AM InspectraBLE	1001221 SIM1562S	5.30	3.90
2023Q1_Penetration	RES005	03/13/2023 09:43 AM	03/13/2023 09:43 AM InspectraBLE	811121 SIM2052S	5.20	4.89
2023Q1_Penetration	RESrent3	03/16/2023 09:09 AM	03/16/2023 09:09 AM InspectraBLE	2991022 SIH1363B	5.10	4.65
2023Q1_Penetration	RES005	03/07/2023 11:06 AM	03/07/2023 11:06 AM InspectraBLE	811121 SIH02105	2.00	4.69
2023Q1_Penetration	RES005	03/07/2023 07:50 AM	03/07/2023 07:50 AM InspectraBLE	811121 SIMW1014	2:00	4.86
2023Q1_Penetration	RES005	03/07/2023 07:50 AM	03/07/2023 07:50 AM InspectraBLE	811121 SIMW2047	5.00	4.80
2023Q1_Penetration	RES002	03/07/2023 08:05 AM	03/07/2023 08:06 AM InspectraBLE	881221 SIMW810D	4.90	4.60
2023Q1_Penetration	RES001	03/07/2023 09:15 AM	03/07/2023 09:15 AM InspectraBLE	1001221 SIMW2220	4.80	3.93
2023Q1_Penetration	RES005	03/07/2023 07:37 AM	03/07/2023 07:37 AM inspectraBLE	811121 SIMW2227	4.80	4.38
2023Q1_Penetration	RES003	03/07/2023 11:05 AM	03/07/2023 11:06 AM InspectraBLE	1011221 SIMW2070	4.70	3.88
2023Q1_Penetration	RES005	03/07/2023 08:49 AM	03/07/2023 08:49 AM InspectraBLE	811121 SIM2043S	4.60	3.72
2023Q1_Penetration	RES005	03/07/2023 07:56 AM	03/07/2023 07:56 AM InspectraBLE	811121 SIMW2065	4.60	4.06
2023Q1_Penetration	RES005	03/07/2023 08:01 AM	03/07/2023 08:02 AM InspectraBLE	811121 SIM1573D	4.40	4.25
2023Q1_Penetration	RES005	03/07/2023 07:55 AM	03/07/2023 09:30 AM InspectraBLE	811121 SIM2061D	4.40	3.14
2023Q1_Penetration	RES005	03/07/2023 07:39 AM	03/07/2023 09:07 AM InspectraBLE	811121 SIMW1785	4.30	3.36
2023Q1_Penetration	RESrent3	03/16/2023 10:02 AM	03/16/2023 10:02 AM InspectraBLE	2991022 SIMW0816	4.30	2.99
2023Q1_Penetration	RES001	03/07/2023 08:01 AM	03/07/2023 09:31 AM InspectraBLE	1001221 SIMW2222	4.10	2.86
2023Q1_Penetration	RESOO3	03/07/2023 08:21 AM	03/07/2023 08:21 AM InspectraBLE	1011221 SIMW810S	4.10	3.72
2023Q1_Penetration	RES001	03/07/2023 08:03 AM	03/07/2023 08:03 AM InspectraBLE	1001221 SIH02110	3.90	3.69
2023Q1_Penetration	RES001	03/07/2023 08:00 AM	03/07/2023 08:01 AM InspectraBLE	1001221 SIMW1228	3.90	3.77
2023Q1_Penetration	RES003	03/07/2023 11:12 AM	03/07/2023 11:12 AM InspectraBLE	1011221 SIMSVE03	3.90	3.50
2023Q1_Penetration	RES005	03/07/2023 08:37 AM	03/13/2023 08:33 AM InspectraBLE	811121 SIMW1011	3.90	3.21
2023Q1_Penetration	RES005	03/07/2023 07:45 AM	03/07/2023 07:45 AM InspectraBLE	811121 SIMW1807	3.90	3.72
2023Q1_Penetration	RESOOS	03/07/2023 07:37 AM	03/07/2023 07:37 AM InspectraBLE	811121 SIMW2091	3.90	3.74
2023Q1_Penetration	RESrent3	03/16/2023 10:18 AM	03/16/2023 10:21 AM InspectraBLE	2991022 SIH1406B	3.90	1.99
2023Q1_Penetration	RESrent3	03/16/2023 09:36 AM	03/16/2023 09:37 AM InspectraBLE	2991022 SIMH021S	3.90	2.99
2023Q1_Penetration	KESO01	03/07/2023 11:03 AM	03/07/2023 11:03 AM InspectraBLE	1001221 SIMW2073	3.80	3.28
2023Q1_Penetration	RES005	03/07/2023 07:24 AIM	03/07/2023 07:25 AM InspectraBLE	811121 SIHOZ111	3.80	3.04
2023Q1_Penetration	RES005	03/13/2023 10:16 AM	03/13/2023 11:25 AM InspectraBLE	811121 SIMLROAR	3.80	2.20
2023Q1_Penetration	RESOUS	03/07/2023 U8:52 AM	03/07/2023 08:52 AM Inspectrable	811121 SIMW1/86	3.80	2.86
2023Q1_renetration	AE3003	03/07/2023 06:21 AIM	03/07/2023 00:21 ANI INSPECT ABLE	פייסטרטיי ירכיסטיי	0.00	70.0
202301 Penetration	RESO01	03/07/2023 08:00 AM	03/07/2023 08:00 AM InspectraBLE	1001221 SIM1673S	3.70	3.57
202301 Penetration	RESDO3	03/07/2023 09:07 AM	03/07/2023 09:07 AM InspectraBLE	1011221 SIMW0019	3.70	3.50
2023Q1 Penetration	RES004	03/07/2023 09:03 AM	03/07/2023 09:03 AM InspectraBLE	761121 SIMW122S	3.70	2.62
2023Q1_Penetration	RES005	03/07/2023 08:15 AM	03/07/2023 08:15 AM InspectraBLE	811121 SIM1928S	3.70	3.39
2023Q1_Penetration	RES005	03/07/2023 11:02 AM	03/07/2023 11:02 AM InspectraBLE	811121 SIMW1811	3.70	3.01
2023Q1_Penetration	RES001	03/07/2023 09:01 AM	03/07/2023 09:02 AM InspectraBLE	1001221 SIMI0903	3.60	2.98
2023Q1_Penetration	RES003	03/07/2023 08:20 AM	03/07/2023 08:21 AM InspectraBLE	1011221 SIMW810D	3.60	3.24
2023Q1_Penetration	RES005	03/07/2023 07:39 AM	03/07/2023 08:45 AM InspectraBLE	811121 SIH1362A	3.60	2.95
2023Q1_Penetration	RES005	03/07/2023 07:39 AM	03/07/2023 07:39 AM InspectraBLE	811121 SIH1404B	3.60	3.40
2023Q1_Penetration	RES005	03/07/2023 08:05 AM	03/07/2023 08:05 AM InspectraBLE	811121 SIM1783S	3.60	3.35
2023Q1_Penetration	RES005	03/07/2023 08:23 AM	03/07/2023 08:23 AM InspectraBLE	811121 SIMW1798	3.60	3.36

	MA 31-00 CCCC/FO/CO	7.00 0000/10/10			
03/07/:	03/07/2023 09:15 AM	03/07/2023 09:15 AM InspectraBLE	1001221 SIMW2088	3.50	3.35
03/07/20	03/07/2023 08:18 AM	03/07/2023 08:18 AM InspectraBLE	1011221 SIMW1014	3.50	3.10
03/07/202	03/07/2023 08:16 AM	03/07/2023 08:16 AM InspectraBLE	811121 SIM1782S	3.50	3.37
03/02/20	03/07/2023 08:06 AM	03/07/2023 08:06 AM InspectraBLE	811121 SIM1783D	3.40	3.29
03/07/20	03/07/2023 10:15 AM	03/07/2023 10:16 AM InspectraBLE	1011221 SIH02114	3.30	2.97
03/07/20	03/07/2023 09:46 AM	03/07/2023 09:46 AM InspectraBLE	811121 SIH1401A	3.30	1.96
03/07/20	03/07/2023 08:16 AM	03/07/2023 08:16 AM InspectraBLE	811121 SIM1782D	3.30	3.08
03/07/20	03/07/2023 07:25 AM	03/07/2023 07:25 AM InspectraBLE	811121 SIMW0808	3.30	3.15
03/02/20	03/07/2023 07:25 AM	03/07/2023 07:25 AM InspectraBLE	811121 SIMW2049	3.30	2.62
03/07/20	03/07/2023 08:26 AM	03/07/2023 08:26 AM InspectraBLE	1011221 SIMLROOD	3.20	3.11
03/0/20	03/07/2023 US:28 AIM	03/07/2023 08:28 AM InspectraBLE	1011221 SIMW0812	3.20	3.01
03/0//50	03/07/2023 09:00 AIM	03/07/2023 09:00 AM InspectraBLE	811121 SIMW1571	3.20	3.05
03/07/20	3/07/2023 09:23 AM	03/07/2023 09:24 AIM INSpectrable	1001221 SIM1805U	3.10	2.46
03/07/202	03/07/2023 08:35 AM	03/07/2023 08:35 AM InspectraBIF	1011221 SIMWINGS	3.10	16.7
03/07/202	03/07/2023 09:09 AM	03/07/2023 09:09 AM InspectraBLE	1011221 SIMW0809	3.10	2.96
03/02/202	03/07/2023 08:57 AM	03/07/2023 08:57 AM InspectraBLE	761121 SIMW703S	3.10	2.59
_	03/07/2023 08:19 AM	03/07/2023 08:19 AM InspectraBLE	811121 SIMW1801	3.10	2.92
	03/16/2023 10:03 AM	03/16/2023 10:04 AM InspectraBLE	2991022 SIH1403B	3.10	2.64
RESrent3 03/16/202	03/16/2023 10:04 AM	03/16/2023 10:04 AM InspectraBLE	2991022 SIM2052S	3.10	2.91
03/02/202	03/07/2023 09:14 AM	03/07/2023 09:14 AM InspectraBLE	881221 SIM1564D	3.00	2.57
03/02/20	03/07/2023 08:44 AM	03/07/2023 08:45 AM InspectraBLE	881221 SIMI0903	3.00	2.64
03/07/202	03/07/2023 10:05 AM	03/07/2023 10:05 AM InspectraBLE	1011221 SIMH022N	3.00	2.86
03/02/20	03/07/2023 08:33 AM	03/07/2023 08:33 AM InspectraBLE	1011221 SIMW0018	3.00	2.83
03/07/20	03/07/2023 08:13 AM	03/07/2023 08:13 AM InspectraBLE	811121 SIH1403A	3.00	2.77
03/07/20	03/07/2023 06:17 AIM	03/07/2023 08:17 AM Inspectfable	811121 SIM1929S	3.00	2.81
03/07/202	03/07/2023 09:19 AM	03/07/2023 09:19 AM InspectraBLE	811121 SIMW822S	3.00	2./4
03/07/202	03/07/2023 09:14 AM	03/07/2023 09:15 AM InspectraBLE	881221 SIM1564S	2.90	2.68
03/07/202	03/07/2023 09:23 AM	03/07/2023 09:23 AM InspectraBLE	761121 SIMW703D	2.90	3.38
	03/07/2023 09:27 AM	03/07/2023 09:27 AM InspectraBLE	811121 SIM1778S	2.90	2.63
RESrent3 03/16/20	03/16/2023 10:37 AM	03/16/2023 10:37 AM InspectraBLE	2991022 SIMW1102	2.90	2.28
	03/07/2023 10:52 AM	03/07/2023 10:52 AM InspectraBLE	811121 SIMW1821	2.80	2.23
RESrent3 03/16/20	03/16/2023 12:05 PM	03/16/2023 12:06 PM InspectraBLE	2991022 SIH02002	2.80	2.02
03/0/2	05/07/2025 09:25 AIN	03/07/2023 09:23 AM Inspectrable	1001221 SIH02111	2.70	2.43
03/03/20	MA 50:02 502/20/20	03/07/2023 09:32 AM Inspectingle	1001221 SIMIOSOS	2.70	2.31
02/10/60	13/07/2023 03:22 ANA	03/07/2023 03:22 AM INSPECTIGEDE	TOOTEST SIMMYZZZI	2.70	7.47
02/10/50	03/07/2023 08:32 AIM	03/07/2023 06:33 AM Inspectrable	881221 SIMW1233	2.70	2.51
03/01/202	3 U8:30 AM	03/07/2023 08:56 AM InspectraBLE	881221 SIMW2008	2.70	2.35
03/07/202	03/07/2023 10:41 AM	03/07/2023 10:41 AM InspectraBLE	811121 SIH02124	2.70	2.33
03/07/20	03/07/2023 09:26 AM	03/07/2023 09:26 AM InspectraBLE	811121 SIM1778D	2.70	1.93
03/07/202	03/07/2023 08:57 AM	03/07/2023 09:33 AM InspectraBLE	811121 SIMW2053	2.70	2.28
03/07/20	03/07/2023 08:45 AM	03/07/2023 08:45 AM InspectraBLE	881221 SIMW1011	2.60	2.44
03/07/20	3/07/2023 09:11 AM	03/07/2023 09:11 AM InspectraBLE	881221 SIMW1565	2.60	2.40
03/07/20	03/07/2023 08:45 AM	03/07/2023 08:45 AM InspectraBLE	881221 SIMW2007	2.60	2.47
03/02/20	03/07/2023 08:46 AM	03/07/2023 08:52 AM InspectraBLE	1011221 SIMW0808	2.60	2.16
03/02/20	03/07/2023 08:30 AM	03/07/2023 08:31 AM InspectraBLE	1011221 SIMW0811	2.60	2.46

RES004	03/07/2023 08:56 AM	U3/U//2U23 U8:56 AM InspectraBLE	761121 SIH2001A	2.60	2.47
RES005	03/07/2023 08:43 AM	03/07/2023 08:44 AM InspectraBLE	811121 SIM1788S	2.60	2.53
RES005	03/07/2023 11:05 AM	03/07/2023 11:05 AM InspectraBLE	811121 SIM1932S	2.60	2.36
RES005	03/07/2023 08:41 AM	03/07/2023 08:42 AM InspectraBLE	811121 SIMW1229	2.60	2.39
RES001	03/07/2023 09:03 AM	03/07/2023 09:03 AM InspectraBLE	1001221 SIMI0902	2.50	2.30
RES001	03/07/2023 08:54 AM	03/07/2023 08:55 AM InspectraBLE	1001221 SIMI0904	2.50	2.37
RES002	03/07/2023 08:57 AM	03/07/2023 08:57 AM InspectraBLE	881221 SIMW2083	2.50	2.27
RES003	03/07/2023 09:13 AM	03/07/2023 09:13 AM InspectraBLE	1011221 SIMHL002	2.50	2.42
RES003	03/07/2023 08:59 AM	03/07/2023 08:59 AM InspectraBLE	1011221 SIMW0001	2.50	2.31
RES003	03/07/2023 10:51 AM	03/07/2023 10:51 AM InspectraBLE	1011221 SIMW1563	2.50	2.29
RES003	03/07/2023 08:53 AM	03/07/2023 08:54 AM InspectraBLE	1011221 SIMW1808	2.50	2.34
RES003	03/07/2023 11:08 AM	03/07/2023 11:08 AM InspectraBLE	1011221 SIMW2082	2.50	2.26
RES005	03/07/2023 09:40 AM	03/07/2023 09:40 AM InspectraBLE	811121 SIMW1795	2.50	2.27
RES001	03/07/2023 09:10 AM	03/07/2023 09:10 AM InspectraBLE	1001221 SIMI0901	2.40	2.14
RES003	03/07/2023 08:38 AM	03/07/2023 08:39 AM inspectraBLE	1011221 SIMW0002	2.40	2.17
RES005	03/07/2023 10:43 AM	03/07/2023 10:43 AM InspectraBLE	811121 SIH02123	2.40	2.10
RES005	03/07/2023 08:42 AM	03/07/2023 08:42 AM InspectraBLE	811121 SIH1406A	2.40	2.27
RES005	03/07/2023 08:43 AM	03/07/2023 08:43 AM InspectraBLE	811121 SIM1788D	2.40	2.31
RES005	03/13/2023 10:23 AM	03/13/2023 10:24 AM InspectraBLE	811121 SIM2081S	2.40	2.16
RES005	03/13/2023 10:20 AM	03/13/2023 10:21 AM InspectraBLE	811121 SIMHL005	2.40	2.02
RES005	03/07/2023 11:08 AM	03/07/2023 11:08 AM InspectraBLE	811121 SIMSVE03	2.40	2.21
RESrent3	03/16/2023 10:36 AM	03/16/2023 10:36 AM InspectraBLE	2991022 SIH02110	2.40	2.27
RESrent3	03/16/2023 09:48 AM	03/16/2023 09:48 AM InspectraBLE	2991022 SIMW0812	2.40	2.03
RES003	03/07/2023 09:13 AM	03/07/2023 09:13 AM InspectraBLE	1011221 SIMLR602	2.30	2.17
RES003	03/07/2023 08:40 AM	03/07/2023 08:41 AM InspectraBLE	1011221 SIMW0004	2.30	2.13
RES005	03/13/2023 10:11 AM	03/13/2023 10:12 AM InspectraBLE	811121 SIMW1356	2.30	2.12
RESrent3	03/16/2023 09:51 AM	03/16/2023 09:51 AM InspectraBLE	2991022 SIMLR001	2.30	1.97
KESOUL	03/07/2023 09:26 AM	U3/U7/2023 U9:26 AM InspectraBLE	1001221 SIH2001A	2.20	1.97
5005	03/13/2023 10:26 ANA	03/13/2023 10:2/ AM InspectraBLE	811121 SIH1404A	2.20	2.07
PESONS	03/07/2023 08:53 AM	03/07/2023 06:36 AM Inspectrable	811121 SIM2064D	2.20	1.96
2002	03/07/2023 06:33 ANN	03/07/2023 06:33 AIM INSPECTRABLE	811121 SIMI2064S	2.20	2.01
COOCAL	03/07/2025 09:55 AIM	03/07/2023 09:35 AIM Inspectrable	811121 SIMHL002	2.20	1.86
DECOUS	03/13/2023 10:0/ AIM	03/13/2023 10:0/ AIVI InspectraBLE	SIIIZI SIMLKODA	2.20	1.98
RESOUS	03/07/2023 09:30 AM	03/07/2023 09:30 AIM INSPECTABLE	1011221 SIMHUU1/	2.10	1.89
RFS003	03/07/2023 D8:49 AM	03/07/2023 20:30 AM Inspectingue	1011221 SIMILORUI	2.10	\$ 6
PECONS	03/07/2023 00:45 AM	03/07/2023 08:30 AIM INSPECTABLE	STATES SIMINOCOS	2.10	1.9/
5005	MA 54:01 C202/10/20	משלטין איני דיים בניסר/בייל מיני	STITZI SHUZIO/	2.10	1.81
2000	03/07/2023 09:41 AM	03/07/2023 09:41 AM InspectraBLE	811121 SIMW1353	2.10	1.94
KESOOS	03/07/2023 08:56 AM	03/07/2023 08:57 AM InspectraBLE	811121 SIMW2094	2.10	1.91
(ESrent3	03/16/2023 09:31 AM	03/16/2023 09:31 AM InspectraBLE	2991022 SIMH018S	2.10	1.85
RES005	03/07/2023 09:12 AM	03/07/2023 09:12 AM InspectraBLE	811121 SIM1568S	2.00	1.84
RES005	03/13/2023 10:47 AM	03/13/2023 10:47 AM InspectraBLE	811121 SIM2044S	2.00	1.82
3ES005	03/13/2023 10:35 AM	03/13/2023 10:36 AM inspectraBLE	811121 SIM2054S	2.00	1.81
RESO05	03/07/2023 09:29 AM	03/07/2023 09:29 AM InspectraBLE	811121 SIM2061S	2.00	1.75
3ES005	03/13/2023 10:52 AM	03/13/2023 10:52 AM InspectraBLE	811121 SIMW1222	2.00	1.78
RES005	03/13/2023 10:29 AM	03/13/2023 10:29 AM Increating I	011131 CIAMAN132		
		מין בין בינים בינים שוני וויבאברוו מחוד	C77T MINIC T7TTTO	2.00	1.82

1.77	1.81	1.78	1.73	1.71	1.53	1.55	1.60
1.90	1.90	1.90	1.80	1.80	1.70	1.70	1.70
811121 SIH02106 811121 SIH2115F	811121 SIM1568D 811121 SIM2044D	811121 SIMW1008 811171 SIMW1803	811121 SIM1777S	811121 SIM2054D 811121 SIMW1802	1001221 SIMW1794	811121 SIM2042S	811121 SIMW1787 811121 SIM2042D
03/07/2023 10:50 AM InspectraBLE 03/07/2023 10:48 AM InspectraBLE	03/07/2023 09:12 AM InspectraBLE 03/13/2023 10:47 AM InspectraBLE	03/13/2023 10:31 AM InspectraBLE 03/07/2023 09:39 AM InspectraBLE	03/07/2023 09:44 AM InspectraBLE	03/13/2023 10:35 AM InspectraBLE 03/07/2023 09:31 AM InspectraBLE	03/07/2023 09:29 AM InspectraBLE 03/13/2023 10:40 AM InspectraBLE	03/13/2023 11:02 AM InspectraBLE	03/13/2023 10:32 AM InspectraBLE 03/13/2023 11:02 AM InspectraBLE
03/07/2023 10:50 AM 03/07/2023 10:48 AM	03/07/2023 09:12 AM 03/13/2023 10:47 AM	03/13/2023 10:31 AM 03/07/2023 09:39 AM	03/07/2023 09:44 AM	03/07/2023 09:31 AM	03/07/2023 09:29 AM 03/13/2023 10:40 AM	03/13/2023 11:02 AM	03/13/2023 10:32 AM
RES005 RES005	RESO05 RESO05	RES005 RES005	RES005	RESO05	RESO01 RESO05	RES005	RESO05
2023Q1_Penetration	2023Q1_Penetration 2023Q1_Penetration	2023Q1_Penetration 2023Q1_Penetration	2023Q1_Penetration	2023Q1_Penetration	2023Q1_Penetration 2023Q1_Penetration	2023Q1_Penetration	2023Q1_Penetration

Waste Management Instantaneous Landfill Surface Emissions Monitoring **Exceedance and Monitoring Logs**

Quarter: 15+ 2023

Initial Monitoring Performed By: Mille Ovuc

Follow-up Monitoring Performed By: Slawn Hersbrey

Landfill Name: Simi Vall+x Landfill

	Comments	SIMW 709B	STMWOSKD	SEMUZ OUS	STMW 7095	Stwn Zaos	STMW 0003	STM1561	Surface	Surface	Surface	Sur Fare	Surtaid	Surface	Surface	Surface	5821Wt5	
-Up	Exceed. >500 ppm																	
1* 30-Day Follow-Up	No Exceed. <500 ppm		1	\$ 6			206	55		hh2				131			77 .	
1# 30	Monitoring Date	4-5-23	1				8										7	
Пр	Exceed. >500 ppm																	
1st 10-Day Follow-Up	No Exceed. <500 ppm	307 *	66	299	256×	345 x	463	84.8	77 4	493	95 r	301 7	100 1	27	250 F	380 x	371:	
1" 10	Monitoring Date	3-17-23															>	
Corrective Action within 5 Days	Action taken to repair Exceedance								The second secon									
Correcti	Repair Date																	
ent	Field Reading	1 3608	2367	1893.6	16027	746.5	736,4	672.4	2172.6	17765.5	1563	847.5	2'029	977.2	2364.3	1168.5	2'289	
Initial Monitoring Event	Monitoring Date	3-7-13																
Initial	Flag #	7	2	2	2	25	Š	77	84	200	no	10%	412	(15	22	415	416	
	Grid	156	77	66	17	153	20	7.	- 	47	1/16	137	143	56		135	90	

* COULD NOT RECHER DUE TO FILLIED IN LIEST DIECK FILL DRIVE

Waste Management Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs

Quarter: (57 2023

Initial Monitoring Performed By: MI KIE 09 RUI

Follow-up Monitoring Performed By: SHASULA HIMSHILL MAYTT BUMMIGUAL

Landfill Name: S/MI VILLUIZY LOLAND FILL

	Comments																			
d _l	Exceed.					2														
1* 30-Day Follow-Up	No Exceed. <500 Ppm	67	53	22	50	do	116	243	141	98										
1* 30-	Monitoring Date	4-18-53								->										
-Up	Exceed. >500 ppm																and St			
1st 10-Day Follow-Up	No Exceed. <500 ppm	307	256	340	74	55	301	90h	250	380										
1 st 10.	Monitoring Date	4-5-23								→										
Corrective Action within 5 Days	Action taken to repair Exceedance																		\$-000mg	
Correct	Repair Date																			
ont	Fleid Reading	2098	1667.7	2000	2172.6	1563	847.5	620.2	2364.3	5.8911.										
Initial Monitoring Event	Monitoring Date	3-7-23								•										
initial A	Flag #	7	7.7	<u> </u>	7,2	710	11,	715	XIA	N.F.										
	Grid #	951	112	153	135	116	137	143	511	135										

ALL WAY DECK HOTSPOTS FROM 3-7-23

* NOTE* 10 DAY WAS DORE ON 45-23 DUE TO WET DECK ACCESS

Waste Management Instantaneous Landfill Surface Emissions Monitoring **Exceedance and Monitoring Logs**

Quarter: 15+ 2023

Initial Monitoring Performed By: Michael ORINE

Follow-up Monitoring Performed By: Michael O'RUE /michael O'RUE

Landfill Name: Sim Calley

	Comments	Sarkase
-Up	Exceed. >500 ppm	
1st 30-Day Follow-Up	No Exceed. <500 ppm	25%
1# 30	Monitoring Date	4-12-23
Jр	Exceed. >500 ppm	
1st 10-Day Follow-Up	No Exceed. <500 ppm	294.3
14, 10-1		1-23-2
Corrective Action within 5 Days	Action taken to repair Exceedance	
Correct	Repair Date	
11	Field Reading	23277
Initial Monitoring Event	Monitoring Date	3-/3-23
Initial M	Flag #	1914
	Grid #	2//

Waste Management Instantaneous Landfill Surface Emissions Monitoring **Exceedance and Monitoring Logs**

Quarter: 1st Quarter 2023

Initial Monitoring Performed By: Partigize / CRINE

Follow-up Monitoring Performed By: Michael Onvie Junihael Clux

Landfill Name: Simi Vullen

Waste Management Instantaneous Landfill Surface Emissions Monitoring **Exceedance and Monitoring Logs**

2023 151 Quarter: 3000 mille Initial Monitoring Performed By:

MIKECRUE

OPNE Follow-up Monitoring Performed By: 여시스

Landfill Name:

Field Repair Reading Date 5 to 5 2 5 2 4 5 3 5 4 5 3 5 7 7 5 7 7 5 7 7 5 7 7 6 7 7 6 7 7 7 7 7 6 7 7 6 7 7 6 7 7 7 7 7 7 7 7 7 8 7 8				do-moilo i factori	neL	do-wollow con	-Op	
57.0 530, 1 58.6, 6 57.57, 4 7.15, 7 76.54, 9 17.59, 3 799, 3 799, 3 799, 3	Action taken to repair Exceedance	Monitoring Date	No Exceed. <500 ppm	Exceed. >500	Monitoring Date	No Exceed. <500 ppm	Exceed.	Comments
830.1 787.4 836.6 836.6 775.4 76.56.9 1789.3 799.3		3-25-23	2/0		4-12-23	172		
787.5 \$36.6 \$36.6 715.4 76.59 1789.3 799.3			306			341		
836.6 2152.4 715.7 78.75.9 1789.3 799.3 799.3			63			56		
2,152.4 7,575 7,576 1,769.3 799.3 799.3			101			295		
7.15.7 76.75.9 15.76.7 17.89.3 7.99.3			355			393		
76.75,9 15 96 1759.3 799.3			210			727		
1789.3 1789.3 796.4 (169.3			222			604		
799.3			68)			09/		distribution which are the state of the stat
796.4			472			493		
(69.3)			255			377		
			66			110		
8/86			328		/ / ·	457		
2.456		7	55		>	368		
					,			
								-
								-

Waste Management Instantaneous Landfill Surface Emissions Monitoring **Exceedance and Monitoring Logs**

Quarter: 157 Quarter 2023

Initial Monitoring Performed By: M1kにのんしど

Follow-up Monitoring Performed By: Shawn Heashey

Landfill Name:

	nts					esta		-		- 54.14							55H9
	Comments	SURFACE	SUR FILE	SURFICE	SURFACE	日からでに	SUPFALE	SWARE	SUFFICE								
ş	Exceed. >500																
1" 30-Day Follow-Up	No Exceed. <500 ppm	501	210	661	601	42	79	(60	203								
1ª 30.	Monitoring Date	4-51-53							->								
a a	Exceed. >500 ppm																
1" 10-Day Follow-Up	No Exceed. <500 ppm	Lo2	370	182	152	29	140	203	294								
1"10	Monitoring Date	4-3-53	-					}	>								
Corrective Action within 5 Days	Action taken to repair Exceedance																
Correct	Repair Date																
t t	Field Reading	7,45701	120.8	803.5	6225	L'255	5.975	1726,4	5504,4				-				
Initial Monitoring Event	Monitoring Date	ξ2-52- Σ							اد								
Initial M	Flag #	434	8	2	437	, sc 7	1 39	2 40	12								
	Grid #	100	16/6/	9	122	1261	29)	183	1/5					Ī		Townson.	

Waste Management Instantaneous Landfill Surface Emissions Monitoring **Exceedance and Monitoring Logs**

Quarter: 1st Quarter 2023

Initial Monitoring Performed By: MIKE ORVIE

Follow-up Monitoring Performed By: Michael OPLK

Landfill Name: S.m. V.

	Comments	
ďΩ	Exceed.	
1st 30-Day Follow-Up	No Exceed. <500 Ppm	154
14 30	Monitoring Date	\$2-4 \$2-4
dn	Exceed. >500	
1st 10-Day Follow-Up	No Exceed. <500 ppm	372. 4cg
144 10.	Monitoring Date	₹2-0-H
Corrective Action within 5 Days	Action taken to repair Exceedance	
Correct	Repair Date	
nt	Field Reading	152
initial Monkoring Event	Monitoring Date	3-3-18-8
Inittal	Flag #	7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	Grid #	113

362

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Site: Sim, Valley Landle, 11

Page of Pages				Comments															
					Field Reading				8										
				t - 10 Days	Field Reading	194.3	1569	78.6	lobil	153,6									
2023			5	Re-Monitoring Event - 10 Days	Date Monitored	3-23-23				>									
15T COTP.	MIKE ORUS	TVALOOD	Scoppin	Re-Mo	Remedial														
3					Date Monitored	3-13-13				>									
2023	3,4	1 7	(ent	Field Reading (ppm)	7		9'822	2'052	256,7					11				
1ST OTR	m, he		Soppur	Initial Monitoring Event	Location	Surface	Surtaic	Surface	Surtain	Surface									
rear:		::	e		Flag	118	1372	1913	1314	1315									
Quarter / Year:	Technician:	Instrument:	Calibration Standard:		Grid	111	110	0)/	112	[1]									

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Site: Sim, Valley

Technician: 10, 1c C Calibration \$\infty Calibration	nnt Field Reading (ppm) 335.2 270 270 282.5 379.1 300.7 7554.3	Date Monitored 3-16-23	Re-Mo Remedial Work	Church Church Coo Prut Coo Prut Coo Prut Coo Prut Coo Prut Coo Coo	nt - 10 Days Field Reading <200 ppm 169 1 42 1 42 1 1 5	Field Reading >200 ppm	Comments
Flag Location	Field Reading (ppm) 335.2 270 220.5 379.1 300.7 2554.3	Date onitored	Re-Mo Remedial Work	SOO Prv SOO Prv nitoring Even Date Monitored 3-25-23	nt - 10 Days Field Reading <200 ppm 69 42 42 71 68 73		Comments
S20 Initial Monitoring Eve Flag Location S25 S25 S26	Field Reading (ppm) 335.2 270 282.5 379.1 300.7 2554.3	Date onitored	Re-Mo Remedial Work	SGO PAV nitoring Ever Date Monitored 3-25-2.3	nt - 10 Days Field Reading <200 ppm 169 1 4 2 9 1		Comments
Initial Monitoring Eve Flag Number Location & 24 & 25 & 25 & 25 & 26 & 26 & 26 & 29	Field (ppm) \$5.2 2.70 2.70 2.82,5 2.8	Date onitored	Re-Mo Remedial Work	nitoring Ever Date Monitored 3-25-2.3	# - 10 Days Field Reading <200 ppm 69 42 42 68 68 73		Comments
Flag Number Location		Date onitored //6-23	Remedial Work	Date Monitored 3-25-2-3	Field Reading <200 ppm 694 1 42 41 68 68 73	Field Reading >200 ppm	
82.8 82.8 82.8 72.8 72.8 72.8 72.8 72.8		52-91		3-25-53	169		
\$2.5 \$2.5 \$2.5 \$2.5 \$2.5 \$2.5 \$2.5 \$2.5					142		
2022	376.7 376.7 376.7 376.7 376.7				99		
222	300,7	1			89		
2	300,7				123		
	5,452	1			1		
				>	501		
					=======================================		
			THE WAR				
				V			

362

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Site: 5, 120

Page of Pages Comments Reading >200 ppm Field Re-Monitoring Event - 10 Days Reading <200 ppm 172 35 28 100 901 53 8 10/ 121 20 29 15T QIR 2023 MILLIE ONUTE 1000 Monitored 3-25-23 500 The state of the s Remedial Work Monitored 52-11-5 Date 2023 Reading (ppm) 296,3 3/0.2 205.3 204.8 779.4 51212 5'192 200,5 1.7755 Field 5.512 279 500 Mm 012 Querter Fugether Initial Monitoring Event Mikz Location 20 Number 3 7 B 30 Quarter / Year: Technician: Instrument: Calibration Standard: Number Grid 12 522 12

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Site: Stuhi UMLINY

Marter / rear:	rear.	121 811	C 2.07		253 2	101	•		Lage	5	3
Technician:	an:	M. ORLIE			M. ORLI						
Instrument:	nt:	TASDECTORS	d		Tra	0001					
Calibration Standard:	uc :	Soo pm				SUO PM	دے				
	+	Initial Monitoring Event	ent		Re-Mc	Re-Monitoring Event - 10 Days	nt - 10 Days		ပိ	Comments	ts
Grid	Flag	Location	Field Reading (ppm)	Date Monitored	Remedial Work	Date Monitored	Field Reading <200 ppm	Field Reading >200 ppm			
18	890	SUNTACE	218.90	3-18-23		3-25-23	10)				
82	168	Surface	230,40				69				
83	769	SURFACE	236,30	-		7	73				
		HI		0.0							
			8							i V	
					- A						
1											

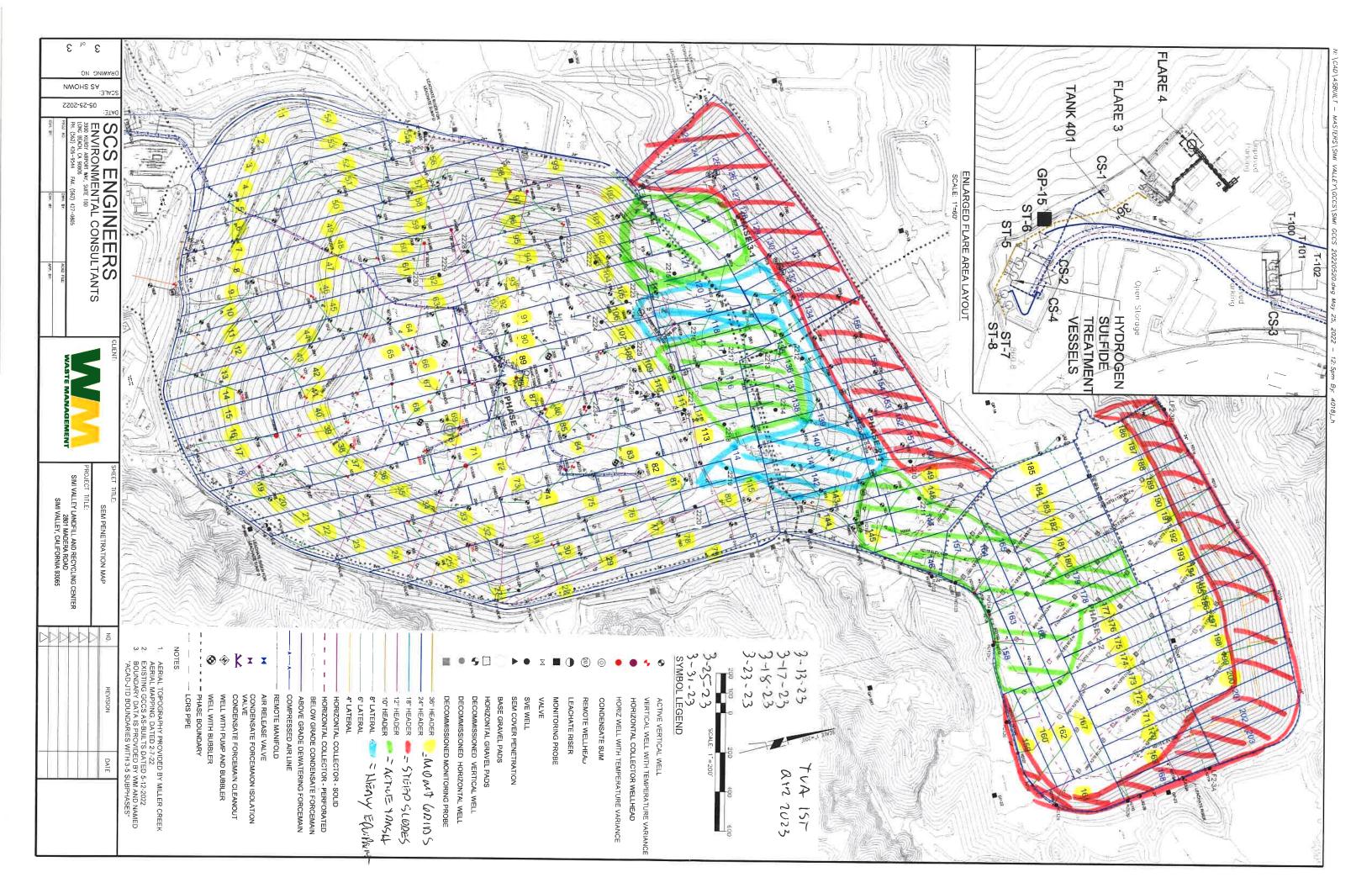
Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

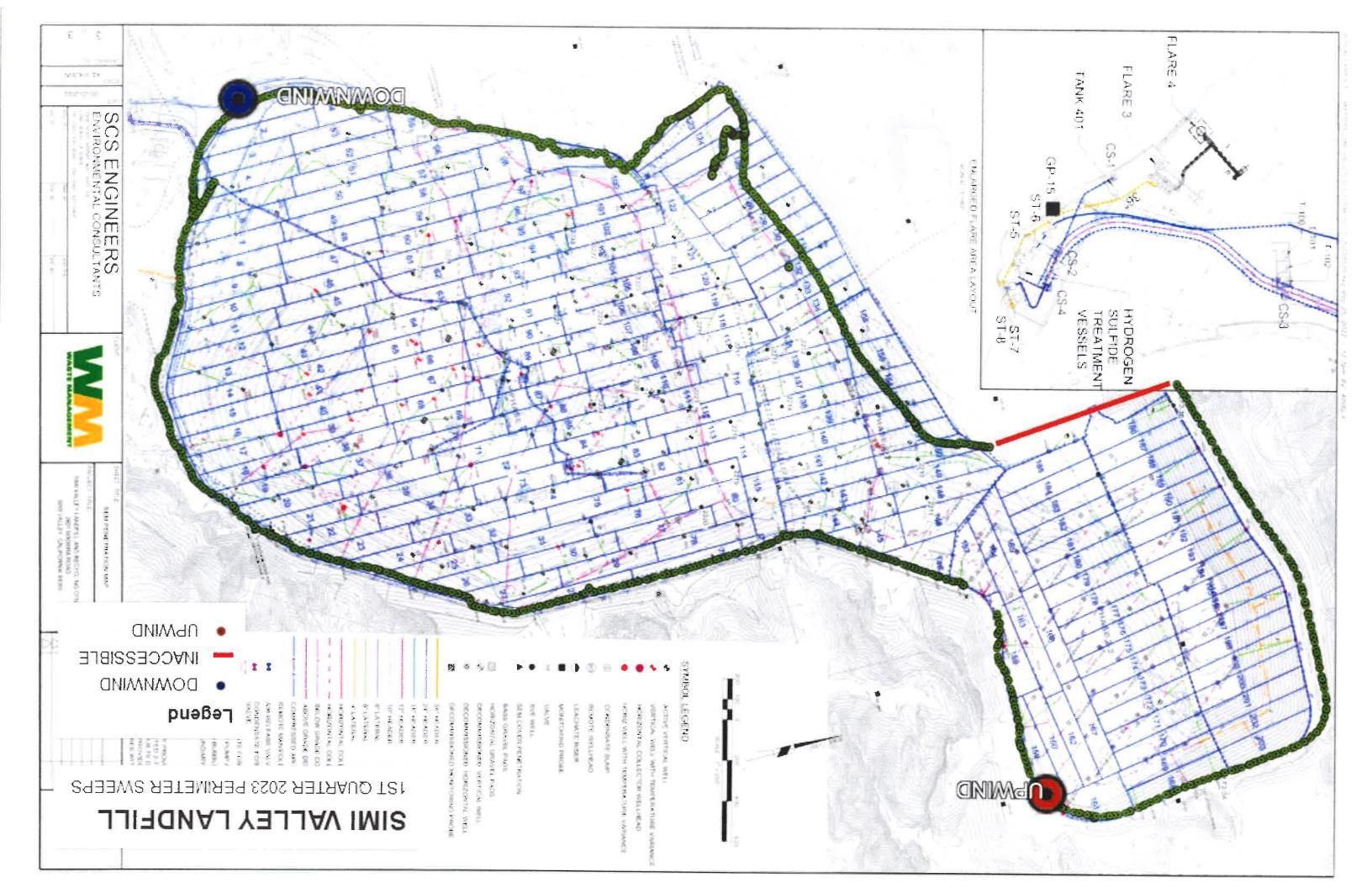
Site: Simi Valley Landfill

Technician:	Technician:	miles	10	500	IWI K	MIKE ORUK	67.0		
Instrument:	ıt:	1 76	5 5		424	TVA 1000		1 2 2	
Calibration Standard:	u	Modoos	7			Scoppm			
		Initial Monitoring Event	ent		Re-M	Re-Monitoring Event	nt - 10 Days		Comments
Grid Number	Flag Number	Location	Field Reading (ppm)	Date Monitored	Remedial	Date Monitored	Field Reading <200 ppm	Field Reading >200 ppm	
54	816	Surhare	470	3-23-23		3-31-23	56.27		
11	517	Surface	h'Ohh				34,95		
54	B18	Surface	409.1			41	106		
15	13/9	Surtake	375.8				129		
80	B20	Surtine	326,8	i			99'46		
12	128	Sarture	271.5				23,17		
42	1822	Surface	263,8				72,39		
hh	22%	Cutace	232,3	>		7	63.29		
)			4.51					
				-					
					(ATT)				

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Site: Sim. Valley


e of Pages				Comments		SURFACE	SUPERE	SURFINE	SLAFACE	SURFACE	SURFICE	SURFACE	2 Braz	SLAFIKE	SUMBUR	Surfice	SUMME	Hrvare.			
Page					Field Reading		15	76	75	75	75	75	/\S	35	72	24	75	3			
123	7.			It - 10 Days	Field Reading <200 ppm	901	28	76	49	101	126	159	22	99	3 (61	109	22			
15T QTA 2023	Shawa Hirshir	Tun 1000	500 AM	Re-Monitoring Event - 10 Days	Date Monitored	4-3-23												-			
157	SAM	7	31	Re-Mo	Remedial Work																
2023					Date Monitored	3-25-23	^											3			
un res 7		7		ant	Field Reading (ppm)	5812	21912	382	5602	372,4	2,672	493.3	2/2.1	722	51%2	20%	363.7	5.96.3			
15t Quan	WITHE ORDINE	OF	500 pm	Initial Monitoring Event	Location																
rear:	n:	i:	_	Į.	Flag	17 47	18 43	13 44	BYE	948	B 47	BE		25 9	15 8	125 2	15 53	45 2			
Quarter / Year:	Technician:	Instrument:	Calibration Standard:		Grid	54/	641	551	591	73)	172	(75	177	551	861	851	95/	461			


362

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Site: Sim: balley Landin

Page tof Pages			Comments													
				Field Reading >200 ppm												
2023	0		t-10 Days	Field Reading <200 ppm	137	159	181									
2 mcl GSTR 2023	TVA 1000	Sooppm	Re-Monitoring Event - 10 Days	Date Monitored	4-10-23		>									
Jours	TASK	V)	Re-Moi	Remedial Work												
2				Date Monitored	3-31-23	,	7									
202		_	ent	Field Reading (ppm)	4.312	278,3	303,6									
M. Anna Day	Insome the	500 ppm	Initial Monitoring Event	Location	Surtue	Surfue	Sufule							-		
rear:		c	=	Flag	855	9.5.8	B57									
Quarter / Year: Technician:	Instrument:	Calibration Standard:		Grid Number	111	28	25									

Attachment B

Integrated Surface Emission Monitoring Event Records

Personnel: G. ROBIES A. LOPEZ T. CARSON

N. JAMESSON G. LOPEZ

N. DAMISSON G. LOPEZ

N. DAMISSON G. LOPEZ

Cal. Gas Exp. Date: 3/25

Date: 3-73-23 Instrument Used: TASPECTEN Grid Spacing: 25'

Temperature: 480 Precip: G Upwind BG: 1.6 Downwind BG: 2.3

GRID	STAFF	START	STOP	тос		WIN	D INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM		AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEHAKKS
10	GR	1125	1130	1.65		+	6	(Vege,
9	GR	1300	1215	2.86		4	7	4	Vege
	GR	1248	1258	4.47			9	7	Vege
7	GR	1222	1245	3.24	(*)	5	6	C	Vege
18	NJ	1135	1145	5.72		4	6	Q	Vege.
17	NJ	1151	1201	5,62		4	6	1	Vege
	-								-
22	KW	1122	1126	7.90		4	6	8	muddy Stope
34	KW	1132	1135	5.43		4	9	7	muddy Slope
35 21	KW	1141	1153	10.94		4	4	7	Mudely bloke
21	KW	1154	1159	5.45		4	6	8	Muddystag
20	kw	1203	1204	6.49		4	b	7	muddy510pe
36	kw	1208	1209	9.23		4	7	6	muddy slope
37	KW	1210	1211	3,60		4	7	8	Muddy Stope
19	kw	1215	1221	4.73		4	6	8	muddy Stope
14	AL	1143	1148	6,65		4	6	9	Vege
42	AL	1154	1159	10.73		4	6	8	Veg
43	AL	1200	1205	23.09		4	6	7	Ney
13	AL	1206	1211	9.96		4	7	g	veg
12	AL	1212	1217	13.10		4	7	8	Veg
44	AL	1219	1224	17.32		4	b	8	Veg
45	AL	1225	1236	60.28		4	7	10	Veg
11	AL	1232	1237	18.47		3	5	10	Veg
6	GL	1128	1145	2.12		4	6	(J
5	(gL	1150	1737	1.81	HI I SER	3	5	9	
4	66	1254	1310	(163		5	9	1	
3	61	1220	1230	1.37		4	6	(
79	MD	1132	1139	2.29		4	6	7	Busy Road
28	MD	1146	1152	2,11		4	6	7	Busy Road

Attach Calibration Sheet

Attach site map showing grid ID

Personnel: (7, RoBles	Ailopez	Ti Carsew
N. JAMARSON	Gilopez	
KIWAllen	M. Dominez	Cal. Gas Exp. Date: 3/25
Date: 3-23-23 Instrument Us	sed: INSPECTAL	Grid Spacing: 25'
Temperature: 48 Precip:	Upwind BG:	Downwind BG:

GRID	STAFF	START	STOP	тос	WIN	ID INFOR	RMATION	DEMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
27	MD	1153	1203	1.43	4	1	6	TRASH Road
29	MD	1205	1212	1159	4	1	8	STEEP STOPE TVEY
78	MD	1219	1224	1.89	4	6	8	Steep Slope & Very
77	MD	1226	1235	2.48		5	10	TRASH Road
30	MD	1239	1245	2,47	3	4	e	Veget
26	MD	1247	1312	2,53	5	9	7	Negel Muddy
25	TC	1122	1141	4.86	1 +	4	8	Veg Veg
31	TC.	1145	1157	3.75	4	6	7	Veg
76	TC	1159	1204	3.85	4	6	7	veg
75	TC	1205	1220	4,14	4	6	E	Veg
32	TC	126	1736	4.34	3	5	16	1 100 -
24	TC	1248	1759	4.58	5	10	7	veg/moddy
23	TC	1304	1320	4,39	5	•	6	3.
						18		
					200			

Attach Calibration Sheet

Attach site map showing grid ID

Page Z of Z

Ρ	ersonnel: G. ROBLES	
	M. Dommquez L-Betanzwat	Cal. Gas Exp. Date: 3/25
	Date: 3-24-23 Instrument Used: Tuspaculars	Grid Spacing: 25/
	Temperature: 45° Precip: 0 Upwind BG:	1.9 Downwind BG: 2.5

GRID	STAFF	START	STOP	тос		WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM		AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
05	GR	0746	0801	11.13		0		14	Very
106	GR	1080	0820	11.33		1	2	8	Ving
90	(1R	6823	6834	11.67		1	1	10	STOCKPILE
89	GR	6834	0845	11.86			2	8	obstrution
88	GR	\$00853		11.95			3	8	OBstruction
87	GR	0913	0924	11.34			2	2	obstruction
108	GR	0940	0950	11.72		4	6	4	Veg
109	GR	0951	0956	11.72		_4	6	2	Veg
107	GR	1600	1015	11.91		3	6	2,	abawatan
55	MD	0720	0733	9,49			2	+	WATER/VEG
56	mn	0739	0756	5.62		0	1	14	Vec
57	MD	0757	5080	22.76		0		14	Ves
58	MD	0804	0812	6,03	The state of	0	0	12	Veg
59	MD	0815	0822	6,60		D	1	10	Ver
60	MD	0823	0830	7.88			1	10	Veg
61	MD	0834	6845	5,21	4	- 1	2_	6	Veg
									Veg
		C ·							veg
91	MD	0937	0942	3,99			3	4	Puddle Active Roa
83	MD	1005	1015	9.06		3	6	2	,
-			, 1						
	~								~ ~~
		3	JU						
		-							
	, ,2								
.,									
	,,-								
	Calibrati								

Attach Calibration Sheet Attach site map showing grid ID

Page ____ of ____3

Personnel: G. Rubles	K. Wallen	N. JAM	10 PSOW
M. Dominguez L. Betancourt	T. Carson	G. Lop.	
Li BetanlourT	H. LOPEZ	Cal. Gas Exp	o. Date: 3/25
Date: 3-24-23 Instrument U	sed: TUSPIECT DIL	_ Grid Spacing:	25'
Temperature: 45° Precip:	O Upwind BG:	Downwing	I BG·

GRID	STAFF	START	STOP	тос		WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM		AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
, -		:							
98	KW	0723	ÖBZ	13.88	**	1	2	4	Veg
99	kw	0735	0742	18.48		1	2	4	veg
100	kw	0743	0752	31.24		0	1	14	Veg
97	kw	0758	0816	92.71		0	0	12	Veg
96	kw	0814	0830	17.63			Ī	10	ves
95	KW	0832	0846	10:48		1	2	£	Veg
101	KW	0850	0857	7.71			3	6	Ver
102	KW	0857	0912	20.11	-	1	3	8	Neg
99	KW	0919	0932	13.35		1	2	2	Very
112	KW	0946	0957	12,19		4	6	3	Actus 1PASIA
41	TC	0737	0757	6,60		0		14	Veg
40	TC	6759	0825	8.94		1	1	10	Ves
39	TC	0827	0851	2.52		_ 1	2	6	STEEP Slope.
38 69	TC	0852	0917	2.61		2	3	3	Rock Pile
69	TC.	0925	0950	3.26		4	6	3	
68	12	0951	1011	4.86		3	6	2	High Veg
67	TC	1015	1033	5.36		2	5	12	veg
66	TC	1035	1050	3,73		3	5	16	3
62	AL	0753	0758	24.77		D	Ĭ	14	Veg
63	AL	0800	0815	15.74		D	0	12	Veg
93	AL	0818	0823	8,19			1	in	muddy
103	AL	0827	0832	16.46		(10	muddy & ver
104	AL	0835	0845	23.31			2	É	muddy & veg
12	AL	0849	0859	2,17			3	(muddy
24	AL	0903	0923	3.49			2	2	WATER
25	AL	0931	0946	3,93			3	4	Veg
	n Calibrat	· '							

Attach Calibration Sheet

Attach site map showing grid ID

Page Z of 3

Personnel: (4, ROBIES	k. WAITENS	1), TAMERSON
M. Dominguez	TI CORSON	N. JAMERSON G. LOPEZ
Li Betancount	A. Lopez	Cal. Gas Exp. Date: 3/25
Date: 3-24-23 Instrumer	nt Used: INSAFCENAL	_ Grid Spacing:25′
Temperature: 45° Precip:	Upwind BG:	Downwind BG:

GRID ID	STAFF INITIALS	START TIME	STOP TIME	TOC PPM	ı	WIND INFORMATION			REMARKS
						AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
-			· .						
		'د		· ·					
									-
-									
10	GL	0743	0804	W 2 2'					
86	(41	0811	0836	4.32		0		14	
70	(7L	0854	0919	3.62		11	2	10	
71	GL	0926	0950	3.55			3	4	
84	GL	1016	1028	4.40		2	5	12	
72	GL	1035	1050	1.80		3	5		
			1000	11,00			7	10	
				Male de la companya d					
				*					
						1			
1 1/2									
						4			

Attach Calibration Sheet Attach site map showing grid ID

Page 3 of 3

Personnel: G. Robles	N. JAMERSON	TI (alson)
K. WAllen	A Lopez Li Betencourt	Cal. Gas Exp. Date: 3/25
Date: 3-25-23 Instrument U	sed: INSPETIN_	Grid Spacing: 25'
Temperature: 47° Precip:	Upwind BG:	1.2 Downwind BG: 2,6

GRID	STAFF INITIALS	START TIME	STOP TIME	TOC PPM	V	IND	INFOR		
ID					AVG SPEE		MAX. SPEED	DIRECTION 16 POINT	REMARKS
181	GR	0930	0940	8.89	2		3	3	Heavis Equi proce
190	GR	0940	0955	3.13	2		2	2	OBSTruction
189	GR	0956	1010	3,13	2		3	2	GBS+ruction
188	GR.	1010	1025	13,41			2	2	mulan
183	GR	1026	1036	10,83	2		2.	3	obstruction
182	GR	1037	1047	2,68	2		5	6	Much Heavy Equip
149	62	1005	1017	25.86			2	16	THE
148	GL	1019	1026	8.00			2	2	
185	GL	1036	1044	15.89	2		5	2	
186	(1L	1046	1056	3.12	2		6	g.	
187	GL	1058	1110	3,43	5		9	6	
184	GL	1112	1132	20,76	3		0	6	
173	KW	0751	0807	7.01	3		5	13	
198	KW	0810	0821	7,66	4		6	13	STEEP STOPE
197	KW	0824	0833	7,83	1		3	14	STEEP STOPE
174	kw	0833	0848	5,77	0		1	U	STEEP Slope
175	KW	0850	0901	6,95			2	4	Heavy Ectul Phras
180	NJ	0913	0923	6120	2		2	4	muddy
191	NJ	0924	0934	4.08	2		2		muddy
192	NJ	0935	0945	3.27	2		3	3	muddy
193	NJ	0948	0958	5,33	2		2	2	muddy
177	AL	0916	0921	14.45	2		2	4	muddy
194	AL	0923	0938	14.00	2	1	3	3	muddy/Linen
195	AL	0939	0954	8.01	2		2	2	TRASH
196	AL	0955	1001	14.16	2		2	2	TRASH/muddy
176	AL	1009	1024	7.34		1	2	2	mudeles
161	LB	0905	0970	11.35	2		2	4	Liner
159	LB	0926	0935	11,25	2		3	3	Linex
160	LB	0935	0950	11116	2		2	2	muzlely
162	LB	0950	1005	14,12	2	-	2	2	muddy
	n Calibrati			.11.0-1			4		110449

Attach site map showing grid ID

Page) of <math> Z

Personnel: G. Robles G. Copez Krwallen	N. JAMERSON	T, Canso	en
Ki wallen	L. Betemcount	Cal. Gas Ex	(p. Date: 3/25
Date: 3-25-23 Instrument L	Ised: INSPECTOR	Grid Spacing:	251
Temperature: 47° Precip:		Downwin	

GRID	STAFF	START	STOP	тос	WII	ND INFOR	MATION	DEMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
167	LB	1005	1020	10152		2	2	modely
169	TC	0905	0915	651	2	2	4	Actus
170	TC	0917	0925	5.25	2	2	4	Actu6
171	TC	0928	0934	9.92	2	3	3	Actue
200	TC	0930	0945		2	3	3	Acture
199	TC	0950	0955	6.50	2	2	2	Actus
172	tc	0958	1013	8.42	2	3	2	
		7.						
		100						
						121		
			/ LX M					
						1 1 - 1 - 1		
						-		
						10.00		
	1 12					4 4		
1								
				Caragit II				
	4							
		1 4 3						0.1

Attach Calibration Sheet

Attach site map showing grid ID

Page _ Z of _ Z

Person	nel: Mic	Put					-	1844		
								Cal. Gas Exp	o. Date:	
Date	e: <u>3-25-</u>	-23 I	nstrumer	nt Used:			Grid S _I	pacing:		
Tem	perature:		_ Precip:		Upwind (3G:		Downwind	BG:	
GRID	STAFF	START	STOP	тос	ROTO-MTR,	NII	ND INFOR	RMATION	REMARKS	
ID	INITIALS	TIME	TIME	PPM	CC/MIN	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT		
123									STEEP Slepes/Line	2
124									J. J	_
175										
126						E Balle				_
127										_
128										
129										
130							-			
131										
132	12 12 1									
133										
134										
150										
151										
152										
153										
154										
155										
156	<u> </u>				I make the				2	
168										
201										
202	_									
203									V	
114									Heavy Egus Pm	rH
170									4	
119				1 7 8						
118										
138					1					
139										

Attach Calibration Sheet Attach site map showing grid ID

Page 1 of 2

D1	7-75	-2.7							. Date:
									BG:
GRID	STAFF	START	STOP	TOC	ROTO-MTR,	WIN	ND INFOR	MATION	DEMARKS
ID	INITIALS	TIME	TIME	PPM	CC/MIN	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
141	E h								Heavy Eguipma
147	1 1154								7
146									
122									Actual TRASIA
121									TICTURE: TICTOR
117							D 1		
135									
136			-1 -1						
137									
158									
163		7 1							
164									
165							L.II.		
166									
179									
7)1									
						15			
			10 2						

Attach Calibration Sheet Attach site map showing grid ID

Personnel: MIORUE

Page 2 of 2

Personnel: M. Domingez J. Mediner G. Carson	
Ticarson	Cal. Gas Exp. Date: 3/25
Date: 3-31-23 Instrument Used: INSPECTED	Grid Spacing: 25ft
Temperature: 43° Precip: 6 Upwind BG:	1, 3 Downwind BG: 2, 4

GRID	STAFF	START	STOP	TOC	WII	ND INFOR	RMATION	DEMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
111	MD	0745	0754	11.10	5	6	10	Muddy
113	mD	0755	0808	18:20	7	V	10	Actue Read / Actue TRAST
82	mD	0816	0821	14.59	5	7	N.	The state of the s
81	MD	0822	0828	16:35	5	7	12	
74	MD	0835	0843	1.66	5	7	12	Rock Pile
73	mD	0844	0902	1.82	5		12	Rock Pile
33	MD	0903	0914	1.95	3	4	13	vege
85	MD	0938	0947	1,70	4	5	2.	Rocks & TRASH
144	GL	0739	0800	3.87	5	9	10	Very / Metric TRAS
143	GL	0812	0826	7.94	5	•	12	Vegel Reduce Pand
115	GL	0878	0848	13,98	4	5	12	Vege Active Read
80	GL	0857	0917	7.98	3	4	13	Vege
50	TC	0727	0734	8.18	3	5	B	16014
49	tc	0738	0748	6.30	5	9	10	Nege
48	TC	0750	0805	6.87	1	11	10	Veye
47	TC	0806	0818	3.55		7	11	Vace
46	77	0820	0835	2,63	55	7	12	Vege.
15	TC	0850	0908	2.02	5	6	12	Vege
16	TC	0910	0925	153	3	4	16	Nage
	JM	onz	0748	3.75	 5	8	10	Veye
2	5M	0745	0800	2.15	5	9	lo.	Very
54	MP.	.0810	0812	294	6	9	10	New
53	JM	0815	0830	2,26	5	1	12	Vege Vege Vege
52	Jm	0830	0858	2.27	5	6	12	Marie
51	JM	0906	0923	1.60	3	5	16	Vege
- 34								
A 44 1	Calibrati							

Attach Calibration Sheet

Attach site map showing grid ID

Person	nel: Mic	sru6					-		
		44						Cal. Gas Exp	. Date:
Date	e: <u>3-3i-</u>	23	instrume	nt Used:			Grid Sp	pacing:	
									BG:
GRID	STAFF	START	STOP	тос	ROTO-MTR,	WIN	ND INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	CC/MIN	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KENAKIS
145					M		4 3		Actue TRASH
			A Au						
					1				
				Tiens		4 11V			
			2						alia la
				10-11-0					
					I,= 1 /				1

Attach Calibration Sheet Attach site map showing grid ID

Page _____ of ____

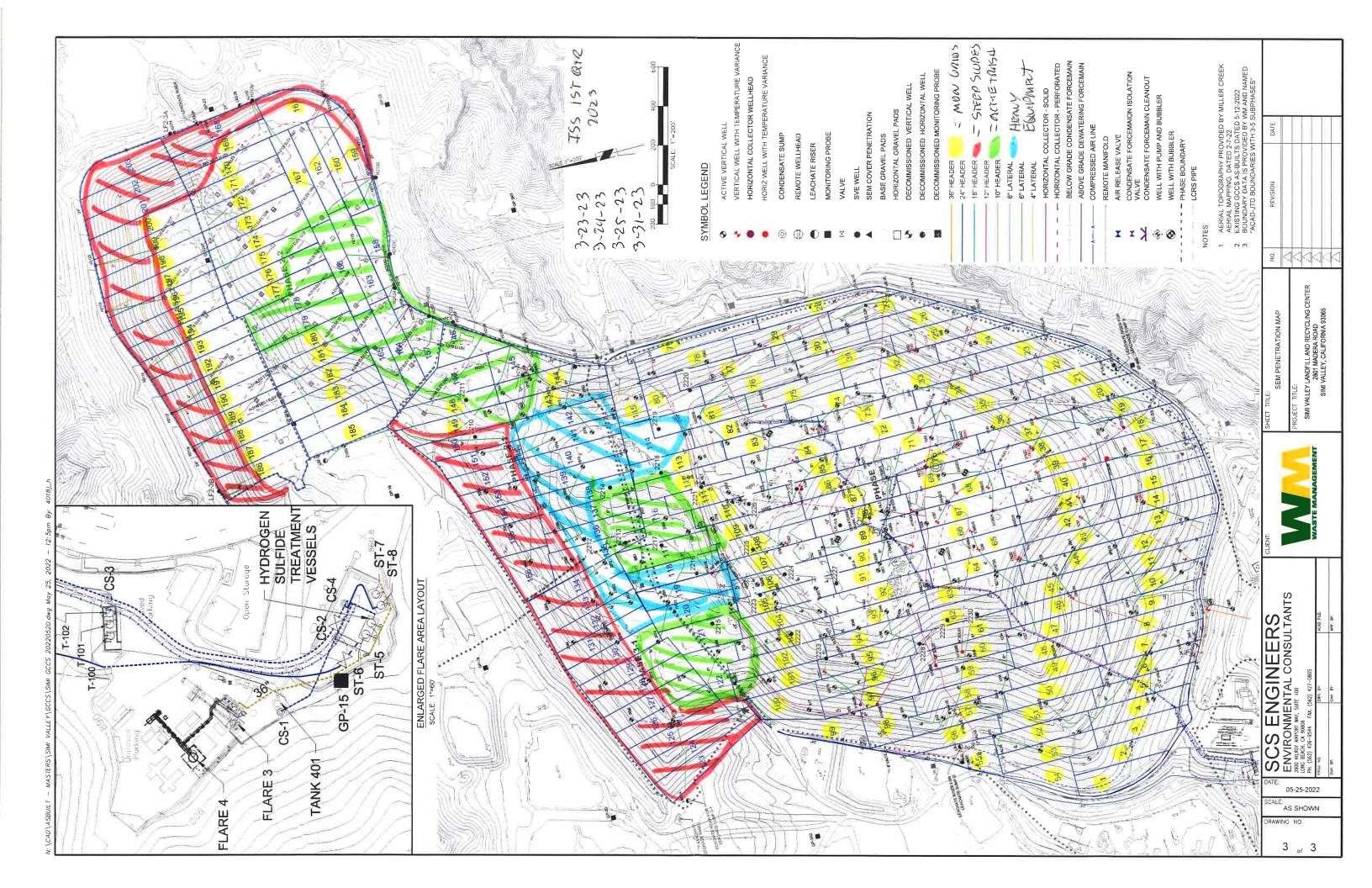
Integrated Surface Sampling 10 Day Exceedances and Monitoring Log

Site: SIMI VALLEY

Quarter / Year:	15T Bra 202	2023	15T 1259	2073						
Technician:	M. GRUE	77	MACOU							
Instrument:	INSPECTING	200	77471000	33						
Calibration Standard:	md 005	pmo	5009PM	(Mdb						
initial M	Initial Monitoring Event	ţ	First Re-	First Re-Monitoring Event - 10 Days	ent - 10 Day	S	Second Re	Second Re-Monitoring Event - 10 Days	vent - 10 D	ays
Grid Number	Field Reading (ppm)	Date Monitored	Remedial	Date	No Exed. <25 ppm	Excd. >25 ppm	Remedial Work	Date Monitored	No Excd.	Excd. >25 ppm
5h0129	82109	3-23-23		92-18-8	7,10					
					7					
							The same of the same of			
			11/2							
						is The				
						ľ				

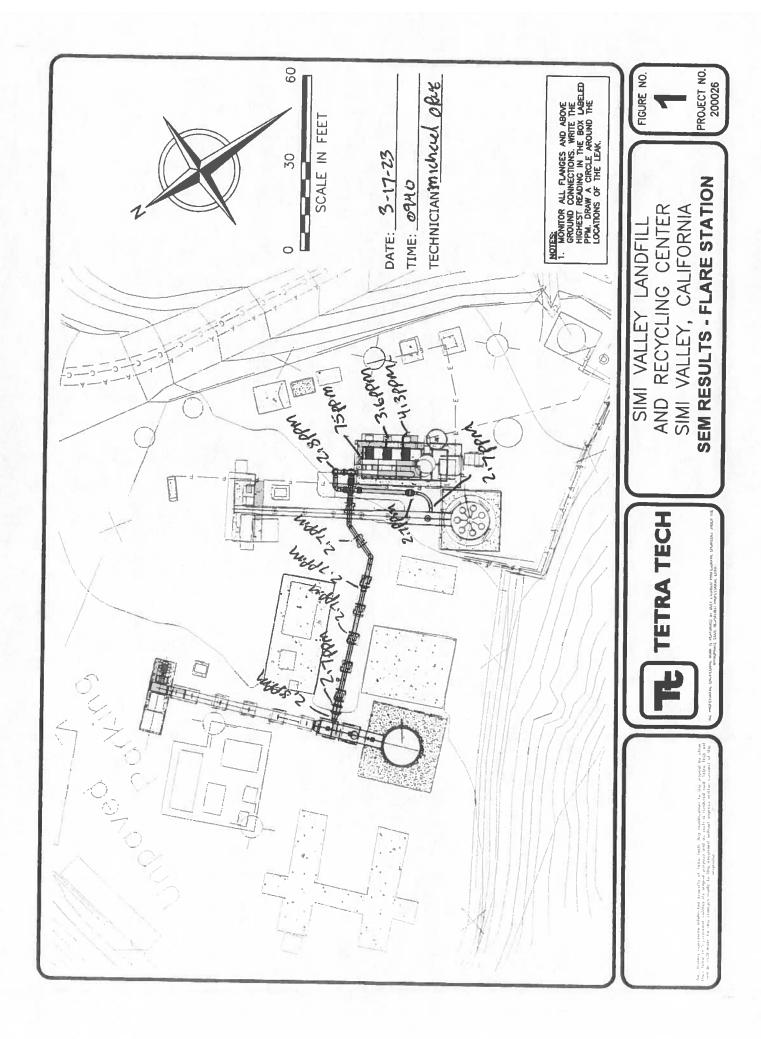
Integrated Surface Sampling 10 Day Exceedances and Monitoring Log

Site: SIMU JALIN

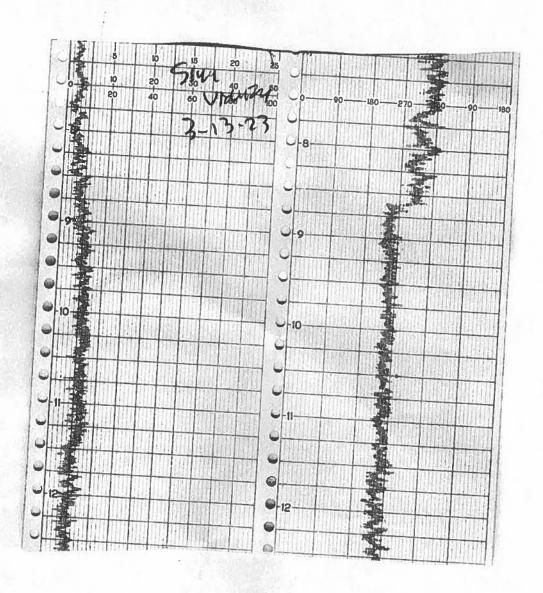

	157 ar	- arn 2027	15+ Q	TR 2023						
Technician:	MIGRUIS	ジボ	Shawn +	tershey						
Instrument:	THOOF	ctan	174	(000)						
Calibration Standard:	500 pm	wa c	N	25-DAM						
Initial N	Initial Monitoring Event	it.	First Re-	First Re-Monitoring Event - 10 Days	rent - 10 Day	2	Second Re-	Second Re-Monitoring Event - 10 Days	vent - 10 D	SÁE
Grid Number	Field Reading (ppm)	Date	Remedial Work	Date	No Excd. <25 ppm	Excd. >25 ppm	Remedial	Date	No Excd. <25 ppm	Excd.
620 97	92,71	3-24-23		7-3-23	23					
	27.18				5					
001 (129	31,24	>		>	77					
		9								
	1					CH				

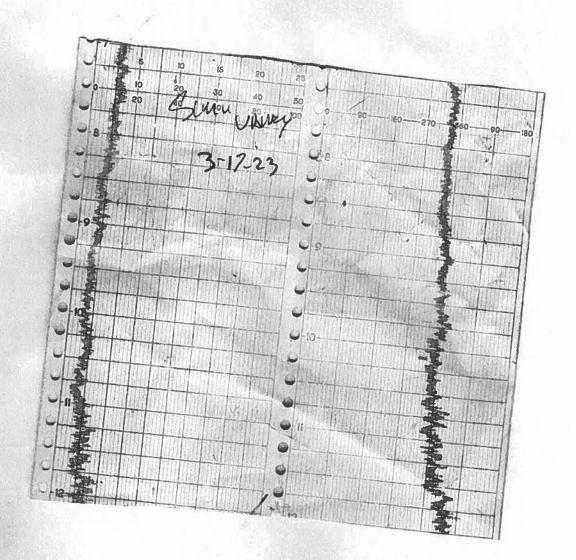
367

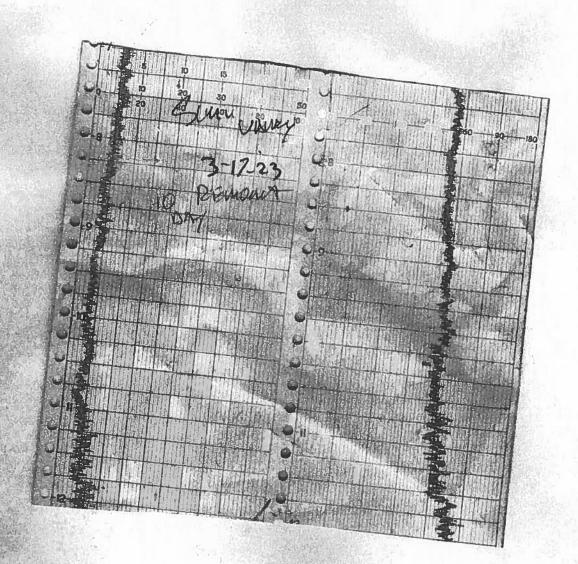
Integrated Surface Sampling 10 Day Exceedances and Monitoring Log

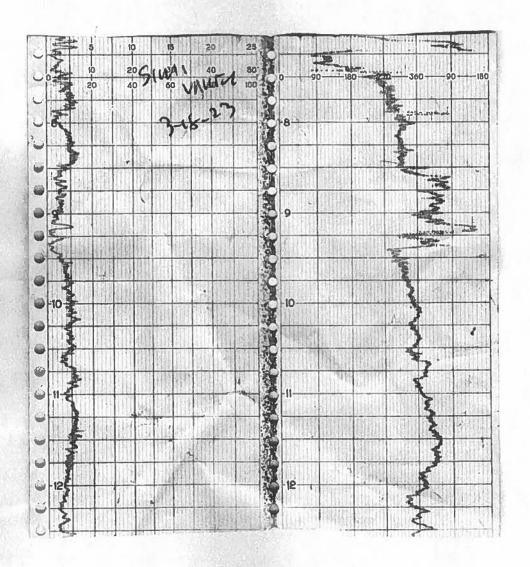

site: SIMI VALUTARY

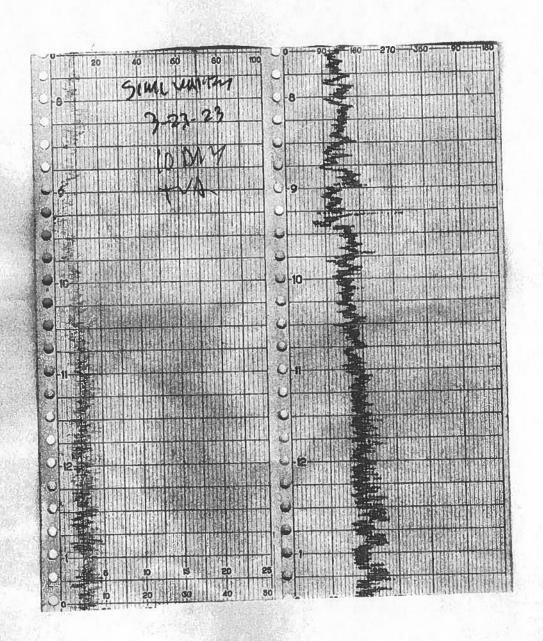
Technician: Instrument:		171 Q11 1023	1576	15r per 2023	3					
Instrument:	み、のない中	小小	Sidnan	THOUSE	1					
	TASOBLYAN	TRA	T	2 1000						
Calibration Standard:	SWC	SWO AM		25 ppn						
Initial Mo	Initial Monitoring Event		First Re-	First Re-Monitoring Event - 10 Days	rent - 10 Day	S	Second Re	Second Re-Monitoring Event - 10 Days	event - 10 D	ays
Grid Number	Field Reading (ppm)	Date Monitored	Remedial	Date Monitored	No Excd. <25 ppm	Excd. >25 ppm	Remedial Work	Date	No Excd.	Excd.
600 149	25,86	3-25-23		82-8-4	15					
			T							

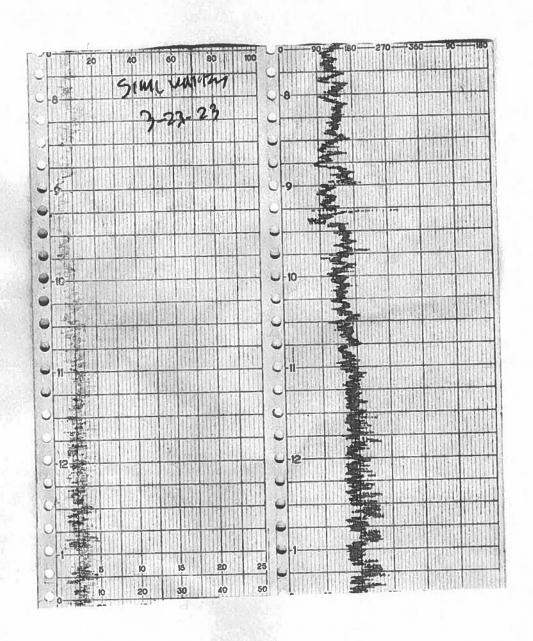

Attachment C

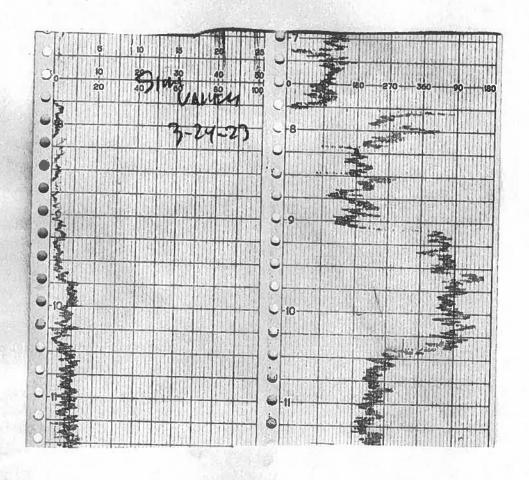

Component Leak Monitoring Event Records

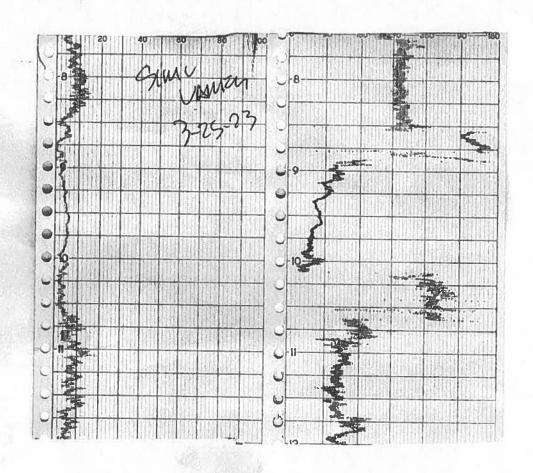


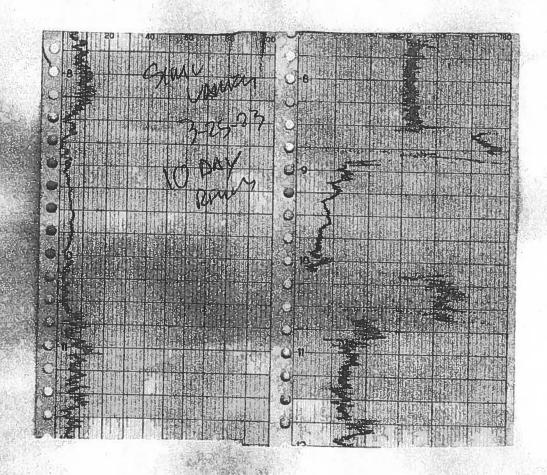

Attachment D

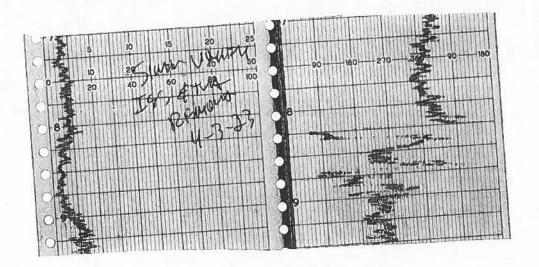

Weather Station Data

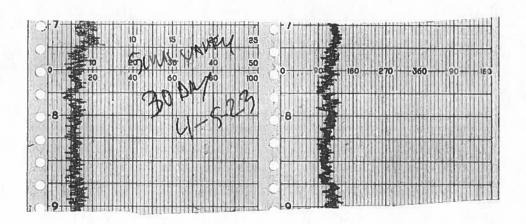


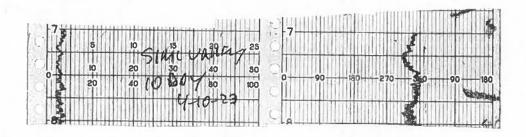


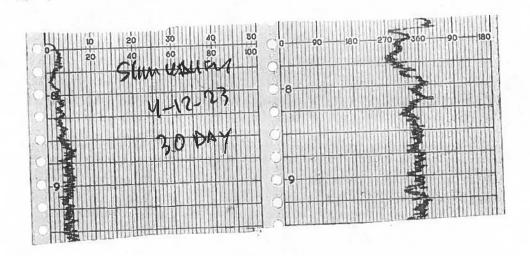


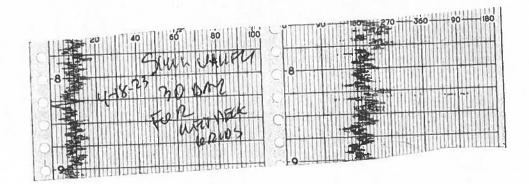


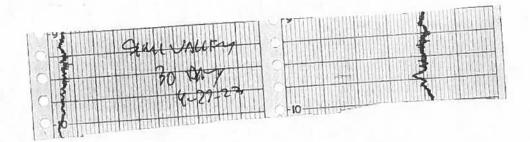












	16-POINT W	VIND DIRECTION	INDEX	
<u>NO</u>	DIRECTION		DEGREES	
		FROM	CENTER	<u>TO</u>
16	NORTH (N)	348.8	369.0	0.1.3
1	NORTH-NORTHEAST (NNE)	011.3	022.5	033.8
2	NORTHEAST (NE)	033.8	045.0	056.3
3	EAST-NORTHEAST (ENE)	056.3	067.5	078.8
4	EAST (E)	078.8	090.0	101.3
5	EAST-SOUTHEAST (ESE)	101.3	112.5	123.8
6	SOUTHEAST (SE)	123.8	135.0	146.3
7	SOUTH-SOUTHEAST (SSE)	146.3	157.5	168.8
8	SOUTH (S)	168.8	180.0	191.3
9	SOUTH-SOUTHWEST (SSW)	191.3	202.5	213.8
iü	SOUTHWEST (SW)	213.8	225.0	236.5
11	WEST-SOUTHWEST (WSW)	236.3	<u>247.</u> 5	258.8
12	WEST (W)	258.8	270.0	281.3
13	WEST-NORTHWEST (WNW)	281.3	292.5	303.8
14	NORTHWEST (NW)	30.3.8	315.0	326.3
15	NORTH-NORTHWEST (NNW)	326.3	337.5	348.8

Attachment E

Calibration Records

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME: S(W	LIVAURY	INSTRUMEN	T MAKE:	timo
MODEL: 7-67-1 1000	EQUIPMENT #:	#2	SERIAL #:	7784545
MONITORING DATE:	3-17-23	TIME:	0800	9

Calibration Procedure:

Allow instrument to zero itself while introducing air.
 Introduce calibration gas into the probe. Stabilized reading = 500 ppm
 Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 sec		Downwind Background Reading: (Highest in 30 seconds)		Background Value: (Upwind + Downwind) 2		
1.9	ppm	2,6	ppm	2.2	ppm	

Background Value = 2.2 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	90% of the Stabil Reading	ized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Callbration Gas		
#1	500	ppm	450	ppm	6	
#2	500	ppm	450	ppm	5	
#3	500	ppm	450	ppm	•	
	Calculate Response T	ime (<u>1</u> -	+2+3)		5,3 Must be less than:	#DIV/0!

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for 2			for s (B)	Calculate Precision [STD – (B)]	
#1	110	ppm	500	ppm	.499,00	
#2	1.0	ppm	500	ppm	499.00	
#3	2.0	ppm	500	ppm	428,00	
Calculate Precisio	on [STD-B1] + [STD- <u>B21 + [</u> 9 3	STD-B3] X 1 X 500	100	#DIV/0! Must bé less than 10%	

Performed By:	MIKE	100,00	5	3-17-23	man	
renonned by:	11100	Once	Date/Time:	2-11-61	0800	

LANDFILL NAME: SIMI VALLEY		INSTRUMENT MAKE: THERMO			
MODEL: TVA 1000	EQUIPMENT #:	#2	SERIAL #:	7784545	
MONITORING DATE:	3-23-23	TIME:	0900		

Calibration Procedure:

Allow instrument to zero itself while introducing air.
 Introduce calibration gas into the probe. Stabilized reading = 50 f ppm
 Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 se		Downwind Background Reading: (Highest in 30 seconds)		Background Value: (Upwind + Downwind) 2		
113	ppm	2.0	ppm	1.6	ppm	

Background Value = ___

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	501	ppm	450	ppm	6	
#2	502	ppm	450	ppm	5	
#3	501	ppm	450	ppm	6	
	Calculate Response T	ime (<u>1</u> -	+2+3)		Sc. 6 Must be less than 3	#DIV/01

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)			easurement # Meter Reading for Zero Air (A)				Calculate Precision [STD - (B)]
#1	0.41	ppm	501	ppm				
#2	0.53	ppm	SUZ	ppm	2			
#3	0052	ppm	501	ppm				
Calculate Precision	[STD-B1] + [ST[)-B2] + [§ 3	STD-B31 X 1 X 500	<u>100</u> 1	O (2 #DIV/0			

Performed By: WIME ONUE	Date/Time: 3	-23-23	0900	
-------------------------	--------------	--------	------	--

CALIBRATION PROCEDURE AND BACKGROUND REPORT	- INSTANTANEOUS
---	-----------------

LANDFILL NAME Siv	VII VALLERY	INSTRUMENT	MAKE:	Hisnup
MODEL: TVA 1000	EQUIPMENT #	#1	SERIAL#	16320832
MONITORING DATE:	3-25-23	TIME:	0730	

Calibration Procedure:

Allow instrument to zero itself while introducing air.
 Introduce calibration gas into the probe. Stabilized reading = 500 ppm

Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
118 ppm	2.2 ppm	210 ppm

Background Value = 200 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Calibration Gas				Time to Reach 9 Stabilized Readi switching from 2 Calibration Gas	ng after
#1	500	ppm	450	ppm	S	
#2	SOZ	ppm	450	ppm	5	
#3	502	ppm	450	ppm	1	
	Calculate Response	Time (14	+2+3)		Si O Must be less than	#DIV/01

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		The state of the s		Calculate Precision [STD – (B)]
#1	0,57	ppm	500	ppm	0
#2	0.53	ppm	SOI	ppm	2
#3	0.56	ppm	500	ppm	2
Calculate Precision	[STD-B1] + [S	TD-B2] + [5		100	Q12 #DIV/0 Must be less than 10%

Performed By:	M. Onviz	Date/Time:	3-25-23	0730

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME: SIMI VALLEY		INSTRUME	NT MAKE: TH	ermo		
MODEL: TYALOOO	_EQUIPMENT #: _	36		SERIAL #:	0337603)95	Ī
MONITORING DATE: 3-31-	-23		TIME: _	0800		_

Calibration Procedure:

Allow instrument to zero itself while introducing air.
 Introduce calibration gas into the probe. Stabilized reading = 503
 Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
3.4 ppm	3,9 ppm	316 ppm

Background Value = 3.6 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	90% of the Stabilized Reading	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas
#1	505 ppm	450 ppm	6
#2	503 ppm	450 ppm	7
#3	503 ppm		7
	Calculate Response Time (1	+2+3)	6,6 #DIV/0! Must be less than 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zo	ero Air (A)	Meter Reading for Calibration Gas		Calculate Precision [STD – (B)]
#1	0,93	ppm	505	ppm	<
#2	1.2	ppm	503	ppm	2
#3	0,99	ppm	503	ppm	3
Calculate Precision	[STD-B1] + [S	TD-B2] + [8	STD-B31 X 1 X 1 500	1	0,7% #DIV/0!
					Must be less than 10%

Performed By: Milhael office	Date/Time:3-31-23 / 0800
------------------------------	--------------------------

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME:S	INII VALLEY	INSTRUMEN	IT MAKE: THERMO	ı
MODEL: TUA 1000	EQUIPMENT #: _	#2	SERIAL #: 7784545	'n
MONITORING DATE:	4-3-2-3	TIME:	0730	

Calibration Procedure:

Allow instrument to zero itself while introducing air.
 Introduce calibration gas into the probe. Stabilized reading = 500 ppm
 Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
/, 7 ppm	2, 3 ppm	510 bbw

Background Value = 2.0 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas
#1	500	ppm	450	ppm	6
#2	500	ppm	450	ppm	S
#3	501	ppm	450	ppm	5
	Calculate Response T	ime (<u>1</u> -	+2+3)		5, > #DIV/0! Must be less than 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	Meter Reading for Zero Air (A)		for s (B)	Calculate Precision [STD – (B)]	
#1	0.41	ppm	500	ppm	0	
#2	0,61	ppm	SOO	ppm	Ø	
#3	0.39	ppm	SOL	ppm	(V for the
Calculate Precision	on [STD-B1] + [S	[STD-B1] + [STD-B2] + [ST		100	0.6	#DIV/0!
					Must be less that	n 10%

Performed By:	SHAMA H17)514FE	<u>/</u> Date/Time:	4-3-23	0730	

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME: Simi Va	lley	 INSTRUME	INT MAKE: Thermo
MODEL: TVA 1000	EQUIPMENT #: _	rate	SERIAL #: 171954/6
MONITORING DATE: 4-5	-23	TIME:	0700
Allow instrument to ze Introduce calibration g		reading = <u></u>	500 ppm

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Bac Reading: (Highest in 30 se	1 3 5 1	Background Value: (Upwind + Downwind) 2		
(ppm	3	ppm	2	ppm	

Background Value = ____ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	rement # Stabilized Reading Using Calibration Gas				Time to Reach 90 Stabilized Readin switching from Z Calibration Gas	g after
#1	201 bbu		450	ppm	10	
#2	500 ppm		450	ppm	7	
#3	50Z ppm	P P	450	ppm	11	
	Calculate Response Time (1+2+3) 3			VO Must be less than 3	#DIV/0!

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A)	Meter Reading for Calibration Gas (B)	Calculate Precision [STD - (B)]
#1	1,0 ppm	501 ppm	500.00
#2	1.0 ppm	500 ppm	499,00
#3	2-0 ppm	502 ppm	5700.00
Calculate Precision	en [STD-B1] + [STD-B2] + [STD-B3] X 1 X 100 500 1	#DIV/0! Must be less than 10%

Performed By: Shum Hevshey	Date/Time:	4-5-23	10700	
		7		 558

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME: SI	(MI VALLEY	INSTRUMENT	MAKE: THE	пио
MODEL: TVA 100	O EQUIPMENT #: _	#(SERIAL #:/	6320832
MONITORING DATE:	4-10-23	TIME:	0730	

Calibration Procedure:

1. Allow instrument to zero itself while introducing air.

Introduce calibration gas into the probe. Stabilized reading = 501 ppm
 Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
116 ppm	2, 3 ppm	1.9 ppm

Background Value = 1:9

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	501	ppm	450	ppm	6	
#2	SUI	ppm	450	ppm	6	
#3	501	ppm	450	ppm	5	
	Calculate Response	Time (1-	+2+3)		Si 6 Must be less than 3	#DIV/0!

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A)) Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)]
#1	0,41	ppm	50/	ppm	1
#2	6.52	ppm	501	ppm	1
#3	0.49	ppm	Sol	ppm	1
Calculate Precision	STD-B1] + [S	TD-B2] + [: 3	STD-B3] X 1 X 500	100	O 1 2 #DIV/0! Must be less than 10%

Performed By:	MIKE	ORVE	Date/Time:	4-10-23	0730	
						-

RIDS T

CALIBRATION PROCEDURE	AND BACKGROUND	REPORT	- INSTANTANEOUS

ANDFILL NAME: SIMI VALLEY INS			STRUMENT MAKE. THEYMO				
MODEL: 7V4 1000	_EQUIPMENT#:	36	S	ERIAL#	1795416		
MONITORING DATE: 4-12-	23	TIME	: 6730	သ			

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 563 ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
2,5 ppm	3.4 ppm	2.9 ppm

Background Value = 2.9 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement # Stabilized Reading Using Calibration Gas Reading				ed	Time to Reach 90° Stabilized Reading switching from Ze Calibration Gas	g after
#1	503	ppm	456	ppm	6	a]
#2	505	ppm	450	ppm	5	
#3	503	ppm	450	ppm	5	
	Calculate Response T	ime (<u>1</u> -	+2+3)		5.3 Must be less than 3	#DIV/0!

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A)	Meter Reading for Calibration Gas (B)	Calculate Precision [STD – (B)]	
#1	1, Z ppm	503 ppm	3	
#2	/, / ppm	505 ppm	5	
#3	1.2 ppm	 	3	
Calculate Precision	[STD-B1] + [STD-B2] + 3		0,7% #DIV/0	

Performed By	Michael	ORJE	Date/Time	4-12-23/	0730
	1 1011000	O RO	Date/ fille		01)0

RIES CF.

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME: SIMI UNWY	INSTRUMENT MAKE THERENO
MODEL: YVA 1000 EQUIPMENT #:	# 1 SERIAL #: 16720832
MONITORING DATE: 4-18-23	TIME: 0800

Calibration Procedure:

1. Allow instrument to zero itself while introducing air.

2. Introduce calibration gas into the probe. Stabilized reading = $\frac{500}{\text{ppm}}$

3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
1,3 ppm	2.3 ppm	1.8 ppm

Background Value = 1.8 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabil Reading	ized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	500	ppm	450	ppm	6	
#2	SOI	ppm	450	ppm	7	
#3	501	ppm	450	ppm	2_	
	Calculate Response	Time (<u>1</u> -	+2+3)		5,3	#DIV/0!
					Must be less than :	30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for 2			g for as (B)	Calculate Precision [STD - (B	
#1	0,69	ppm	Soo	ppm	0	
#2	0168	ppm	501	ppm		
#3	0151	ppm	SUI	ppm	1	
Calculate Precision	on [STD-B1] + [STD-B2] + [5 3	STD-B3] X <u>1</u> 3 500		€ (Must be less than	#DIV/0!

Performed By: M.	DOMAGUEZ	Date/Time:	4-18-23	0800

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME Simi VAILEY	INS	STRUMEN	NT MAKE THE	rmo	
MODEL: TV4 1000 EQUI	IPMENT#36		SERIAL#	1795416	
MONITORING DATE: 4-21-23		TIME:	0830		

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- Introduce calibration gas into the probe. Stabilized reading = 5c3 ppm
 Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backgrou Reading: (Highest in 30 secon		Downwind Background Reading: (Highest in 30 seconds)		Background Val	
2.5	ppm	3.4	ppm	2.9	ppm

Background Value = 2.9 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas) Using	90% of the Stabiliz Reading	ed	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	503	ppm	450	ppm	6		
#2	505	ppm	450	ppm	5		
#3	503	ppm	450	ppm	5		
	Calculate Response T	ime (<u>1-</u> 3	+2+3)		5,3	#DIV/0!	
					Must be less than 3	30 seconds	

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A)	Meter Reading for Calibration Gas (B)	Calculate Precision [STD – (B)]
#1	l.Z. ppm	503 ppm	3
#2	/, / ppm	575 ppm	5
#3	1, 2 ppm	503 ppm	3
Calculate Precision	[STD-B1] + [STD-B2] + [S	STD-B3] X <u>1</u> X <u>100</u> 500 1	019 % #DIV/0!
			Must be less than 10%

Performed By:	Michael	ORJE	Date/Time:	4-21-23/	0830
Performed By:	monad	OKJE	Date/Time:	4-21-23/	0830

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEO

LANDFILL NAME: Simi VAlley	_ INSTRUMENT MAKE:THEMO
MODEL: TVA 1000 EQUIPMENT #	
MONITORING DATE: 4-27-23	TIME: 0915

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 502 ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
213 ppm	3.6 ppm	2.9 ppm

Background Value = 219 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading (Calibration Gas	Using	90% of the Stabiliz Reading	ed	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	504	ppm	450	ppm	8		
#2	502	ppm	450	ppm	6		
#3	502	ppm	450	ppm	6		
	Calculate Response Tir	ne (<u>1+</u> 3	-2+3)		6.6 #DIV/0		

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z	ero Air (A)	Meter Reading for Calibration Gas		Calculate Precision [STD – (B)		
#1	732	ppm	504	ppm	4		
#2	1.0	ppm	502	ppm	2		
#3	6-1	ppm	502	ppm	2		
Calculate Precision	(STD-B1) + [S	TD-B2] + [5	STD-B3] X 1 X 1 500	00	0 4 5 % #DIV/0		

Performed By:	Michael	opie	Date/Time:	4-27-23/0915
	1 16,000	Charle	Date/Time: _	9-21 3/3/3

Project:

RES_SimiValley landfill

Date/Time:

3/13/2023 4:30:22 AM

Model Number:

INSPECTRA

Serial Number:

881221

Latitude:

34.0563905

Longitude:

-117.3073048

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Mar-13 04:31 using one span gas.

		Measu	rement #1	Measurement #2		Measurement #3		THE PARTY OF			
GAS USED		T90	Reading	T90	Reading	T90	Reading		Calibration Precision	Calibration Precision < 10	Average Response Time
	(ppm)	ppm) (sec) (ppm)	(sec) (ppm)	(ppm)	m) (sec)	(ppm)		(%)	DISTRICT OF THE PARTY.	(s)	
ZERO	D		7 = 0	1-13							
Calibration Gas #1	500	7.8	482.2	5.3	486.6	5.3	486.5	14.9	3%	Yes	6.1

Gas Sequence ID:

0

Gas Manufacturer :

intermountain

Gas Expiration Date:

7/10/2024

Misc Ref No:

N/A

UN# :

N/A

Date/Time:

3/13/2023 4:30:22 AM

Gas Lot Number:

20-7421

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Gas Sequence ID :

- 1

intermountain

Gas Manufacturer :
Gas Expiration Date :

11/10/2023

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

3/13/2023 4:30:22 AM

Gas Lot Number :

0-135-81

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Project:

RES_SimiValley landfill

Date/Time:

3/13/2023 4:31:56 AM

Model Number: INSPECTRA

Serial Number:

1001221

Latitude :

34.0563933

Longitude :

-117,3073175

Test Status:

Incomplete-abnormal exit Test Notes:

GAS USED	Carried States	Measu	rement #1	Measurement #2		Measurement #3					
		T90	Reading	Teo	Reading TS	T90	Reading	Average Algebraic Difference	Calibration Precision	Calibration Precision < 10	Average Response Time
	(ppm) (sec)	(ppm)	(sec)	(ppm)	(sec)	(ppm)		(%)		(s)	
ZERO	0										
Calibration Gas #1	500	5.8	469,4	5.7	469.5				Incomplete Me	asurement Set	

Gas Sequence ID :

n

Gas Manufacturer:

intermountain

Gas Expiration Date:

7/10/2024

Misc Ref No:

N/A

UN#:

N/A

Date/Time :

3/13/2023 4:31:56 AM

Gas Lot Number:

20-7421

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Gas Sequence ID :

intermountain

Gas Expiration Date:

Gas Manufacturer:

11/10/2023

Misc Ref No:

N/A

UN#:

N/A

Date/Time :

3/13/2023 4:31:56 AM

Gas Lot Number:

0-135-81

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Project:

RES_SimiValley landfill

Date/Time:

3/13/2023 4:33:37 AM

Model Number:

INSPECTRA

Serial Number:

1011221

Latitude:

34.056388

Longitude:

-117.3073024

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Mar-13 04:34 using one span gas.

		Measu	rement #1	Measu	Measurement #2		rement #3				
GAS USED		T90	Reading	T90 Reading	Reading	T90	Reading	Average Algebraic Difference	Calibration Precision	Calibration Precision < 10	Average Response Time
	(ppm)	(ppm) (sec) (ppm)	(ppm)	(sec) (ppm)		(sec)	(ppm)		(%)	WEED STATE	(s)
ZERO	D										
Calibration Gas #1	500	6.8	481.5	6.9	484.6	6.8	483.2	16.9	3.4%	Yes	6.8

Gas Sequence ID:

0

Gas Manufacturer:

intermountain

Gas Expiration Date:

7/10/2024

Misc Ref No:

N/A

UN#:

N/A

Date/Time :

3/13/2023 4:33:37 AM

Gas Lot Number:

20-7421

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Gas Sequence ID :

Gas Manufacturer : intermountain

Gas Expiration Date: 11/10/2023

Misc Ref No: N/A

UN#: N/A

Date/Time: 3/13/2023 4:33:37 AM

Gas Lot Number: 0-135-81

Bottle Pressure: 1000

Technical Name: N/A

Cylinder ID: N/A

Project:

RES_SimiValley landfill

Date/Time:

3/13/2023 4:35:18 AM

Model Number:

INSPECTRA

Serial Number:

761121

Latitude :

34.0563857

Longitude:

-117,3073025

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Mar-13 04:36 using one span gas.

GAS USED		Measurement #1		Measurement #2		Measurement #3					
		T90	Reading	T90	Reading	T9D	Reading	Average Algebraic Difference	Calibration Precision	Calibration Precision < 10	Average Response Time
	(ppm)	(sec)	(ppm)	(sec)	(ppm)	(sec)	(ppm)		(%)		(s)
ZERO	0										
Calibration Gas #1	500	6.5	484.2	7.7	483.5	6.4	482.6	16.6	3.3%	Yes	6.9

Gas Sequence ID:

Ω

intermountain

Gas Expiration Date:

Gas Manufacturer:

7/10/2024

Misc Ref No:

N/A

UN#:

N/A

Date/Time :

3/13/2023 4:35:18 AM

Gas Lot Number:

20-7421

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Gas Sequence ID :

Gas Manufacturer : intermountain

Gas Expiration Date: 11/10/2023

Misc Ref No : N/A

UN#: N/A

Date/Time: 3/13/2023 4:35:18 AM

Gas Lot Number: 0-135-81

Bottle Pressure: 1000

Technical Name: N/A

Cylinder ID: N/A

Project:

RES_SimiValley landfill

Date/Time:

3/13/2023 4:36:56 AM

Model Number:

INSPECTRA

Serial Number:

811121

Latitude:

34.0563919

Longitude:

-117.3072988

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Mar-13 04:38 using one span gas.

		Measu	rement #1	Measu	rement #2	Measu	rement #3				
GAS USED		T90	Reading	T90	Reading	T90	Reading	Average Algebraic Difference	Calibration Precision	Calibration Precision < 10	Average Response Time
	(ppm)	(sec)	(ppm)	(sec)	(ppm)	(sec)	(ppm)		(%)		(s)
ZERO	0										
Calibration Gas #1	500	5.6	485.7	5.6	485.7	5.6	485.8	14.3	2.9%	Yes	5.6

Gas Sequence ID:

n

Gas Manufacturer:

intermountain

Gas Expiration Date:

7/10/2024

Misc Ref No:

N/A

UN#:

N/A

Date/Time :

3/13/2023 4:36:56 AM

Gas Lot Number:

20-7421

Bottle Pressure:

1000

Technical Name :
Cylinder ID :

N/A N/A

Gas Sequence ID:

Date/Time:

3/13/2023 4:36:56 AM

Gas Manufacturer:

intermountain

Gas Lot Number: **Bottle Pressure:**

0-135-81

Gas Expiration Date:

11/10/2023

Technical Name:

1000 N/A

UN#:

Misc Ref No:

N/A N/A

Cylinder ID:

Delivered to: RES ENVIRONMENTAL - COLTON

Date of the report: 1/14/2023

Identifier of the detector

Detector name

: Inspectra Laser

Serial Number

: 881221

Scale numbers

:1

Next visit

: 1/14/2025

Method of Checking

Internal procedures : ATE04226

Calibration Bench n°: 41

Each scale of the checked apparatus was the subject of a measurement for zero value, and of a measurement for

the value of the concentration of the gas standard injected

Scale Gaz		Concentration of the gas standard	Traceability of the gas (N° of production)	I Specifications (autoited	Uncertainty on the concentration of the gas standard		
РРМ	СН4	0.0009999999% GAS	70086129308	10 PPM(± 10% relative)	± 2% relative		
PPM	CH4	0.05% GAS	70086030712	500 PPM(± 10% relative)	± 2% relative		
PPM	CH4	0.25% GAS	70086811308	2499 PPM(± 10% relative)	± 2% relative		
PPM	CH4	1% GAS	109631206	10000 PPM(± 10% relative)	± 2% relative		
PPM	CH4	2% GAS	70086800812	20000 PPM(± 10% relative)	± 2% relative		
PPM	CH4	100% GAS	303114089201	1000000 PPM(± 10% relative)			

Result of the checking

The detector is considered to be in conformity with the specifications of reference

Technical Department

This document includes 1 page.

The reproduction of this report is authorized only in the shape of integral photographic facsimile.

This document cannot be used instead of a certificate of calibration.

This document is carried out according to the recommendations of the booklet of documentation X 07-011 defining the report of checking. It can be used to show the connection of the means of measurement to the national or international standards, provided it answers the recommendations of the booklet of documentation X 07-015.

Delivered to: RES ENVIRONMENTAL - COLTON Date of the report: 1/14/2023

Identifier of the detector

Detector name : Inspectra Laser Serial Number : 1001221

Scale numbers : 1 Next visit : 1/14/2025

Method of Checking

Internal procedures : ATE04226 Calibration Bench n° : 41

Each scale of the checked apparatus was the subject of a measurement for zero value, and of a measurement for

the value of the concentration of the gas standard injected .

Scale	Gaz	Concentration of the gas standard	Traceability of the gas (N° of production)	Specifications (awaited posted values)	Uncertainty on the concentration of the gas standard
PPM	СН4	0.0009999999% GAS	70086129308	10 PPM(± 10% relative)	± 2% relative
PPM	CH4	0.05% GAS	70086030712	500 PPM(± 10% relative)	± 2% relative
PPM	CH4	0.25% GAS	70086811308	2499 PPM(± 10% relative)	± 2% relative
PPM	CH4	1% GAS	109631206	10000 PPM(± 10% relative)	± 2% relative
PPM	CH4	2% GAS	70086800812	20000 PPM(± 10% relative)	± 2% relative
PPM	CH4	100% GAS	303114089201	1000000 PPM(± 10% relative)	± 2% relative

Result of the checking

The detector is considered to be in conformity with the specifications of reference

Technical Department

This document includes 1 page.

The reproduction of this report is authorized only in the shape of integral photographic facsimile.

This document cannot be used instead of a certificate of calibration.

This document is carried out according to the recommendations of the booklet of documentation X 07-011 defining the report of checking. It can be used to show the connection of the means of measurement to the national or international standards, provided it answers the recommendations of the booklet of documentation X 07-015.

Delivered to: RES ENVIRONMENTAL - COLTON

Date of the report: 1/14/2023

Identifier of the detector

Detector name

: Inspectra Laser

Serial Number

: 1011221

Scale numbers

: 1

Next visit

: 1/14/2025

Method of Checking

Internal procedures: ATE04226

Calibration Bench n°: 41

Each scale of the checked apparatus was the subject of a measurement for zero value, and of a measurement for

the value of the concentration of the gas standard injected.

Scale	Gaz	Concentration of the gas standard	Traceability of the gas (N° of production)	Specifications (awaited posted values)	Uncertainty on the concentration of the gas standard
PPM	CH4	0.0009999999% GAS	70086129308	10 PPM(± 10% relative)	± 2% relative
PPM	CH4	0.05% GAS	70086030712	500 PPM(± 10% relative)	± 2% relative
PPM	CH4	0.25% GAS	70086811308	2499 PPM(± 10% relative)	± 2% relative
PPM	CH4	1% GAS	109631206	10000 PPM(± 10% relative)	± 2% relative
PPM	CH4	2% GAS	70086800812	20000 PPM(± 10% relative)	± 2% relative
PPM	CH4	100% GAS	303114089201	1000000 PPM(± 10% relative)	± 2% relative

Result of the checking

The detector is considered to be in conformity with the specifications of reference

Technical Department

This document includes 1 page.

The reproduction of this report is authorized only in the shape of integral photographic facsimile.

This document cannot be used instead of a certificate of calibration.

This document is carried out according to the recommendations of the booklet of documentation X 07-011 defining the report of phecking. It can be used to show the connection of the means of measurement to the national or international standards, provided it answers the recommendations of the booklet of documentation X 07-015.

Delivered to: RES ENVIRONMENTAL - COLTON

Date of the report: 1/14/2023

Identifier of the detector

Detector name

: Inspectra Laser

Serial Number

: 761121

Scale numbers

. 1

Next visit

: 1/14/2025

Method of Checking

Internal procedures: ATE04226

Calibration Bench nº: 41

Each scale of the checked apparatus was the subject of a measurement for zero value, and of a measurement for

the value of the concentration of the gas standard injected.

Scale	Gaz	Concentration of the gas standard	Traceability of the gas (N° of production)		Uncertainty on the concentration of the gas standard
PPM	СН4	0.0009999999% GAS	70086129308	10 PPM(± 10% relative)	± 2% relative
PPM	CH4	0.05% GAS	70086030712	500 PPM(± 10% relative)	± 2% relative
PPM	CH4	0.25% GAS	70086811308	2499 PPM(± 10% relative)	± 2% relative
PPM	CH4	1% GAS	109631206	10000 PPM(± 10% relative)	± 2% relative
PPM	CH4	2% GAS	70086800812	20000 PPM(± 10% relative)	± 2% relative
PPM	CH4	100% GAS	303114089201	1000000 PPM(± 10% relative)	± 2% relative

Result of the checking

The detector is considered to be in conformity with the specifications of reference

Technical Department

This document includes 1 page.

The reproduction of this report is authorized only in the shape of integral photographic facsimile.

This document cannot be used instead of a certificate of calibration.

This document is carried out according to the recommendations of the booklet of documentation X 07-011 defining the report of decking. It can be used to show the connection of the means of measurement to the national or international standards, provided it answers the recommendations of the booklet of documentation X 07-015.

Delivered to : RES ENVIRONMENTAL - COLTON

Date of the report: 1/14/2023

Identifier of the detector

Detector name

: Inspectra Laser

Serial Number

: 811121

Scale numbers

: 1

Next visit

: 1/14/2025

Method of Checking

Internal procedures : ATE04226 Calibration Bench n° : 41

Each scale of the checked apparatus was the subject of a measurement for zero value, and of a measurement for

the value of the concentration of the gas standard injected

Scale Gaz		Concentration of the gas standard	Traceability of the gas (N° of production)	Specifications (awaited posted values)	Uncertainty on the concentration of the gas standard		
PPM	СН4	0.0009999999% GAS	70086129308	10 PPM(± 10% relative)	± 2% relative		
PPM	CH4	0.05% GAS	70086030712	500 PPM(± 10% relative)	± 2% relative		
PPM	CH4	0.25% GAS	70086811308	2499 PPM(± 10% relative)	± 2% relative		
PPM	CH4	1% GAS	109631206	10000 PPM(± 10% relative)	± 2% relative		
PPM	CH4	2% GAS	70086800812	20000 PPM(± 10% relative)	± 2% relative		
PPM	CH4	100% GAS	303114089201	1000000 PPM(± 10% relative)			

Result of the checking

The detector is considered to be in conformity with the specifications of reference

Technical Department

This document includes 1 page.

The reproduction of this report is authorized only in the shape of integral photographic facsimile.

This document cannot be used instead of a certificate of calibration.

This document is carried out according to the recommendations of the booklet of documentation X 07-011 defining the report of checking. It can be used to show the connection of the means of measurement to the national or international standards, provided it answers the recommendations of the booklet of documentation X 07-015.

Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com

"Your calibration gas manufacturer since 1992"

CERTIFICATE OF ANALYSIS

Composition Certification Analytical Accuracy (+/-)

Oxygen 20.9 % 2%

Nitrogen Balance UHP

Lot# 20-7421

Mfg. Date: 5/20/2020

Expiration Date:

Transfill Date: see cylinder

Parent Cylinder ID NY02268

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart

Title: Quality Assurance Manager

Certificate Date: 5/20/2020

-20.9% Oxygen Bal, Nitrogen

35# 0 70°F and 1,000 PSIG

Lot#: 20-7421

P/N:01-100

DO NOT H

103 L

Miser Avenue, Irvine, CA 92614 653 or (800) 201-8150 Fax (949) 757-0363

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

CERTIFICATE OF ANALYSIS

Composition

Certification

Analytical Accuracy

Methane

25 ppm

 $\pm 5\%$

Air

Balance

Lot#

17-6074

Mfg. Date:

10/16/2017

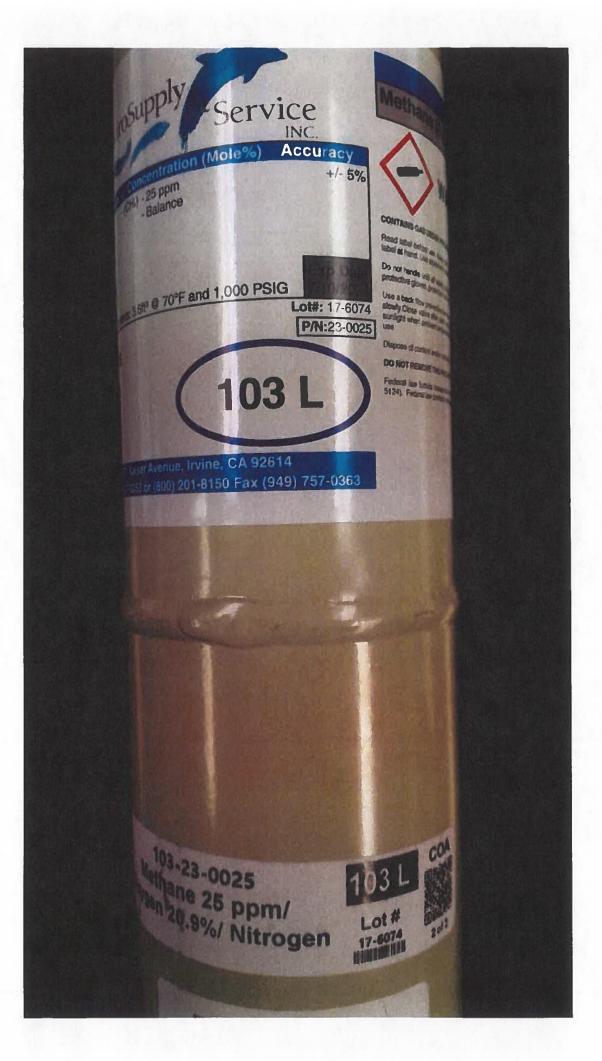
Parent Cylinder ID

17161

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled


Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 10/16/2017

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

CERTIFICATE OF ANALYSIS

Composition

Methane

Air

Certification

25 ppm

Balance

Analytical Accuracy

± 5%

Lot #

17-6074

Mfg. Date:

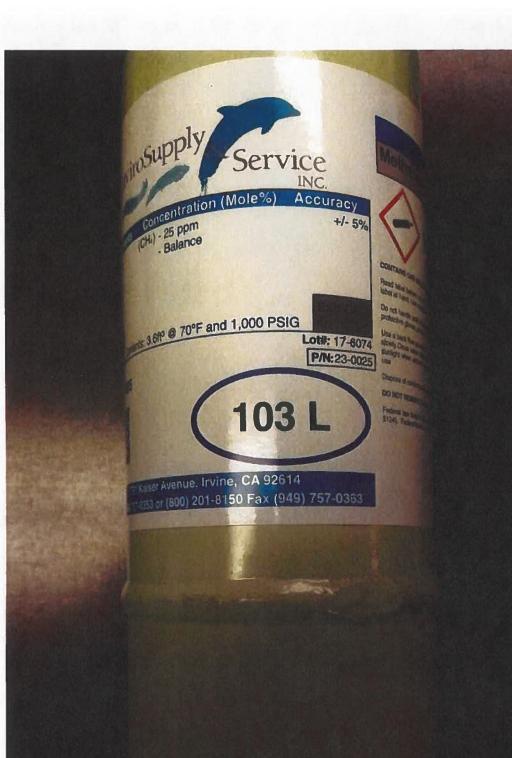
10/16/2017

Parent Cylinder ID 17161

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled


Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

> Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 10/16/2017

TC-SU6495 NRC 76/104

Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com

"Your calibration gas manufacturer since 1992"

CERTIFICATE OF ANALYSIS

Composition Certification Analytical Accuracy (+/-) Methane 2% 500 ppm 20.9 % 2% Oxygen Nitrogen Balance UHP

Lot# 20-7497

Mfg. Date: 7/10/2020

Expiration Date:

Transfill Date: see cylinder

Parent Cylinder ID TWC001763

Number:

Method of Preparation

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By:

Tony Janquart

Title:

Quality Assurance Manager

Certificate Date:

7/10/2020

Methane () Service INC. Accuracy n (Mole%) +/- 2% CONTAINS GAS INDERFES Florid label before one description at hand, the engineers Do not handle until at sub-profective gloves, potente a 170 F and 1,000 PSIG Use a back fine presents a slowly Close valve after an surlight when amount to Lot#: 20-7497 P/N:23-0500 Dispose of content endrant DO NOT REMOVE THE PRO Federal law lockes range 6124). Federal law protein 103 Irvine, CA 92614 10) 201-8150 Fax (949) 757-0363

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

CERTIFICATE OF ANALYSIS

Composition

Methane

Air

Certification

500 ppm

Balance

Analytical Accuracy

 $\pm 2\%$

Lot#

19-6955

Mfg. Date:

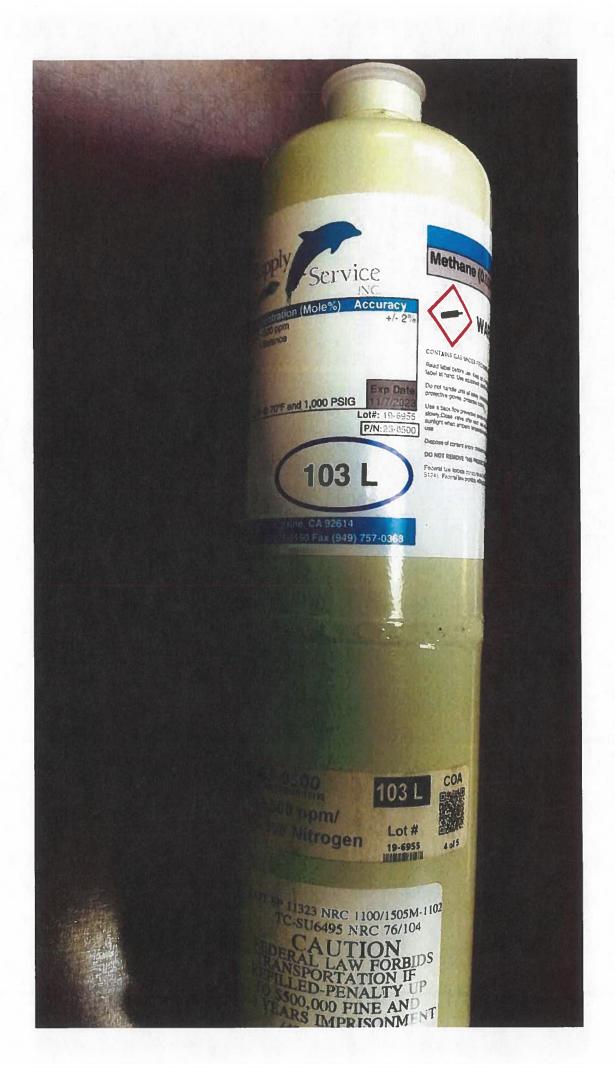
7/24/2019

Parent Cylinder ID 001763

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled


Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

> Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 7/24/2019

Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143

"Your calibration gas manufacturer since 1992"

CERTIFICATE OF ANALYSIS

Composition Certification Analytical Accuracy (+/-) Methane 2% 500 ppm 20.9 % 2% Oxygen Balance UHP Nitrogen

Lot# 18-6641

Mfg. Date: 12/18/2018

Expiration Date:

www.isgases.com

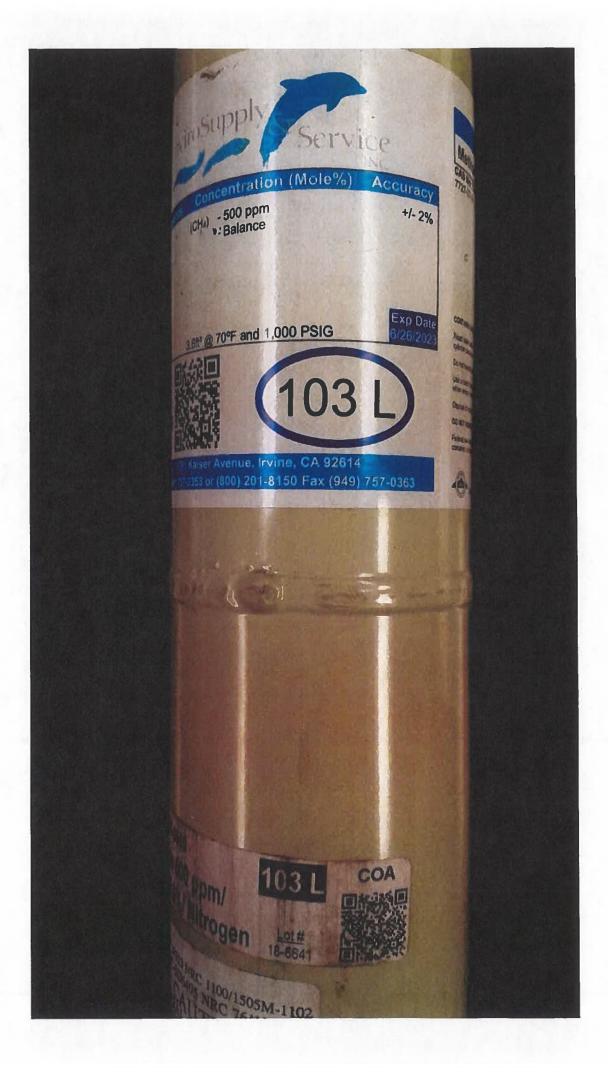
Transfill Date: see cylinder

Parent Cylinder ID 001763

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled


Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

> Analysis By: **Tony Janquart**

Title: Quality Assurance Manager

Certificate Date: 12/18/2018

CERTIFICATE OF ANALYSIS

Premier Safety & Service

46400 Continental Drivve Chesterfield ,MI 48047

Cust Number 07152 Order Number 62891146 PO Number 04548169

Expires

12/31/2019

12/2022

+/-2%

Date on Manufacture

analytical Accuracy

Lot Number Norlab Part#

9-326-80 J1971500PA

Cylinder Size Number of Cyl 1

103 Liter

Customer Par N/A

Reported

Component Methane Air

Concentration 500 ppm Balance

Requested Concentration

500 ppm Balance

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers 20180519 and 20180224

Approved:

Date Signed:

12/31/2019

sid 962.7837 printersafety.com 46400 Continents Chesterfield, MI

omponents

Concentration (Mole

500 ppm Balance

9185-81

图 甚2%

1971500PA

Maliters-3.6Cu, Ft., -1000psig

MFG Date:

Exp. Date:

11/11/2020

11/2023

CALIBRATION GAS

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Lot Number 2-154-85 Norlab Part# J1002 Cylinder Size 103 Liter

Cylinder Size 10 Number of Cyl 1

Customer Part# N/A

Cust Number 07152 Order Number 69679439 PO Number 04906817

Date on Manufacture

6/13/2022 06/2025

Expires
Analytical Accuracy

Certified

Component
Air
Oxygen
T.H.C. (as Methane)
Nitrogen

Reported
Concentration
Zero Grade
20.9 %
< 1.0 ppm
Balance

Requested
Concentration
Zero Grade
20.9 %
< 1.0 ppm
Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

Minor constituents tested with standards traceable to NIST by mass or comparison to SRM's (Standard Reference Materials).

NIST Traceable Numbers are available upon request.

Approved:

David Reed

Date Signed:

6/13/2022

Lab Technician

898 W. GOWEN ROAD • BOISE, IDAHO 83705 Phone (208) 336-1643 • Fax (208) 331-3038 • 800-657-6672

PREMIER

800.962.7837 garpremiers afety.com

33594 Sterling Hard

components

ongen TH.C. (as Methane)

Concentration

Zero Grade 20.9 % < 1.0 ppm Balance

2-154-85

Certified

J1002

103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

6/13/2022

06/2025

CALIBRATION GAS

NON-FLAMMABLE GAS

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Cust Number 07152 Order Number 69671309 PO Number 08361523

Lot Number 2-108-80 Norlab Part# J1971500PA Cylinder Size 103 Liter

Number of Cyl 1

Customer Part# N/A

Date on Manufacture 6/10/2022 **Expires** 06/2025

Analytical Accuracy +/- 2%

Component Methane Air

Reported Concentration 500 ppm Balance

Requested Concentration 500 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers are available upon request.

Approved:

Lab Technician

Date Signed:

6/10/2022

800.962.7837 per premiers afety.com

33596 Sterling Height

Components

Methane

Concentration (Mo:

500 ppm Balance

2-108-80

Accuracy: +/- 2%

J1971500PA

Contents: 103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

5/5/2022

Exp. Date:

05/2025

CALIBRATION GAS

NON-FLAMMABLE GAS

CUSTOMER: NIES Und #1		
SERIAL NUMBER: 16320832		
TECHNICIAN: M	DATE: _	1-7-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,001	+/- 2500
<1	ZERO GAS	0.69	< 3
	PII	0	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS.(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	7	+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
<1	ZERO GAS		< 3

CUSTOMER: NES	UNT #2	
SERIAL NUMBER:	7784545	
TECHNICIAN:	<u></u>	1-7-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID			
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	494	+/- 125
10000	10000	10,003	+/- 2500
<1	ZERO GAS	0.69	< 3
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	7	+/- 12.5
100	100		+/- 25
500	500	/	+/- 125
<1	ZERO GAS	/	< 3

CUSTOMER: RES UNT # 3	
SERIAL NUMBER: 15865844	
TECHNICIAN: My DATE: _	1-7-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	Fi	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	99	+/- 25
500	500	49	+/- 125
10000	10000	10,000	+/- 2500
<1	ZERO GAS	0.71	< 3
	PI	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS.(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100		+/- 25
500	500		+/- 125
<1	ZERO GAS		<3

CUSTOMER: RES VAIT	#4
SERIAL NUMBER:	0
TECHNICIAN: My M	DATE: 1-7-27

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID			
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	501	+/- 125
10000	10000	10,003	+/- 2500
<1	ZERO GAS	0.59	< 3
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS	/	< 3

CUSTOMER: RES Vait # 5	
SERIAL NUMBER: 4919480	
TECHNICIAN: M DATE:	1-7-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	Fi	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	99	+/- 25
500	500	501	+/- 125
10000	10000	10,021	+/- 2500
<1	ZERO GAS	(8,61	< 3
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	,	+/- 12.5
100	100		+/- 25
500	500	/	+/- 125
<1	ZERO GAS		< 3

CUSTOMER: 2	ES Vait	#6	
SERIAL NUMBER:	0720723	626	
TECHNICIAN:	M	DATE: _	1-7-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,101	+/- 2500
<1	ZERO GAS	0.53	< 3
	Pil	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50		+/- 12.5
100	100		+/- 25
500	500		+/- 125
<1	ZERO GAS		< 3

CUSTOMER: RES Van #7	
SERIAL NUMBER: 0720723627	
TECHNICIAN: DATE:	1-7-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	50-1	+/- 125
10000	10000	10,200	+/- 2500
<1	ZERO GAS	(0.61	< 3
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS.(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50		+/- 12.5
100	100		+/- 25
500	500		+/- 125
<1	ZERO GAS		< 3

TVA1000B CALIBRATION VERIFICATION Environmental Inc.

CUSTOMER:	RE	> Vant	#9	
SERIAL NUMBER:		05321	13801	
TECHNICIAN:	Mu	M	DATE: _	1-7-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10.000	+/- 2500
<1	ZERO GAS	0.61	< 3
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50		+/- 12.5
100	100		+/- 25
500	500		+/- 125
<1	ZERO GAS		< 3

Site:			
Purpose:			
Operator:	M		ATT TO SERVICE
Date: 3-4-23	Time:	0530	
Model # + 44+1000			
Serial # # 1 16320832			
INSTRUMENT INTEGRITY CHECK	CLIST INS	STRUMENT CALIBRA	ATION
Cotton to at		CALIBRATION CHE	CK
Sattery test	/ Fail Calibration Gas (ppm)	Actual (ppm)	% ^^~~
Reading following ignition 2.	(ppm		Accuracy
eak test	/ Fail / NA	SOO	100%
(Face)		RESPONSE TIME	
dean system check check valve chatter)	/ Fail / NA		500
wieck valve chatter)	Calibration Gar	o, ppm	450
2 supply pressure gauge Pass		to attain 90% of Cal G	
acceptable range 9.5 - 12)			
ate of last factory calibration (-7	-23 2	6	
		516	
actory calibration record /instrument within 3 months		s than 30 seconds?	(Y) N
	Instrument cali	brated to	
ommonto.			
omments:			
			*0

Purpose:	04			
Operator:	1 mg			
Date: 3-4-23		Time:	054=	
lodel #)			
erial # #2 178454	Γ			
INSTRUMENT INTEGRIT	Y CHECKLIST	INST	RUMENT CALIBRA	TION
attery test	ass / Fail	Calibration Gas (ppm)	ALIBRATION CHEC Actual (ppm)	K % Accuracy
eading following ignition	7.3 ppm	500	500	1007
eak test	Pass / Fail / NA		RESPONSE TIME	
ean system check heck valve chatter)	Pass / Fail / NA	Calibration Gas,	ppm _ S	00
supply pressure gauge cceptable range 9.5 - 12)	Cass / Fail / NA	90% of Calibration Time required to 1.	on Gas, ppm <u>Yo</u> attain 90% of Cal Ga	is ppm
ate of last factory calibration	1-9-23	2. 3.	6	
ectory calibration record instrument within 3 months	asy / Fail		than 30 seconds? ated to Cly	Ø N gas.

TUA 1000 #27784545	
RUMENT INTEGRITY CHECKLIST INSTRUMENT CALIBRATION	
CALIBRATION CHECK	-
st Calibration Actual %	
ollowing ignition 2, 6 ppm Gas (ppm) (ppm) Accur	racy
Pass / Fail / NA 500 500 10	ולטי
em check Pass / Fail / NA RESPONSE TIME	
ve chatter) Calibration Gas, ppm	
90% of Calibration Gas, ppm 450	
pressure gauge e range 9.5 - 12) Time required to attain 90% of Cal Gas ppm	
	2
· ·	
libration record ent within 3 months Pass / Fail Average Equal to or less than 30 seconds?	N
1223 2	

Purpose:	n My			
Date: 3-4-23		Time:	0615	
Model #				
Serial # #3 15805	884			
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	RUMENT CALIBRA	ATION
Battery test	A		LIBRATION CHE	
	Pass / Fail	Calibration Gas (ppm)	Actual (ppm)	% Accuracy
eading following ignition				
eak test	Fass / Fail / NA	500	Sen	1004
lean system check	\sim		RESPONSE TIME	
heck valve chatter)	Pass / Fail / NA	Calibration Gas, p	om C	500
	0	90% of Calibration	P111	450
z supply pressure gauge acceptable range 9.5 - 12)	Pass / Fail / NA		ittain 90% of Cal G	as ppm
	1922	1.	<u> </u>	
ate of last factory calibration	1-7-23	3.	7	
actory calibration record	Fass / Fail	Average 6		G
/instrument within 3 months		Equal to or less th		Ø N
		Instrument calibra	ted to CUS	_gas.
omments:				
ommonia.				

Operator:			
Date: 3-4-23			
	Time:	0630	
Model# TUA 1000			
Serial # # 4 /6319830			
INSTRUMENT INTEGRITY CHECKLIST	INSTR	RUMENT CALIBRA	ATION
	CA	LIBRATION CHE	CK
Battery test Pass / Fail	Calibration	Actual	%
leading following ignition 2, 3 ppm	Gas (ppm)	(ppm)	Accurac
eak test Pass / Fail / NA	500	500	100%
Clean system check check valve chatter)		RESPONSE TIME	Soo
	90% of Calibration		450
le supply pressure gauge Pass / Fail / NA acceptable range 9.5 - 12)		ttain 90% of Cal C	as ppm
Pate of last factory calibration 1-7-23	2. <u>(</u>	5	
actory calibration record //instrument within 3 months	Average 5 Equal to or less the Instrument calibra	an 30 seconds?	Ø N _gas.
comments:			

Time:	0645	
INSTR	RUMENT CALIBRA	TION
CA Calibration	ALIBRATION CHEC	CK %
Gas (ppm)	(ppm)	Accuracy
500	SOO	100%
Calibration Gas, p	pm S	500
Time required to a 1.	nttain 90% of Cal G	as ppm
2. 3.	5	
Equal to or less th	an 30 seconds?	⟨Ŷ⟩ N
	Calibration Gas (ppm) Calibration Gas, p 90% of Calibration Time required to a 1. 2. 3. Average Equal to or less th	Gas (ppm) (ppm) SOO RESPONSE TIME Calibration Gas, ppm 90% of Calibration Gas, ppm Time required to attain 90% of Cal G 1. S 2. S 3.

Model # TVA 1000 Serial # #6 0720723626 INSTRUMENT INTEGRITY CHECKLIST Battery test Pass / Fail Ca	Time:	© 700		
Serial # #6 0770723626 INSTRUMENT INTEGRITY CHECKLIST Battery test Case / Fail Case	INST	RUMENT CALIRE		
INSTRUMENT INTEGRITY CHECKLIST Battery test Case / Fail Case / Fail	INST	RUMENT CALIRE		
Battery test Pass / Fail C	INST	RUMENT CALIRE		
		TOMESTIC OF THE PROPERTY OF TH	MOITAS	I BL
		ALIBRATION CHE		
	alibration as (ppm)	Actual (ppm)		% curacy
Reading following ignition 2.9 ppm				
Leak test Pass / Fail / NA	500	500	1	00 Y,
		RESPONSE TIM	ΙE	
Clean system check	ibration Gas,	nom	500	
	6 of Calibration		450	
12 supply pressure gauge Pass / Fail / NA Tim		attain 90% of Cal		
acceptable range 9.5 - 12)		5		
Date of last factory calibration $1-7-23$ 2.		5		
	rage 5	5.3		
		than 30 seconds?	(V)	N
	rument calibr	ated to Clfy	gas.	
Comments:				

Site:				
Purpose:				
Operator:	My			
Date: 3-4-23		Time:	0715	
Model # TVA 1000				
Serial # #7 077072	3627			
INSTRUMENT INTEGRITY	CHECKLIST	INSTR	RUMENT CALIBRA	ATION
Battery test	Fass/Fail	Calibration Gas (ppm)	ALIBRATION CHEC Actual (ppm)	CK % Accuracy
Reading following ignition eak test	Pags / Fail / NA	500	500	100%
Clean system check check valve chatter)	Pass / Fail / NA	Calibration Gas, p	RESPONSE TIME	500
d ₂ supply pressure gauge acceptable range 9.5 - 12)	Pags / Fail / NA	90% of Calibration Time required to a	Gas, ppm ttain 90% of Cal G	eas ppm
ate of last factory calibration	1-7-23	2.	6	
actory calibration record //instrument within 3 months	Fasg / Fail	Average Squal to or less the Instrument calibra	an 30 seconds?	gas. N
comments:				

WASTE MANAGEMENT

July 31, 2023

Mr. Mark Grady 2801 Madera Road Simi Valley, California 93065 8491 Fruitridge Road Sacramento, CA 95826 (510) 714-6098

Second Quarter 2023 Surface Emissions and Component Leak Monitoring Report for the Simi Valley Landfill and Recycling Center

Dear Mr. Grady:

This monitoring report for the "Simi Valley Landfill and Recycling Center (SVLRC)" contains the results of the Second Quarter 2023 Integrated and Instantaneous Surface Emissions Monitoring (SEM) and Component Leak Monitoring. Initial surface emissions monitoring was performed by Roberts Environmental Services, LLC. (RES). Re-monitoring of site-wide surface emissions and component leak monitoring was also conducted by RES personnel.

APPLICABLE REQUIREMENTS

The monitoring discussed in this report was conducted in accordance with the following requirements:

Surface Emission Monitoring (SEM)

- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).
- New Source Performance Standard (NSPS), Title 40 of the Code of Federal Regulations (CFR) §60.755 (c) and (d), 40 CFR 60, Appendix A Method 21; and updated Title 40 CFR part 63, Subpart AAAA (63.1960), promulgated by the United States Environmental Protection Agency (USEPA).
- Ventura County Air Pollution Control District (VCAPCD) Rule 74.17.1 (Municipal Solid Waste Landfills)

Component Leak

• California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).

SVLRC Plan and Alternative Compliance Measures

An Alternative Compliance Option (ACO) Request was submitted to the California Air Resources Board (CARB) on May 24, 2011. A response from the CARB was not received to the ACO Request within 120 days from the date of submittal, therefore SVLRC assumes that the alternative compliance measures, monitoring requirements, and test measures and procedures were deemed acceptable as of September 21, 2011, per CCR Title 17 §95468(c).

All monitoring and reporting was completed in accordance with the 2011 SVLRC AB-32 SEM Plan.

PROCEDURES

General

The surface of the SVLRC disposal area has been divided into one-hundred eighty-five (185), (approximately) 50,000 square foot monitoring grids. The entire landfill surface is monitored with the exception of active portions of the Landfill, slope areas, and as requested in the approved ACO, areas containing only asbestos-containing waste, inert waste and/or non-decomposable waste which are excluded for safety as allowed by CCR Title 17 §95466.

Field personnel walked the surface of the landfill following the walking pattern as depicted the 2011 SVLRC AB-32 SEM Plan, which traverses each monitoring grid. Additionally, in accordance with the provisions of 40 CFR 60.753(d) and 60.755(c)(1-3) and 63.1960, the entire perimeter of the landfill surface was monitored. During the event, special attention was given to monitoring unusual cover conditions (stressed vegetation, cracks, seeps, etc.) and any areas with unusual odors. In addition, penetrations were monitoring per Title 40 CFR part 63, Subpart AAAA (63.1960).

Instantaneous Surface Emissions Monitoring

The Instantaneous SEM was conducted using a Toxic Vapor Analyzer (TVA) 1000 flame ionization detector (FID), which was calibrated to 500 parts per million by volume (ppmv) methane, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a). The FID was calibrated prior to use in accordance with the United States Environmental Protection Agency (USEPA) Method 21 requirements. The Instantaneous SEM procedures followed the requirements of 40 CFR 60.755 (c) and (d), CCR Title 17 §95471(c)(2), VCAPCD Rule 74.1.7, and 40 CFR part 63, Subpart AAAA 63.1960.

RES personnel walked the surface of the landfill on a grid-by-grid basis with the wand tip held at 3 inches from the landfill surface. While sampling the grid, the technicians also checked any surface impoundments (wells or otherwise) for leaks. Technicians also checked any surface cracks, seeps, or other areas that show evidence of surface emissions (odors or distressed vegetation). Active and sloped areas excluded for safety were documented on field data sheets and maps.

All instantaneous surface monitoring was performed in accordance with the applicable requirements referenced in this report. Any detections of methane above 200 ppmv (areas of concern) or 500 ppmv (exceedances) for instantaneous were recorded, flagged, and marked on an SEM Map, which, wherever required, is included in the Attachments of this report. Applicable corrective action and re-monitoring timelines are listed below:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
 - o If the re-monitoring event shows the exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance.
 - o If the 1-month re-monitoring event shows the location is still corrected, all remonitoring requirements have been completed.
- If either the first 10-day or 1-month re-monitoring events show a second exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance. If the 1-month re-monitoring event shows the area is still corrected, monitoring requirements have been completed.
- If any location shows three exceedances, an additional well shall be installed within 120 days of the initial exceedance.

Integrated Surface Emissions Monitoring

The Integrated surface monitoring was conducted using a TVA 1000 calibrated to 25 ppmv for the integrated monitoring, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a). The field technician traversed the grid walking path over a continuous 25-minute period using the TVA 1000 held at 3 inches above the landfill surface. The Integrated monitoring procedures followed the requirements of CCR Title 17 §95471(c)(2).

Grids with results greater than 25 ppmv were recorded, marked on the SEM map, and flagged for remediation. Any grids with integrated concentrations greater than 25 ppmv are subject to the following corrective action and re-monitoring timeline:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
- If the 10-day re-monitoring event shows the exceedance is corrected, all re-monitoring requirements have been completed.

- If either the first 10-day re-monitoring event shows a second grid exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, all re-monitoring requirements have been completed.
- If the second 10-day re-monitoring event shows a third grid exceedance, an additional well shall be installed within 120 days of the initial exceedance.

Component Leak Monitoring Procedures

RES personnel monitored the exposed LFG components under positive pressure (pipes, wellheads, valves, blowers, and other mechanical appurtenances) using a TVA 1000 calibrated to 500 ppmv. All leaks measured one half inch or less from the component exceeding the compliance limit of 500 ppmv per requirements outlined in pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B) were recorded. Applicable corrective action and re-monitoring timelines are listed below:

• Leaks at or above 500 ppmv must be corrected and re-monitored within 10 days of the initial exceedance.

SECOND QUARTER SEM AND COMPONENT LEAK RESULTS

The following is a summary of the SEM and Component leak monitoring results completed during the Second Quarter 2023.

Instantaneous Surface Emission Monitoring Results

The Instantaneous surface monitoring was performed on June 5, 6, 7, 8, 20, 21 and 26, 2023 in accordance with the NSPS NESHAP, Rule 74.1.17, CCR Title 17 §95469 and ACO. Results and data from the monitoring are presented in Attachment A.

Initial Monitoring Event Exceedances of 500 ppmv

There were one-hundred seven (107) exceedances of 500 ppmv as methane detected during the initial monitoring events conducted on June 5, 6, 7, 8, 20, 21 and 26, 2023. RES personnel remediated the locations, and the following re-monitoring was conducted as described below.

First Ten-Day Re-Monitoring Results

RES personnel performed the first ten-day re-monitoring events on June 15, 22 and July 7, 2023 (pushed day due to active heavy equipment). Seven (7) exceedances were observed during the ten-day re-monitoring event. RES personnel remediated the locations, and the following remonitoring was conducted as described below.

Second Ten-Day Re-Monitoring Results

RES personnel performed the second ten-day re-monitoring event on June 22, 30 and July 3 and 13, 2023 (pushed back due to active heavy equipment). No exceedances were observed during the second ten-day re-monitoring event.

Thirty-Day Re-Monitoring Results

RES personnel performed the thirty-day monitoring events on July 3, 7, and 20, 2023. No exceedances were observed during the thirty-day re-monitoring events.

Readings between 200 ppmv and 499 ppmv (Initial and Re-monitored)

There were one-hundred two (102) readings between 200 ppmv and 499 ppmv, measured as methane detected during the initial monitoring events on June 5, 6, 7, 8 and 26, 2023, respectively. Pursuant to CCR Title 17 §95471(c), instantaneous surface emissions exceeding 200 ppmv but below 500 ppmv are required to be recorded. As a best management practice, if these readings occur, SVLRC voluntarily addresses these locations by remediating and remonitoring all those within this range, during the 10-day re-checks. Therefore, SVLRC and RES personnel performed ten-day re-checks on June 15 and July 7, 2023, respectively, and ninetynine (99) of the one-hundred two (102) readings were below 200 ppmv, with continued

remediation conducted on the remaining three (3). The goal of this is effort is to reduce any future exceedances to improve and reduce overall odors/emissions. Results, if applicable, are summarized in Attachment A.

Integrated Surface Emissions Monitoring Results

The Integrated surface sampling (ISS) was performed on June 8, 19, 20, 21, 26 and 30, 2023, in accordance with the ACO, requirements outlined in CCR Title 17 §95469, and VCAPCD Rule 74.1.17. See Attachment B for details.

Initial Monitoring Event Exceedances of 25 ppmv

There were seven (7) grids with an exceedance above 25 ppmv as methane detected during the initial monitoring events conducted on June 20, 21 and 26, 2023. SVLRC personnel remediated the locations, and the following re-monitoring was conducted as described below.

Ten-Day Re-Monitoring Results

RES personnel performed the ten-day re-monitoring events on June 30 and July 6, 2023. No exceedances were observed during the ten-day re-monitoring events.

The average methane concentration of each grid was recorded during the monitoring event per applicable requirements. See Attachment B for details.

Component Leak Monitoring Results

Component leak monitoring was conducted per the applicable requirements on June 26, 2023. There were zero (0) locations with a component leak detection of greater than 500 ppmv. See Attachment C for details.

WEATHER CONDITIONS

Wind Speed Conductions during the Surface Emission Monitoring Events

Wind speeds during initial monitoring were monitored using a portable weather station. The station has a strip chart that records the wind speed and direction. After completion of monitoring, the strip chart is reviewed by RES office staff to determine the average and maximum wind speeds during the monitoring and the average wind direction during each grid and ensure that the wind speed requirements are met (no gusts greater than 20 mph, average wind speed cannot exceed 10 mph). These values are documented in the field data sheets. The chart data is scanned and included in Attachment D.

Precipitation Requirements

Per the SVLRC's ACO, the initial monitoring event was carefully scheduled so that it could be conducted in compliance with the precipitation requirements (no measurable precipitation within

24 hours). Re-monitoring events are required to adhere to strict timelines. Any conflicts with precipitation requirements are discussed in the results section of this document.

EQUIPMENT CALIBRATION

The portable analyzers were calibrated to meet the instrument specifications requirements of U.S. EPA Method 21. The calibration gas used was methane, diluted to a nominal concentration of 25 ppmv in air for integrated sample analyses and 500 ppmv in air for instantaneous monitoring to comply with the requirements.

All analyzers were calibrated prior to use with required response time and precision related instrument checks. Calibration records include the following: One time response time test record; One time response factor determination for methane; Calibration Precision test records (test to be performed every 3 months); and Daily Instrument Calibration and Background test records for each gas meter that was used during the quarterly monitoring event. The calibration log records are included in Attachment E.

All monitoring was completed in accordance with the applicable regulatory requirements or approved alternatives. If you have any questions regarding this report, please do not hesitate to contact the undersigned at (510) 714-6098.

Thank you,

Waste Management

Colley Pomethis

Collin Pavelchik

Environmental Protection Air Quality Specialist

Attachment A – Instantaneous Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- Surface Monitoring Weather Data
- SEM Map

Attachment B – Integrated Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- Surface Monitoring Weather Data
- SEM Map

Attachment C – Component Leak Monitoring Event Records

• Component Leak Exceedances and Monitoring Logs

Attachment D – Weather Station Data

• Strip Chart Data and Legend

Attachment E - Calibration Records

• Instrument and Gas Calibration Records

Attachment A

Instantaneous Surface Emission Monitoring Event Records

SIMI VALLEY LANDFILL INSTANTANEOUS LANDFILL SURFACE MONITORING

Personnel: G. LoPcz	<u> </u>
Ticarsov En De Lira	Cal. Gas Exp. Date: 5/25
Date: 6/5/23 Instrument Used: <u>Tuspectra</u> Gri	d Spacing: 25'
Temperature: 77° Precip: 1 Upwind BG:	Downwind BG:

		<u> </u>			14.224			
GRID ID	STAFF	START	STOP	тос	WIND INFORMATION			REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
08	GL	0850	0856	3.60	4	7	4	
109	(1L	0854	0914	28.40	le .	g	É	
110	GL	0926	0941	60.50	_ 6	10	7	
111	GL	0942	0959	116.00	5	9	7	
85	GL.	1007	1021	7.80	6	9	7	
86	(1L	1041	1052	11,40	Ь	10	1	Very hation
87 88	GL	1056	1106	3,10	9	12	7,	Vegetator
88	GL	1107	1122	3,40	4	1	4	0
89	616	1124	1134	4,40	3	5	(D	vegetation
107	TL	0848	5090	6,80	4	1	6	High wegetitum
106	TC	6905	0917	19:00	5	8	8	High vegetation
105	TC	0919	0934	121.30	9	10	7	,
104	TC	0935	6950	84.20	5	(7	
92	TC	0951	1001	8,50	5	9	1	Block Piles
91	TC	1003	1015	12.00	7	1D	6	
84 83	TC	1038	1053	7.90	10	10	7	
83	TC	1058	1110	91.80	6	12	7	High Vegetation
82 81	TZ	1112	1122	75,10	4	7	4	J
	TL	1124	1139	185.90	3	5	10	
73	ED	0805	0821	63.80	3	U	10	Rock Stockfile
72	EP	0875	0842	11.50	4	6	7_	DIRT StockPile
71	ED	0850	0905	23.80	4	7	(
70	ED	0907	0923	4645	10	9	(DIRT STOCKPILE
69	6D	0930	6950	252,70	5	9	1	
68	ED	0953	1015	10,699	7	10	Ь	
74	ED	1042	1103	7.00	ط	12	1	
75	ED	1108	1125	100.30	4	1	(
32	ED	113.1	1148	27.30	4	6	10	
33	$\mathcal{E}_{\mathbb{D}}$	1151	1207	4.10	5	lo	10	REBAR
	<u></u>							

Attach Calibration Sheet
Attach site map showing grid ID

Page ______ of ____

SIMI VALLEY LANDFILL INSTANTANEOUS LANDFILL SURFACE MONITORING

Personnel: (1/LOPEZ A/LOPUZ	
E. Dr. LORG	Cal. Gas Exp. Date: 5/25
Date: (0/6/73 Instrument Used: 105perfiles	Grid Spacing: 25'
Temperature: 75° Precip: 7 Upwind BG:	Downwind BG:

GRID ID	STAFF	START	STOP	тос	WIND INFORMATION			REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
27	(7L	0753	0808	613.20	4	ما	b	Veretation
26	GL	0812	0827	(18,90	5	7	ما	Vegetation
25	GL	0829	0844	352,00	5	7	6	Veychnen
24	GL	0852	0902	263,60	5	10	6	Vegethation
23	GL	0908	0923	225,40	5	10	4	LOO'SE DIRT
22	GL	0926	0941	257.10	6	10	6	gravel
2-1	GL	0945	1000	80.70	6	7	5.	
20	GL	1001	1015	38.60	6	9	5	
19	GL	1016	030	14.40	7	10	5	
18	(14	1031	1035	14.10	5	9	6	STEEP Slofe / Luis TAPI
114	GL	1177	1138	212.70	6	8		Actue Road
113	GL	1143	1153	1,110	5	7	6	Rock STOCKPILE
17	ED	0752	0812	50,60	5	Q	ما	,
16	ED	0815	0840	128,70	5	7	6	
15	ED	0645	0900	86.40	5	10	6	
14	ED	0905	0922	55,10	5	10	10	
13	ED	0925	0940	90.00	10	10		
12	ED	0942	0958	67.70	0	1	5	
11	ED	1605	1016	45.30		9	5	
10	ED	1018	1038	109,90	5	9	6	
9	ED	1040	055	52,70		10	6	
8	ED	055	1110	44.20	4	<u>6</u>	4	
112	ED	1135	1200	303.20	1	10	7	
7	TC	0758	0808	16.00	4	6	<u></u>	Fence.
6	TC	0810	0821	6.70	5	7	V	Fence
5	TL	0822	0836	3,50	5	1	ما	Fence
4	TL	0840	0853	3110	0	10	ا	Fence
3 2	TC	0855	0909	3,00	7	_ N	6	Fance
Z	TC	0911	0923	42.60	5	10	6	
1	TC	0925	0932	21.10	5		4	

Attach Calibration Sheet Attach site map showing grid ID

SIMI VALLEY LANDFILL

		INSTA	ANIANE	OUS LA	INDFIL	L SUR	FACE I	OTINOM	RING	
Pe	rsonnel: _	(7. Los	Loria		A. Lop	007_				
	-	To Cas	Sou					Cal. Gas	Exp. Date: 5/25	
Date: 6/6/23 Instrument Used: Tospicles Grid Spacing: 25'										
	Temperat	ure:	S Pred	cip: <u>&</u>	<u> —</u> Upv	ind BG:	_	Downw	vind BG:	
	GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	IATION	REMARKS	
		INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	Kerman	
	54	TC	0931	0943	14.70	6	10	6		
	53	TC	0945	1001	6.80	10	7	5		
	52	TZ	1002	1008	37.90	5	(6	STEEP STOPE	
	45	12	1041		76.20	9	10	Ú	Veretation	
	62	TC	1160	1109	41.00	- 아	6	7		
	61	TC	1109	1117	30.60	5	10	5		
	46	TC	1124	1136	18.90	ما	•	ما ا		
	5.5	AL	080	0816	5,589	5	7	10		
	56	AL	0819		682.40	5	7	1/		
	57	AL	0835	0850	87.70	b	10	6		
	58	AL	0854		95.20	5	10	6	Very Horn	
	49	AL	0910	0925	82.80	5	10	6	N. 2	

0927 0942 153.00

1108

1119

1137

0958 107,60

1053 36.60

54,50

40.60

11.70

10

10

1

10

6

10

9

5

6

7

5

6

Attach Calibration Sheet Attach site map showing grid ID

50

5

48

59

60

47

AL

AL

AL

AL

AL

AL

0943

1038

1058

1109

1127

Page 2 of 2

Vegetation

Henry to suffrest

Verktytion

Verythation

Personnel: G. Lapez	
E. De Lira	Cal. Gas Exp. Date: 5/25
Date: 6-7-23 Instrument Used: INSPECTRA	Grid Spacing: 24/
Temperature: 78° Precip: Tunwind BG:	Downwind BG

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	MATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
115	66	0740	0751	88.70	4	5	14	Venetation
80	(7L	0805	0810	268,70	3	6	10	Vegetation Vegetation
76	GL	0822	0831	273.50		2	10	
31	GL.	0841	0856	6.00	3	5	lo	
30	GL	0859	0909	9180	4	6	10	VegetA4611
77	GL	0911	0921	8,40	4	6	10	Haul Road
78	GL	0927	0932	3,00	4	_6	10	Haul Recard
29	(7L	0934	0939	2,60	5	7	10	Havi Road
28	GL	0940	0954	11.10	4	7	10	
79	(16	0958	1005	19,50	니	7	lo	
164	(1L	043	1058	256.50	5	7	10	
163	GL	1100	1110	183.80	4	7	10	Haul Road
162	GL	1111	1116	8140	4	1	10	TRASH Mounts
160	GL	1118	1123	35,20	5	7	10	TRASH Mouncls
34	AL	0751	0806	9110	4	6	12	,740 T
35	171	0808	0823	15,40	3	5	16	
36	AL	0877	0842	47.50	3	5	9	
36 37	AL	0843	0853	3,50	3	5	10	Very & DIRT StockAL
1381	AL	0855	0905	3,10	4	b	10	Henry Carpment
39	AL	0907	0917	3,30	4	ь	lo	Heavy GAL PMAY
40	AL	0918	0928	4.30	4	6	10	DIRT Pile
41	AL	0929	0934	38.60	5	7	0	DIRT Pile
42	AL	0941	0949	12.40	5	7	10	Vegetation
43	AL	0953	1003	16.40	4	1	10	Veydation
44	AL	1663	1013	29,90	4	6	10	Veyethtion
165	AL	1048	1103	45.70	3	اما	10	
166	AL	1105	1115	816.40	4	1	10	mulch Pite
177	AL	1116	1131	193 30	-5	7	9	
178	AL	1131	1146	523,40	5	7	10	
145	ED	0735	0755	21900	4	5	14	Steep Slope /TRAFF

Attach Calibration Sheet
Attach site map showing grid ID

Page ____ of ___Z

Personnel: 4. Lofez A. Lofez	TI CORSON	
E. De LIRA		Cal. Gas Exp. Date: 5/25
Date: 6-7-73 Instrument Us	ed: INSpectron Gr	id Spacing:25/
Temperature: 75° Precip:	O Upwind BG:	Downwind BG:

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	IATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
144	_6D	0800	0825	800.60	3	5	_10	Heavy Eguilment
143	ED	6830	0900	300,10	4	b	10	Heavy EquiPMENT
142	ED	0905	0930	84.80	4	6	10	
141	ED	0932	0947	385.00	5	7	10	
140	6D	0950	1013	3,415	나	6	10	Howy Equipment
152	ED	1020	1035	277,90	4	7	1	Henry Egyspiken4
151	ED	1035	105.5	126:10	5	7	_lo	Henry Gers Preset
150	6D	1055	Ino	115,50	니	1	10	
149	6D	1116	1120	108.70	5		10	Henry Equipment
192	ED	1135	1146	153.20	5	7	lo.	Liner
191	ED	1148	1159	167.50	5	10	10	Linea
103	TC	0743	6755	39.60	4	5	14	
102	70	0756	0828	78.30	3	5	10	
101	TC	6830	0845	24.90	3	5	lin	
100	TC	6847	0857	25.80	3	5	10	Veryetation
99	た	0858	0911	12,00	4	<u> </u>	10	
98	TC	0912	0926	45,00	사	6	ĺυ	
97	TC	0930	0942	5,10	5	7	10	
96	TC	0946	0958	10.90	4	1	10	
95	TC	0959	1013	14.20	4	اما أ	10	
94	TL	1015	1022	13.50	4	7	10	veyenstion
93	TC	1027	1036	76,50	5	1	10	
194	TC	1134	1141	126,80	5	7	10	Linea
193	17	1143	1153	76.50	5_	10	10	Liner
				_				
ß								
\ttach Cali			_·					

Attach Calibration Sheet
Attach site map showing grid ID

Page 2 of 2

Pe	ersonnel: _ - -	t. Car.	sau Lika					Cal. Gas	Exp. Date: _5/25
	_				I: TNS	Pectra	Gri		251
	Temperat	ure:	70 Pred	cip: 0	Uрм	vind BG:		Downw	vind BG:
	GRID ID	STAFF	START	STOP	тос	WIN	ND INFORM	MATION	REMARKS
		INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT]
	184	44	0737	0757	401.00	2	3	2	
	183	GL	0754	0808	551.50	1	2	2	
	182	61		0825	394,90		3	12	
	90	(71	0850	0900	252,80	2.	4	12	mound Pile
	63	GL	0908	0925	92,40	2_	4	16	
	148	GL	0928	0932	208,70	4	1	12	Vegetation
		TC	0737	0744	434.70	3	3	2.	٧
	147	TC	0745	0759	566,80	2	3	2	
	146	TC	0863	0810	220.30	- (2	2	
	157	TC.	0811	0818	43.60	2	2	12	Active
	121	TC	0850	0900	104,90	2	4	12	Active
	188	ED	0807	0817	56.70	2	2	12	TARP
	190	ED	0732	0742	243.70	3	3	2	TARP
		=							
			11						
								_	
								I	
	,								
							1		

Attach Calibration Sheet Attach site map showing grid ID

Page _ / _ of _]

rsonnel: _	MIDRUE						-		
							Cal. Gas	Exp. Dat	e:
Date: <u>6</u>	-8-23	Instrur	nent Used	l:		Gri	d Spacing:		
Temperat	ure;	Pred	cip:	Up	wind BG:		Downw	ind BG:	
GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	NOITAN	RI	EMARKS
111	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT		
116								Active	Heavy Com
123						<u></u>			-
125							<u> </u>		
126									1
127									Ч
128									
129									
130									
132									-
133									
134									+
135									
136						_			
138									-
139								<u> </u>	
156									
155									
154									
153									
159				<u> </u>					
168								<u> </u>	
202									
203							 		
189							<u> </u>		
187									
186	bration Sh					7			

Attach site map showing grid ID

Page of 2

,							Cal. Gas	Exp. Date	
)ate: _6	-8-23	Instrun	nent Used	l:		Gri	d Spacing:		
emperat	ture:	Pred	ip:	Up	wind BG;		Downv	vind BG: _	
GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	MATION	REN	MARKS
10.0	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT		
185								Active H	courten An
118									-
119									
120									
161		-							
167									
169					T. T.		· · · ·		
170									
171									
172									
173				!					i i
174									
175									
176					_				
195									······································
196									
197								¥7	
198									
200									_
201									
141						· · · · · ·			V
181								Heavy Go	2 vi Pount
179								,	
									Ψ
							<u> </u>		
									·

Attach Calibration Sheet
Attach site map showing grid ID

Page 2_ of 2

Pe	rsonnel:	D. Ande	NGA IRSCU)				_	Cal. Gas	Exp. Date: 5/25
	_			ment Used	1: Inspa	etra	Gri		25fT
	Temperat	ture: <u> </u>	Pre	cip: <u>- </u>	Upw	ind BG:		Downv	vind BG:
	GRID ID	STAFF	START	STOP	TOC	WIN	ID INFORM	MATION	REMARKS
		INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
	195	6D	0925	0935	524.5	4	5	12	TARP
	196	6D	0935	0945	587.9	5	7	12-	TARP
	197	6D	0950	1000	179.7	니	7	12	TARP
		EDK	1000	1010	101.6	5	7	12	TARP
	199	ED	1070	1025	105.7	3	5	13	TIARP/TRASH PIP
	200	ED	1025		67.6	3	4	G	TARP GRASH BIR
	20	ED	1040	1055	68.6	4	6	12	TARP FIRMSH PILE
	185		1115	1125	3.8	5	Q	12.	
	186	ED	1175	1135	1.8	5	7	12	STEEP STOPES
	167	DA	0958	1013	220,3	5	7	12	THRP
	161	DA	1021	1036	9.0	3	4	Ç	
	159	DA	1040	1055	11.2	4	ما	12.	
	179	DA	1102	1117	83,4	5	7	12	
	180	DA	1119	1134	68,5	5	1	12	
	181	.Dn	1135	1150	84.8	6	10	12	
-	169	AL.	0947	1002	8.4	4	7	12	
	170	AL	1002	2017	8.6	5	7	12	
	171	AL	1018	1033	65.0	3	4	8	
	172	AL	1634	1049	104.7	2	5	6	¥.
	173	AL	1050	1105	150.7	4	6	12	
	174	AL	1106	1116	154.8	5	7	12	WASTE
	187	ED	1135	1145	2.1	(10	12	TARP
								= E q	
4									

Attach Calibration Sheet
Attach site map showing grid ID

Page 1 of /

2010 QUE 2023

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW0057	2	49					
SIMW0809	3	3.2					
SIMW0019	4	2.9					
SIMW0001	6	2.4					
SIMW0002	6	7.3					-
SIMW0808	7	3.1					
SIMW0020	8	3-71					
SIMW1808	8	2.4					
SIMW0004	9	24					
SIMW0006	10	3.3					<u> </u>
SIMH021S	11	3,3					
SIMW1015	13	3036.9					
SIMW709D	14	2,881,3	· ·				
SIMW709S	14	7.9					
SIMH0017	16	2.7			-		
SIMH018S	16	4.5					
SIM1363B	17	2,7					
SIMW0708	17	2.4					
SIMW2006	18	2.2					
SIMH022S	19	2.6					
SIMW2007	20	2,3					
SIMW2008	20	2.2					<u> </u>
SIMSVE02	21	34					
SIMLR00B	21	2,8	4				
SIMW0905	24	2.4					
SIMW0904	25	2.5					
SIMH022N	27	102.4					
SIMW0903	27	89.1					
SIMW0901	29	2,6					
SIMW0902	30	1.9					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW116R	31	1.268.9					
SIMW1565	31	7.8					
SIMW2084	31	2.7					
SIM1570D	32	174.6					
SIM1570S	32	121.8					
SIMW122S	32	2.2				···	
SIMW2045	33	1,625.5					
SIMW703D	33	2.5					
SIMW703S	33	2.5					
SIMW1785	35	160.3					ъ.
SIMW2083	35	2.7	-				
SIMW1233	36	2,6					
SIMW1790	36	13.6					
SIMW1571	37	814.2					
SIM1792D	38	9.2					
SIM1792S	38	7.9					
SIMW1232	39	2.9	-				
SIMW707D	39	281.4					
SIMW1791	40	63,5					
SIM2042D	41	36.1					
SIM2042S	41	34.5					
SIMW805D	41	4.2					
SIMW2235	41	2.7					
SIMW1231	42	14.8					
SIMW2041	43	35.8					
SIMW09RD	44	60.9					
SIMW1012	44	4.8					
SIMW1228	44	92.4					
SIMW09RS	44	91.7					
SIMW010R	45	5.9					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW007R	46	9.5		7			
SIMW1227	47	7.7					
SIMW1234	47	3,8					
SIM1572D	48	6					
SIM1572S	48	5.2					
SIMW810D	51	2.6					
SIMW810S	51	2.7					
SIMW0018	52	2.2			1		
SIMW0812	52	253.6					
SIMW0811	53	3					
SIMLR00D	55	6.3					
SIMLR001	55	51.3					
SIMW0003	57	2.4					
SIMW0813	57	21.4					_
SIMW2009	57	612.6					
SIMW1014	58	3.7					
SIMW1107	59	2.6					
SIM1405B	60	16,2					
SIM1406B	60	3,9		ļ			
SIMW1806	60	2,134.6					
SIMW2228	61	5,7					
SIMW2229	62	2.9					
SIMW2230	62	4.9					
SIMW1011	63	341.2					
SIM1673S	64	578.2					
SIM1793D	64	Actus Equifmant					
SIM1793S	64	Actual Garipment					
SIMW012R	64	7,122.0					
SIM1406A	65	457.8					
SIM2044D	65	2,851.6					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIM2044S	65	1,1048		,			
SIMW1229	65	44.323.2					
SIM1788D	66	1,321.8					
SIM1788S	66	3,135.1	_		. •		
SIM1362A	67	5,151.8	1				-
SIM1404A	67	2.6		4			
SIMW1008	67	7.8					
SIMW1787	67	3.4					
SIM1789D	68	106.8					
SIM1789S	68	258.4					
SIM2054D	68	Achie		٧			
SIM2054S	68	Actue AREA					
SIMW1005	68	Area Area					
SIMW1225	68	6.0					
SIM2043D	69	107.6					
SIM2043S	69	213.7					
SIMW1786	69	849.8					
SIM1573D	70	155.0					
SIM1573S	70	11,3		,			
SIM1783D	70	976.3		~			
SIM1783S	70	89.7					
SIM2064D	70	152.6					
SIM2064S	70	2,084.8					
SIM1805D	71	81.2					
SIM1805S	71	519					
SIMW1569	71	99.6					
SIMW2231	71	4.2					
SIM1359A	72	332.4					
SIMW1779	73	775.0					
SIMW2232	73	34.7					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIM1568D	74	1,089.9					
SIM1568S	74	4,762.9			_		
SIM2052D	74	11.4		:			
SIM2052S	74	443.1			-		
SIMW2065	74	9,426.6					
SIM1564D	75	8,4					
SIM1564S	75	11.1					
SIMW115S	76	7.1					
SIMW0202	76	1.8					
SIMW1563	78	9.2	-				
SIMW2220	80	5.9					
SIM1562D	81	24.0					
SIM1562S	81	38,4			, i		
SIMW2219	81	5.2					,
SIM2061D	82	381.7	,		5		
SIM2061S	82	881.0	r				
SIM1778D	83	1,967.9					
SIM1778S	83	5,432.9					
SIMW1802	83	3.7					
SIMW822D	83	153.1					·
SIMW822S	83	20.3	_				
SIM2003A	83	29.1					
SIMW1220	84	8.3					<u> </u>
SIMW2053	84	TRASH					
SIM1780D	85	12.1					
SIM1780S	85	9.8	•				
SIM1401A	86	3.6			,		
SIMW1104	86	33.0					
SIMW2047	86	2.8					
SIM2002A	86	3.4					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW2234	86	150.7					
SIM1403A	88	3.8					
SIM2081D	88	2.6					
SIM2081S	88	2.5					
SIMW1781	88	2.6		1.			
SIMLR0AR	88	2-6					
SIMHL005	88	1.4					
SIM1782D	89	2.9					
SIM1782S	89	2.5					
SIM1928S	89	2.4					
SIMW2056	89	2.8					
SIMW1356	90	2.8					
SIMLR00A	90	108.0					
SIM1929S	91	2.2					
SIMW1801	91	2.7					
SIMW2227	91	119.1	· · · · · ·				-
SIM1799D	92	228.4	v				
SIM1799S	92	174.8					
SIMW1222	93	5.3					
SIMW2046	93	27	-				
SIMW2049	93	31					
SIMW1798	94	6.3					
SIMW1010	95	2.6					<u> </u>
SIMW2048	95	4.7					
SIMW2233	95	3.3					
SIM1937S	96	2.7					
SIM1403B	97	3.3	·				 _
SIM1404B	97	4.3			,		
SIMW0814	98	6.3			-		
SIMLR602	99	₩ .15.3					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMLR603	99	34.6					
SIMW0816	99	4.4			-		
SIMW0817	100	2.3					
SIMW0818	101	8.1					
SIMW0819	103	1A16					
SIMW1796	103	113.1					
SIMW2222	103	3.1			/		
SIMW2055	104	12,425.3					
SIM1938S	105	11.7					
SIMW1794	105	747.6					
SIMW2223	105	20.4					
SIM2001A	106	10.0					
SIMW2224	106	4.7					
SIMW1807	107	2.4				-	
SIMW1353	108	TRASH					
SIMW1795	108	TROSH					
SIMW2225	108	2.7					
SIM2001B	109	27.5					
SIMW1803	109	3.1					
SIM1777D	110	2.7					
SIM1777S	110	2.8					
SIMW1101	110	71,719.1					
SIMW1776	110	910.1			٠		
SIMW2226	110	5.6					
SIMHL002	110						
SIMHL003	110	Silo ALTURE TRASH					
SIMW2057	111	39.7					
SIMW2221	112	25.4					
SIMHL001	112	3.1					
SIMW0048	113	463					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW2062	113	7,0871				,	
SIMW2218	113	17.8					
SIMW1816	114	2,259,1					
SIMW2058	114	123.0					
SIMW1561	115	5,386.2		>			
SIMW2060	116	85,222.7					
SIMW2001	117	1,047.2					<u>-</u>
SIMW2217	117	Disconnected					
SIMW2216	118	ACHUE 1 TRASH					
SIMW2099	119	ACHU! TIZASH	-				
SIMW2059	120	28.6					
SIMW2215	121	Actual MREA					
SIMW2098	122	ALLUY ARLA					
SIMLR31A	123	Active Area					
SIMW2076	126	Actur Arta					
SIMW2096	127	ARHA 1ARHA					
SIMW2097	127	Actual HREA					
SIMW2077	128	Active VAREJA	-				
SIMW2095	129	Motive IAREA					
SIMW2074	130	Actue Area					
SIMW2078	131	ACTIVE MREA					
SIMW2073	132	Active Area					
SIMW2094	132	Actual					
SIMW2079	133	Active Varea			<u></u>		
SIM2102S	133	Actus Area					
SIMW2093	134	Actus Area					
SIMW2080	135	14PLH					
SIMW2213	135	195,9					
SIMW2002	136	93,747.5					
SIMW2212	136	9,723.5					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW2088	137	Actub ARtu					
SIMW2004	138	29.2			:	1	
SIMW2214	138	2,599.0					
SIMW1809	139	Actua AREA				,	
SIMW1815	139	40.3					
SIMW1814	141	90.4					
SIMW2005	141	28.4					
SIMW1817	142	23.7					
SIMW1811	143	AYXEA					
SIMW1813	143	24.6	-				
SIMW2082	143	8,5					
SIMW1812	144	AU46 AR4A					
SIMW2070	144	1,137.7					
SIMSVE03	144	2.3					
SIM2004A	145	ACHIE IAREA					
SIM1936S	145	Actur					
SIM2199A	145	Actual IAREA					
SIM2115F	146	2.5	· · · · · · · · · · · · · · · · · · ·				
SIM2106A	146	211					
SIM2105A	146	1.7					
SIMW2211	148	Achie Area	*				
SIMW2089	149						
SIMW2210	150					2-2	
SIMW1810	151						
SIMW1819	151		_				
SIMW1818	153						
SIMW2090	153						
SIMW2091	155				-		
SIMW2092	156						
SIM2115E	157						

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIM2107A	157	PSF4 PSF4					
SIM2108A	157	2.3					
SIM2123A	157	Active ARGA					
SIM2115D	158						
SIM2109A	158						
SIM2110A	158					**	
SIM2125A	158						
SIM2115C	159						
SIM2111A	159		4		-		
SIM2112A	159						
SIM2126A	159						
SIM2127A	159						
SIM2115B	161	-					
SIM2128A	161						
SIM2115A	168				*		
SIM2113A	168						
SIM2114A	168					-	
SIM2129A	168						
SIMLR22A	168						
SIMLR22B	168						
SIMLR23A	168						
SIM2100S	185						
SIMLR22C	185	√					
SIMLR23B	186	518					
SIM2116A	188	Actum ARH					
SIM2117A	191						
SIM2330A	191						
SIM2331A	191						
SIM2118A	193						
SIM2232A	193	V					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIM2119A	197	ACTUB ARCA					
SIM2233A	197	1					
SIM2120A	199						
SIM2334A	199	V			·		
	* 1						
M. 100 37							

Quarter: 24 2023
Initial Monitoring Performed By: Mulkuul Orland

Follow-up Monitoring Performed By: Michael Olling ACHRING WORKE

Landfill Name: Simi Valley LandKII

E	Initial	Initial Monitoring Event	int .	Correct	Corrective Action within 5 Days	1# 10-1	1* 10-Day Follow-Up	-Up	2m0 10	2 MO 1 G-Day Follow-Up	-Up	
Grid b	F # 0	Monitoring Date	Field Reading	Repair Date	Action taken to repair Exceedance	Monitoring Date	No Exceed. <500 ppm	Exceed. >500 ppm	Monitoring Date	No Exceed. <500 ppm	Exceed. >500 ppm	Comments
89	Z	82-5-9	2'46901			62-51-9	52					4r, d 68 / Surtain
2	2/	_	63491				2					(
89	2		7248				53					/89
69	44		1567.9	TORKET .			389					Sim 17750
83	22		81966				200			1		1
87	2		188				493					51/105 10/15
73	2	7	775				136					PLLI WINIS
5%	do L	6-6-23	1,525.4				4				2	SIMMIZES
99	20		2.1212.				14					9
83	210		\$ 2024				47.3					58211115
9	Z		3/38/1					10,000	6-22-23	302		V
59	214		91/582				3					SIM ZOGUD
17	7.0		72.57				ور 8	li liv	ŀ			SIMM18/16
113	414		-5 (52 %)						8	٠		SHAMPZOUS
وکا	シジ		1321.8					3,000	6-22-53	177		51417880
X	116	***	5.6801				C			2		018951118
69	ils		2.4/8				63					125 MWIS
63	ムム	1000	-21872				155					SIM16735
5	612		1555-5				1					Grib 55/ Surface
X	220		411312			X	٥					Grid 55 / Sutace
25	12%		3572,7		9		7					Grid 55/ Surface
2	なな		1302, 4				8					Gail 55/ Sutine
13	765		5'0111				370					Gril 113/ Surface
56	424		6'289				13					arias6/ Sutace
Sç	425		682,3				3					Gril 56/ 5 m/have
χ	426		63251				0)					Grid 55/5. 12. 12. 12
22	インノ	>	613.2			>	145					Grid 27/5 Surface

Quarter: 212 2023

Initial Monitoring Performed By: Michael GRee

Follow-up Monitoring Performed By: Michael Old ANSAND Lapis L

Landfill Name: Simi Valle Landkill

	Comments	Grid 27/ Surface	Grid 140/ Swime	1/551	400 / 186 / Surface 5111 W-2060 5101 W-221 2 Goil 136 Sunface	6-1 1431 Surface 4-1-1-1831 Surface 51M 12/806	Similailbic
-Up	Exceed. >500						
240 (0 Day Follow-Up	No Exceed. <500 ppm				hoh		10)
240 10	Monitoring Date				6-21-0		6.3033
-Up	Exceed. >500				30,00		(45)
14 10-Day Follow-Up	No Exceed. <500 ppm	1175	252	25/2/2	134	489 489	
14 10	Monitoring Date	6-16-23					\$2-22-9
Corrective Action within 5 Days	Action taken to repair Exceedance						
Corrective	Repair Date						
Į,	Field Reading	5,795	3415.1 2980.3 2456.5	200.6	\$ 5.52.8 5.52.9 5.52.78	55/52 55/52 2134.6	1508
Initial Monitoring Event	Monitoring Date	(2-9-9	2		3		6-8-2)
Initial M	F189	52 h	25.25	2222		35.2	7.47
	Grid	30	372	32733	25000	द्धय	3(

Quarter: Zind 2023
Initial Monitoring Performed By: Michael Offix
Follow-up Monitoring Performed By: Michael Offix

Simi Valley

Landfill Name:

	Correct	Corrective Action within 5 Days	1# 10	1 st 10-Day Follow-Up	-Up	1# 30	1" 30-Day Follow-Up	-Up	
Field Reading	Repair Date	Action taken to repair Exceedance	Monitoring Date	No Exceed. <500 ppm	Exceed. >500	Monitoring Date	No Exceed. <500 ppm	Exceed.	Comments
9'155			6-18-23	7117		7.3.23	77		Grid 27/ Su. L.
				5		_	-		1500
1.51/		9		55			120		(52, d 140/ Sertine
2900.3				498			202		1441
Ŋ				69			8		140/
16,4				hL	III		7		1661
800.6			- 2	33			77		1001
9				37			761		1/5/11
_				318			230	4	14412
7				126			129		10011
3				136			100		12/
62557					20,000		495		SIMMYTORU
h				489			404		となれないと
2528				313		*	295		God 136/Suntare
				85			2.10		Golf 1471 Surles
h				489			475		28
و		٥	>	791			310		SIM W/806
+									And the slow team device and another many devices.
			6-22-23		(45)	D	432		11012 - WEY
+									Military Commence of the Comme
 									9 phone é
									The second secon

7911-MS modob? 52-+-+

Quarter: 2023
Initial Monitoring Performed By: Muleul Olive
Follow-up Monitoring Performed By: Mulaul Olive
Landfill Name: Simi Valley Landfill Name:

			\									
١	Initial	Initial Monitoring Event	nt	Correct	Corrective Action within 5 Days	14 10-1	tet 10-Day Follow-Up	Uр	1" 30-	1# 30-Day Follow-Up	-Up	
Grid	Flag #	Monitoring Date	Field	Repair Date	Action taken to repair Exceedance	Monitoring Date	No Exceed. <500	Exceed.	Monttoring Date	No Exceed. <500	Exceed. >500	Comments
29	11	K-5-21	10,494.7			12-12-23	23		7.3.73	4.5		Cr. 168 / Cant.
CA	٧,		5357			-	5			4		1
200	2		7740				53			00		(grid 68/ 5/2/21/21/2
62	72		1967.9			N T	389			254		Sim (7)80
20	2		976.3				200			250		CIN 17 SW
78	7.	-	138				493			507.		SIM 2061 S
73	2	7	775				136			مال		SIMW 1779
7	7.5	64-23	1'82544			_	5			9		5121 MWS
200	200		5151.7	1			5			B		SUN 1362A
2	2/0		\$ 2725				47.3			100		SVN 17785
9	Z		10212			277		10000		480		SIM 17885
59	212		191582				3			1		SIM 2044 D
114	アころ		722.59. //				90 90			280		SIMM1816
13	212		1,625,8				3			2		SHORAWIS
65	کیک		1321.8	4				3,000		432		SIM 1788D
2	2/2		5.6801				G			7		C18951W15
209	27		2.4/8				10			6		125 PMWIS
59	418		-578.2				15.5			207		SIM16735
2	212		75845		8.		1			23		Crie 55/ Sutice
4	220		61817				9			0		Gold 55 / Surface
25	125		3577.7				7			<u>7</u>		Grid 55/ Surface
25	22		/302. 4				99			12		Grid 55/ Sutrac
113	753		4,0111				370			152		Grid 113/ Surpesa
56	424		6289				13			Ψ <u>-</u>		Ur & S6/ Surface
2,6	22		(87, 3				5			17		Gril 56/ 5 workered
کم	426		6359				0			2		62455/52-12ve
27	427	>	613.2			>	145		*	25		Grid 27/5 Surface

363

Yellow Flag (over 500 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Site SIMI VALLIEN

				ent - 10 Days	No Excd Excd	237
200 1000 2023	140 / 10Dian	4 m 1000	200	Second Re-Monitoring Event - 10 Days	Date Nonitored <	9-3-23 4
2000	ACIDIO	7		Second Re	Remedial	
					Excd.	
				ent - 10 Day	No Excd.	1453
1 200 x	SPIZ C	00		First Re-Monitoring Event - 10 Days	Date Monitored	हिस्स
25 BI	ALBINETO LODIZE	720 1000	Sec	First Re-A	Remedial	
23					Date Monitored	6-8-13
Corn 20	Althe CRUE	PROM	000	3 Event	Field Reading (ppm)	1708
225	MAN			Initial Monitoring Event	Location	745 6w-116R
Year:	an	int:	Calibration Standard:	Initia	Flag	<u> </u>
Quarter / Year:	Technician	Instrument:	Calibrati		Grid Number	31

Yellow Flag (over 500 ppm) Landfill Surface Emissions Monitoring 30 Day Exceedances and Monitoring Log

Site:

	でいる	(Sta 2)	723	202	200 an 2023	526					
Technician:	A	this con	S S S S S S S S S S S S S S S S S S S	ACA	0/ 01/	5 mg					
Instrument:		TASPECTION	d		7 1000	0					
Calibration Standard:		Sao			500			T.			
	Initial Monitoring Event	g Event		30 Da	30 Day Re-Monitoring Event	ring Event		First Re-	First Re-Monitoring Event - 10 Days	vent - 10 Da	IVS
Grid Flag Number Number	Location	Field Reading (pom)	Date Monitored	Remedial	Date Monitored	No Excd.	Excd. >500 ppm	Remedial Work	Date	No Excd. <500 ppm	Excd. >500 ppm
31 745	745 6W116R	1268	6-8-23		9-9-23	220					
						П					
										R	
	;										

Quarter: 2nd Clam tree 2023

Initial Monitoring Performed By: M. (DILLE

Follow-up Monitoring Performed By: MILLE ORUG

Landfill Name: Simi Valley Land 6:11

	Commants	Surface Surface Surface Surface Surface Surface Surface Surface Surface Surface
L		Service Services Serv
4.Up	Exceed.	
1 st 30-Day Follow-Up	Exceed.	
1# 30	Monitoring	7-20-23
-Up	Exceed.	
1* 10-Day Follow-Up	No Exceed. <500 opm	190 77 75 77 75 75 75 75 75 75 75 75 75 75
1* 10	Monitoring Date	63013
Corrective Action within 5 Days	Action taken to repair Exceedance	
Согтес	Repair Date	
nt	Field Reading	1089.1 10
Initial Monitoring Event	Monitoring Date	\$7-02-9 \$7-07-9
Initial R	Flag #	55550000000000000000000000000000000000
	Grid	173 0018 00 180 180 180 180 180 180 180 180 180 180

Initial Monitoring Performed By: 14,000 Quarter: 26 87/2 2023

Follow-up Monitoring Performed By:

Γ		
	Comments	Surfra C
e e	Exceed.	
2MD 10 Day Follow-Up	No Exceed. <500 PPm	38.3
2mp 10	Monitoring Date	7-13-23
dη-	Exceed.	2007 847
14 10-Day Follow-Up	No Exceed. <500 ppm	134 110 140 140 350
44 10	Monitoring Date	\$2-2-4
Corrective Action within 5 Days	Action taken to repair Exceedance	
Correc	Repair Date	
Ę	Field Reading	25/1/2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Inftial Monitoring Event	Monitoring Date	2-9-9
	Flag #	22222
	Grid	22.725.22

Quarter: 2nd Org 2023

Initial Monitoring Performed By: M. CRUB

Follow-up Monitoring Performed By: M. 02US

Landfill Name: Sym UANGY

	Comments			and the second s																	
	Exceed.						10 m														
1* 30-Day Follow-Up	Exceed.	5	200	12.	Arres	38	74	89													
1* 30.	Monitoring Date	7-10-12		>		7-10-73								335							
ďρ	Exceed. >500	602						847													
1# 10-Day Follow-Up	No Exceed. <500 Ppm		134	0[Actual	140	350														1
1# 10	Monitoring Date	7-7-23		~				⋛					_								
Corrective Action within 5 Days	Action taken to repair Exceedance																				
Сопес	Repair Date								İ												
ıt.	Field Reading	587.5	5-14.5	241.7	1,165.7	1,139.5	823,4	756		40											
Initial Monitoring Event	Monitoring Date	6-26-23						Ž													
Initial M	Fiag #	አላሪ	746	747	2 7 2	사		781				-									
	Grid	9	96	95	67	197	787	28	-								-				

362

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

ite: Signi Valley Comple,

	Guarler / rear.	200.00	7572		200	DTR 2023	22		Page Z of S. Pages
Technician:	in:	Michael	O RUK		Michael	0	,		
Instrument:	ıt:		ş		2	۱ ۲			
Calibration	u	4							and the second s
Standard:		500,	Sooppon			SOOPPM			
	í I	Initial Monitoring Event	ınt		Re-M	Re-Monitoring Event - 10 Days	nt - 10 Days		Comments
Grid	Flag		Field	Date	Remedial	Date	Field	Field	
Number	Number	Location	Reading (ppm)	Monitored	Work	Monitored	Reading <200 ppm	Reading >200 ppm	ì
55	129	Sustains	785.3	6-6-23		6-15-23	M		
9,5	724	Charters	1'12	-			2		
X	N25	Surfac	1.7/2			111	b		
17	826	Shopper	2,075				32		
2	1327	> ajms	5.8%			>	M		
24	1328		263, 6						
73	823	Surface	6.652		1	(0-15-23	10		
77	R30	Sufue	1.252						
55	1331	Surtere	242,1			6-15-23	30		
25	632	_	737.4		1				
113	1333		27,922			6-15-23	वित		
25	458		2'22			1	170		
£2	135	Siatar	4.522						
25	836	Galace	217.7			6-15-23	97		
2,5	B37	Sutare	5'5/2				56		
114	N38	Sutule	1/2				h		
27	1339	Surter	705,1				2.3		
99/	040	Surface	767,2	6-7-25			ی		
7.5/	148	Surge	494.6	_			188		
145	1345	Surface	434.7					7,100	
144	13 43	Suran	434.3	¥			154	-	
(3)	27.174		4 2 4				117		

A Perhark Pushed BARK Due to Active Heavy Equipment

362

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Simi Valley Lund Kill

	247	1012		CnC	\$207			200
		ORUE		Michae	OPUS			
	8	<u>ا</u>		477	TV# 1000			
	Sooppu	٤			Soofpm			
E	Initial Monitoring Event	ent		Re-Mc	Re-Monitoring Event - 10 Days	nt - 10 Days		Comments
Flag		Field	Date	Remedial	Date	Fleid	Field	
Number	Location	Reading (ppm)	Monitored	Work	Monitored	Reading <200 ppm	Reading >200 ppm	
181	54/4.C	25.7.7	87-5-9		6-15-23	18		
70	27205 MIS	443,1				18		
133	ı	381.7	J			124		
84	12 12 15 OF A	8724	6-6-23			h		
135	5/213594	332,4			P.	(a)		
BG	SIMMIOID	182				h2		
87	Surface	220,7				4		
138	SIMM ZOOY	7612				82		
139	Surface	4857				8)		
Bio	3744-5	465,6				4		
118	Sultric	47.8				106		
1372		5'84			>	120		
1313	24-75	25€						
12/12	Surtace	347,4			(b-15-23	67		
818	Shotale	1,525				0/		
13/6	Surface	3136					dso	
137	>12/15	303.3				જ		
13/8	Surfere	3032				35		
618	Shafelle	302,5				M		
Bio	Shotal to	296.3				5		
128	Surtair	52.52				7		
227		2907			>	0		

* Recheck Pushed BACK DUE TO ACHIVE HEAVY Equiphyent

362

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

ite: Simi Kaller Land Kill

Quarter / Year:	2 1 1 2	62 02		220	_	ú		Page 7 of 5 Pages
Technician:	Michaelo	opus		2	michael ofer			
Instrument:	In snru	restra		AT.	TVA 1000			
Calibration Standard:	725	Mado2S			my oos			
	Initial Monitoring Event	ent		Re-M	Re-Monitoring Event - 10 Days	nt - 10 Days		Comments
Grid Flag		Field	Date	Remedial	Oate	Field	Field	
Number Number	Location	Reading	Monitored	Work	Monitored	Reading <200 ppm	Reading >200 ppm	
178 1845	Surfue	7.304	12-2-9		6-15-23	109		
R		38	_			172		
143 R 47		300.1				12		
139 12 45		5'862				15		
		2979				20		
' R		1752				150		
158 1851		2775				136		
75 1 25		5'8/2				130		
859 08		2,872				39		
43 1 841		263,6				189		
178 1855		20.7				72		
3581, 1861		≥6/. S				180		
164 1357		256,5				196		
166 1858		1251,5				123		
144 psq		236,5				193		
173 R 60		31.4				190		
140 15 61		27.7				145		
141 13 62		220				105		
144 13 63		9.9/2	/			45		
140 B 64		9'4/2				167		
178 1365	>	5'812				73		
78 5	_	7232	_		>	77.		

362

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

10: Sim, 1/01/2× (4/1/0/1/)

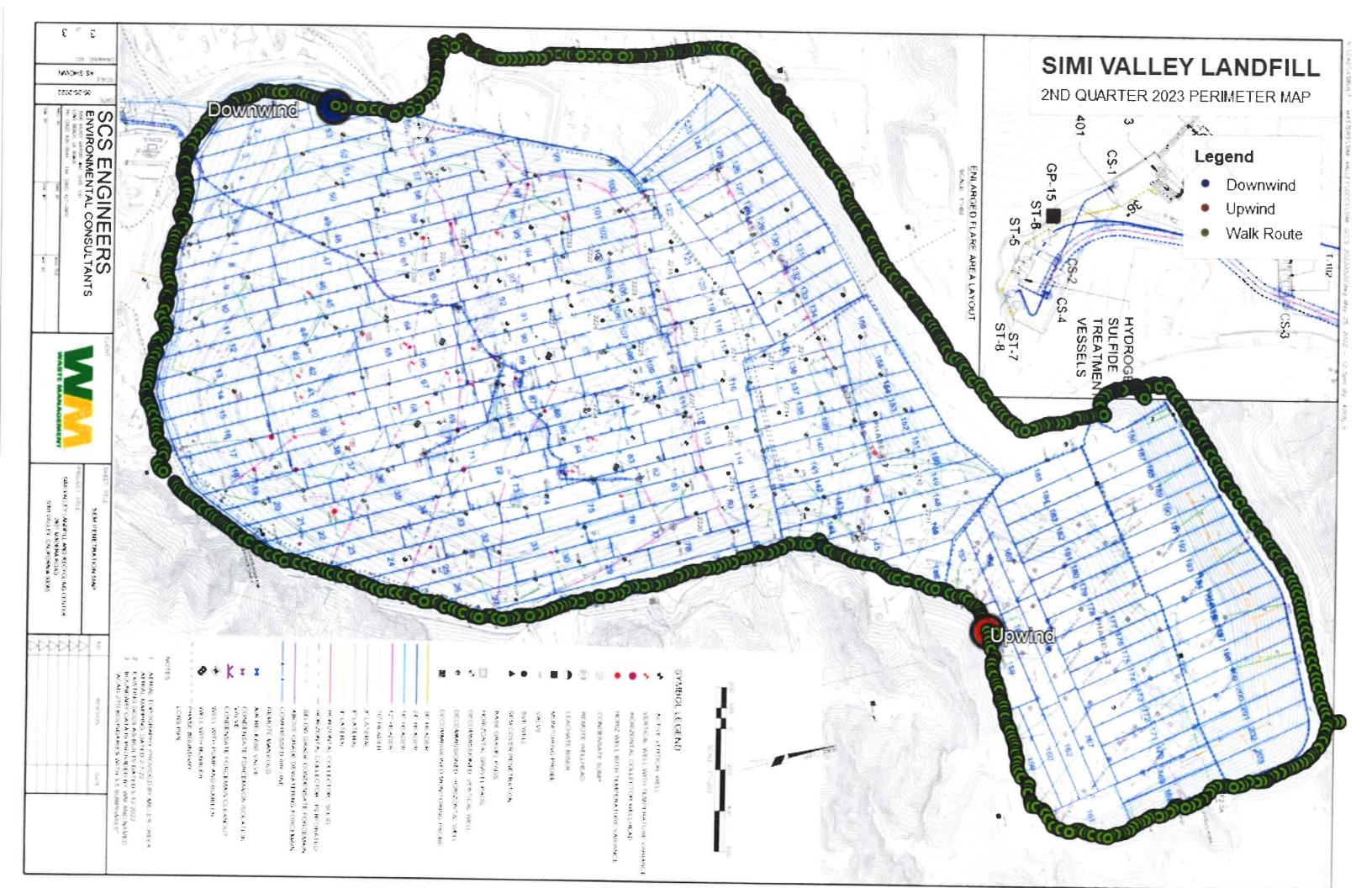
		1 747	くしつし		るなど	Y 97 07			caffe I to to affer
Technician:	ın:	Mulmill	3.0%		mich	michael OP	K		
Instrument:	nt:	Tusace	(6/2)		ţ	+V#1000			
Calibration Standard:	<u> </u>	905	Scypu		52	Scoppm			
		Initial Monitoring Event	ent		Re-Mc	Re-Monitoring Event	nt - 10 Days		Comments
Grid	Flag		Field	Date	Remedial	Date	Field	Field	
Number	Number	Location	Reading (nom)	Monitored	Work	Monitored	Reading <200 ppm	Reading >200 ppm	
136	867	Surface	330.2	82-4-9		(215-23	15%	inde one	
136	898		13/81				12		
136	6781	7	200,7	1			173		
183	6.70	Surface	439,7	\$2-8-4			961		
851	128	_	7.55.4	Z.			134		
148	1872		4/6.5				3		
184	1873		401				77		
183	BZG		2,898				781		
182	875		394.9				941		
197	1376		392.5				721		
148	1977		366.8				123		
481	1856		321,9				97.1		
148	1879	#5.	293				8		
183	1680		6/62				102		
197	1381		274.3				95	1	
8//	1282		256,7				08/		
20	0.83		252,8				0)		
150	284		243,7				681		
150	882		243.6			/	194		
86/	18 86		237.6				98		
851	82		231.6				140		
182	200		1, 7	\			0 !		

362

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Site: Sim Valle 1 600 8 11


Page Sof SPages					Comments																			
						Field	Reading	mdd onzk	2,000											1	1			
2023	بلا		ļ:		nt - 10 Days	Field	Reading	mdd nozs	200	19.2	1-3	194	25	38	26	122								
GTR	uil oa	11/14/1960	2	Scottm	Re-Monitoring Event - 10 Days	Oate	Monitored	11000	(2-61-0)	_					-	7								
SNG	MICh	4/17		\$)	Re-Mo	Remedial	Work																	
						Date	Monitored	1.00	0-67	+						>				I				
€202	ORK	}		my.		Field	Reading	2 24 2	7 10 1	7 20 6	7007	209	7.06.7	7.08.4	502	1202								
24 d	a	Inspretor		Soopper	Initial Monitoring Event		Location		Jux/41.6					1		2								
rear:	ë	i.	E	5	ŀ	Flag	Number	5% V	200	200	492	202	464	395	368	897								
Quarter / Year:	lechnician:	Instrument:	Calibration	Standard:		Grid	Number	15	06/	147	(83	147	29	181	06)	861								


362

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

te: Sim, balle

Page tof Pages				Comments																		
					Field Reading									g								
				it 10 Days	Field Reading <200 ppm	50	36	Active	139	116						S						
	11			Re-Monitoring Event 10 Days	Date Monitored	7-7-23				*								1				
				Re-Mc	Remedial			1				ī										
23					Date Monitored	82-92-9			`	3												
N 2023		3	ž	ent	Field Reading (opm)	<i>5</i> '525	448.7	5'072	61165	43.5							II					
74 DAS	名この名言	Inspectra	Sooken	Initial Monitoring Event	Location	Surtale			,	9	E				57							
/ear:	1:	:		ici	Flag Number	868	550	2014	18/01	13/02										e)		
Quarter / Year:	Technician:	Instrument:	Calibration Standard:		Grid Number	951	951	167	182	148												

Attachment B

Integrated Surface Emission Monitoring Event Records

SIMI VALLEY LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

Personnel: 6, WPCZ	
F. CURSON EDE LIRA	Cal. Gas Exp. Date: 5/25
Date: 6-8-23 Instrument Used: 105pcctra	
Temperature: 77° Precip: O Upwind BG:	

GRID	STAFF	START	STOP	тос	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KLMAKKS
11	GL	1010	1035	3,53	5	10	10	
12	GL	1037	1702	3,98	5	10	11	
13	GL	1104	1129	6.4	5	9	lo	
14	GL	1130	1155	511	4	9	10	
6	TC	0935	0944	2.24	3	6	10	Vegetation
7	TC	0949	0955	2,71	3	6	10	
8	TC	0957	1005	2,77	나	ا ما		
	TC	1012	1024	2,76	4	ما	1	
10	TC	1026	1038	3,66	4	Ÿ	11	
46	TL	1102	1118	513	4	7	11	
	ED	0902	0922	2.02	4	1	12	
2	ED	0924	0950	2,13	= 4	<i>ها</i>	10	
3	60	0953	1025	1.24	丩	6	1/	
4	ED	1030	1055	1.48	4	9	i i	
5	ED	1116	1142	2.50	5	10	10	
						_		
		_						
							-	
ш-=						T T		

Attach Calibration Sheet Attach site map showing grid ID

Page ______ of _______

Personnel: A. Lopez 6. De 4ra	D. Andersow	
Ti Carsen		Cal. Gas Exp. Date: 5/25
Date: 6-19-23 Instrument	Used: Inspectra	Grid Spacing: Z5fT
Temperature: 78° Precip:	(7) Upwind BG:	Downwind BG:

GRID	STAFF	START	STOP	TOC		WIN	D INFOR	RMATION	REMARKS
ID	INITIALS	TIME	TIME	PPM		AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REPIARES
32	AL	0734	0749	5,00		ما	19	Le	Vegetation/Hewysqsip
33	AL	0752	0807	2,99		4	7	ما	Henry Ferni Pment
<i>3</i> 3	AL	0808	0823	3,04		6	9	7	Heavil Company
22	AL	0826	0846	4.22		5	C	7	51668 51 DE / Here 16-1-14
23	AL	6847	0907	4.26		5	7	7	STEEPSTORE/Hearry EyelP
24	AL	0909	0929	3.99	300	6	6	6	Hears Egulment
98	AL	1014	1034	9,79		5	8	6	
99	141_	1041	1056	3,98		5	6	9	DIRT STOCKALE
100	AL	1058	1113	3,87		5	6	6	DIBT STOCKFILE
97	AL	1114	1139	4,33		5	9	(
L _		411							
			~						
		2							
2									
~	19							-	
			1.						
	*								
75	TC	0742	0807	19.05	栏	4	7	Le	
76	TC	0807	0832	5,76		5	(7	
31	TO.	0832	0847	2,25			8	7	Highvegetaton
30	TC	0852	0917	3.35		5	7	G	
77	TL	0917	0437	4.03		ما	1	6	
78	TC	6937	1002	13.17		7	10	8	
15	化	1021	1046	3,41		5	9	8	
16	TC	1046	1111	2,92		5	6	6	
17	72	1)17	1136	2,27			9	-	
54	DA	0750	0815	3,10		5	7	6	
53	DA	0815	0840	2,74	20	5	6	<u> </u>	
	h Calibrati						<u> </u>		<u> </u>

Attach Calibration Sheet

Attach site map showing grid ID

Page _____ of _____

Personnel: A. Lopez Di Andersui)		
T. (arsu)	Cal. Gas Exp. Date: 5/25	<u>-</u>
Date: 6-19-23 Instrument Used: INSPECTION Gri	id Spacing: 75ft	-
Temperature: 76° Precip: Upwind BG:	Downwind BG:	

GRID	STAFF	START	STOP	тос	1.	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM		AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KLMAKKS
52	DA	0840	0905	2,86		5	4	7	
51	DA	0905	0930	3.45		Ь	6	6	
50	DA	0930	0955	3,99		- b	9	7	
49	DA	0955	1020	3,36		5	9	6	
18	DA	1049	1114	2,02			6		
19	DA	1115	1140	2.47		5	9	8	
- N									
			1.51					_	
I									
		_							
_									
		-				322			

Attach Calibration Sheet
Attach site map showing grid ID

Page 2 of 2

Personnel: MioRue Ailopez J. Medina	
T. Lanson	Cal. Gas Exp. Date: 5/25
Date: 6-20-23 Instrument Used: INSPECTIA Gri	d Spacing: 25 FT
Temperature: 76° Precip: O Upwind BG:	Downwind BG:

GRID	STAFF	START	STOP	TOC		WIN	D INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM		AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
15	MO	0802	0827	5,39		나	6	1	
16	M6	0829	0854	2,94		5	7	(
17	mo	0856	0921	2,09		4	6	4	
179	MO	1102	1127	24.11	X III	4	9	7	
180	Mo	1129	1150	14,62		3	7	1	DIRT Stack Pile
181	MO	1151	1213	1258		4	7	8	DIRT STOCK BIK
55	JM	0754	0819	5,77		4	6	10	
56	JM	0875	0846	2,76		3	6	(
57	JM	0850	0915	3,04		4	6	4	0
58	Jm	0920	0945	3100		3	5	6	- 1
59	JM	09.56	1610	4.56		5	1	6	
60	JM	1015	1040	4.49		5	7	9	
191	JM	1107	1127	15,35		4	6	7	
190	Jm	1123	1138	15,46		5	7	9	Liner
189	Jm	1140	1155	12.51		3	7	6	Linen
188	JM	1156	1210	4.84		4	7	(C	Livner
48	TC	0749	0811	9,63		5	7	5	
47	'TC	0812	0837	3.97		4	٥	7	
46	TC	0837	0902	6,60		3	5	7	
45	TC	0902	0927	2,93		4	5	10	
44	TC	0927	0947	6.09		3	5	(
43	TC	0947	1012	4.64		5	7	1	
174	TC	1105	1120	12.86		3	7	q	Acture / Blocked
173	TC	120	1135	46.80		5	7	6	mounds
172	TC	1135	1150	15.64		3	7	(mounds
171	TC	1150	1705	14.31		4	7	8	Mounds
42	AL	6754	0819	9.38		4	10	Y	Heavy Egy Frent
41	AL	0820	0835	4,84		4	6	7	Heavy Egui Avent
40	AL	0836	0857	2,66		5	1	8	Heavy 64111 Pount
39	AL	0852	0107	2,46		3	5	1	Heavy Egui PMON

Attach Calibration Sheet

Attach site map showing grid ID

Page of Z

Personnel: Mode	A. Lopez		
J. Mediner	E. De Lira		
TICIRSON		Cal. Gas Exp	Date: 5/25
Date: 6-23 Instrument Us	ed: INSPECTACE	_ Grid Spacing:	25FT
Temperature: 76° Precip:	A Unwind BG:	Downwind	BC.

GRID	STAFF	START STOP TOC	NIW	ID INFOR	MATION	REMARKS		
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
38	AL	8910	0925	2:22	4	5	10	Heavy Equipment
37	AL	0926	0941	2,20	3	5	8	Henry EguiPmort
36	AL	0941	0956	2113	3	1	6	Heavy Ggui Piron
35	AL	0957	1014	2,32	5	7	(Herwy Eg DI Prest
198	AL	1104	1119	24.84	5	1	(Liner/mound
199	AL	1120	1135	21,27	5	1	4	Liner/mound
200	AL	1135	1145	9.75	3	7	(Lines/mound
201	AL	1145	1155	17.68	3	1	•	Linen/mound
6	ED	6750	0815	5,76	5	7	5	
7	ED	0815	0840	2,36	4	b	7	
8	ED	0845	0910	1.85	4	Ь	6	
9	6D	0910	0935	1,33	5	7	4	
10	ED	0935	1006	2,66	사	8	8	
192	ED	1100	1115	9.47	5	7	1	winer / munos
193	ED	1115	1130	14.85	4	6	7	Lineal mound
194	ED	1130	1145	10,49	 3	7	3	Linea Imaune
195	ED	1145	1200	10.78	3	7		Plastic Pipes
196	ED	1200	1215	20,34	4	7	6	THRP
197	€D	1215	1230		4	-	1	TYARP
				L= -				
				A				

Attach Calibration Sheet
Attach site map showing grid ID

Page 2 of 2

Personnel: M. oful T. (arsoc) 6. De 47a	J. Medina	Cal. Gas Exp. Date: 3/25	_
Date: 6-21-23 Instrument Use	ed: Inspection	Grid Spacing: 25fr	-
Temperature: 780 Precip: 6	Upwind BG:	Downwind RG:	

GRID	STAFF	START	STOP	тос		WIN	ND INFOR	MATION	OCHADUG
ID	INITIALS	TIME	TIME	PPM		AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
20	mo	0733	0758	4.46		2	4	2	
21	Mo	0754	0826	4.05		3	4	2	
61	MO	0843	0908	8,41		i	3	7	
62	MO	0909	0934	10.16		2	4	6	
63	mo	1041	1106	13.25		4	6	9	
94	MO	1109	1130	3,86		5	7	ln.	
28	TC	0725	0740	4,73		3	4	2	
79	TC	0740	0802	6152		2_	3	3	
78	TC	0803	0828	18,2		3	4	2	
29	TC.	6828	0853	8.31		2	2	4	
27	TC		0908	5,54			3	7	
30	TC	0910	0935	558		2	4	C	
157	17	1020	1035	17.71		5	7	7	
164	TC	1035	1055	11,79		4	7	q	
165	TC	1055	1110	3,64		4	6	9	
83	TC	m	1126	6.52		5	7	10	
104	ED	0730	0750	23.95		3	5	2	ACTUE DUMPING
163	6.0	0750	0805	9.04		2	3	3	Heavy Egus Pment
102	ED	0805	0830	5,65		3	4	2	Dist mound
101	ED	0830	0850	450		2	2	4	DIRT Mound
96	ED	0850	0915	2,92		3	4		
95	ED	0915	0940	4.11		2	4	6	
150	8D	1030	1050	10,97	E ₁₁	- 니	7	6	
149	ED	1050	1105	10.26		4	6		Huge DIRT FISSURES
148	6D	1105	1120	15,18		5	1	ام	HOLE STRI HISSURE
147	ED	1120	1140	26.29	M	5	10	10	Heavy Egus Pment
81	ÁL.	0729	0754	35,83		2	4	2	C-portinent
४०	1AL	6755		20,45		3	4	2	
77	AL	0820		13.47		2	2	4	
115	AL	0848		10,24		3	4	6	
Attach	Calibration								

Attach Calibration Sheet

Attach site map showing grid ID

Page _ 1 _ of _ Z

Personnel: M. Olub	A.Logez	
T. CURSON	J. medina	
E. Delian		Cal. Gas Exp. Date: 5/2(
Date: 6-21-23 Instrument Us		_ Grid Spacing: _ZSf7
Temperature: 780 Precip:	Upwind BG:	Downwind BG:

GRID STAFF	TAFF START STOP TOO	тос	WIN	ND INFOR	MATION	DEMARKS		
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
143	AL	0915	0940	23,62	2	4	9	
142	AL	0941	1006	16.65	4	6	7	or
158	AL	1638	1103	11.48	4	U	9	
159	42	1103	1128	7.45	5	7	10	
160	AL	1129	1149	15,62	5	10	10.	
111	2111	0773	0738	20,53	3	4	2	TRASH Pile
116	JM	0746	0757	74.84	2	4	2	Active Dumping
109	Jm	0800	0815	45,07	3	나	2	Actur Dumfing
168	Jm	0816	(383)	16.88	3	4	2	Actue Dumpines
107	Jm	0832	0847	7.05	2	2	4	Hotay Dumfmy
106	JM	0850	0900	6.55	3	4	q	Acture Dumpin
105	Jm	0905	0920	8.81	2	4	7	Actur Dumping
121	JM	0925	0940	6117	2	4	C	Actue Dumpiny
155	JM	1027	1042	2.46	5	7	4	STEE & Sleave Doman
154	JM	1044	1059	12,25	4	- 6	9	STERPSLEPES/DUMPIN
153	mc	1160	1115	15139	5	7	10	STEEP SICPUS DUMPIN
152	JM	1116	1132	19.75	5		10	STEEP STOPES DOMPIN
151	JM	1135	1150	24,14	5	10	10	

Attach Calibration Sheet

Attach site map showing grid ID

Page 2 of 2

Personnel: E. De Lira ALOREZ D. Andersau	
D. Andrew	Cal. Gas Exp. Date: 5/2
Date: 6-26-23 Instrument Used: = NSpectra	_ Grid Spacing: _ Z5ft
Temperature: 78° Precip: 0 Upwind BG: _	Downwind BG:

GRID	STAFF	START	STOP	TOC	WIN	ID INFOR	MATION	DEMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
182	ϵD	0726	0745	90.0	니	5	12	
184	ED	0750	0815	19.89	9	V	12	
185	ED	0815	0840	17.3	4	5	12	
162	AL	0724	0749	19.5	니	5	12	
167	AL	0750	0811	16.3	5	6	12	WASTE
170	AL	0815	0840	15.4	4	5	12	
169	AL	0841	0906	5.9	5	10	12.	
161	AL	0910	0935	5.7	4	5	12	Liner
197	AL	1135	1150	35.5	5	ID	12	Linea
186	DA	0725	0745	13.0	4	5	12	
187	DA	0756	0879	13.2	5	6	12.	
144	DA	0910	0940	9.5	4	5	12	
· · <u> </u>								
				_				
					_			
								Ш

Attach Calibration Sheet Attach site map showing grid ID

Page ____ of ____

Person	nel: M.c	RUE							
	7	Oper-						al. Gas Exp	. Date: 5-4-24
Date	: 6-30-2	23 1	instrumer	nt Used: [TVAlooo	<u> </u>			
				0	Upwind E	3G: 2.	7	Downwind	BG: 3,2
		1		(K	echeck r	Monito	D INFOR)	
GRID ID	STAFF INITIALS	START TIME	STOP TIME	TOC PPM	ROTO-MTR, CC/MIN	AVG	MAX.	DIRECTION	REMARKS
21	1.0	4		22.20		SPEED	SPEED	16 POINT	
81	Mo	0843	0908						
173	mo	0914	0939	21.09					
109	AL	0700	093	21,54					
110	AL	0726	0951	9,94					
147	mo	0945	1010	12.14					
							34		
		1							
						1			
			1 1 1						
			131						
	KI.								
						11			
	4								
								4 - 7	
				1111 1111					
									M
						_			
Attacl	n Calibrati	on Shoot			···				<u> </u>

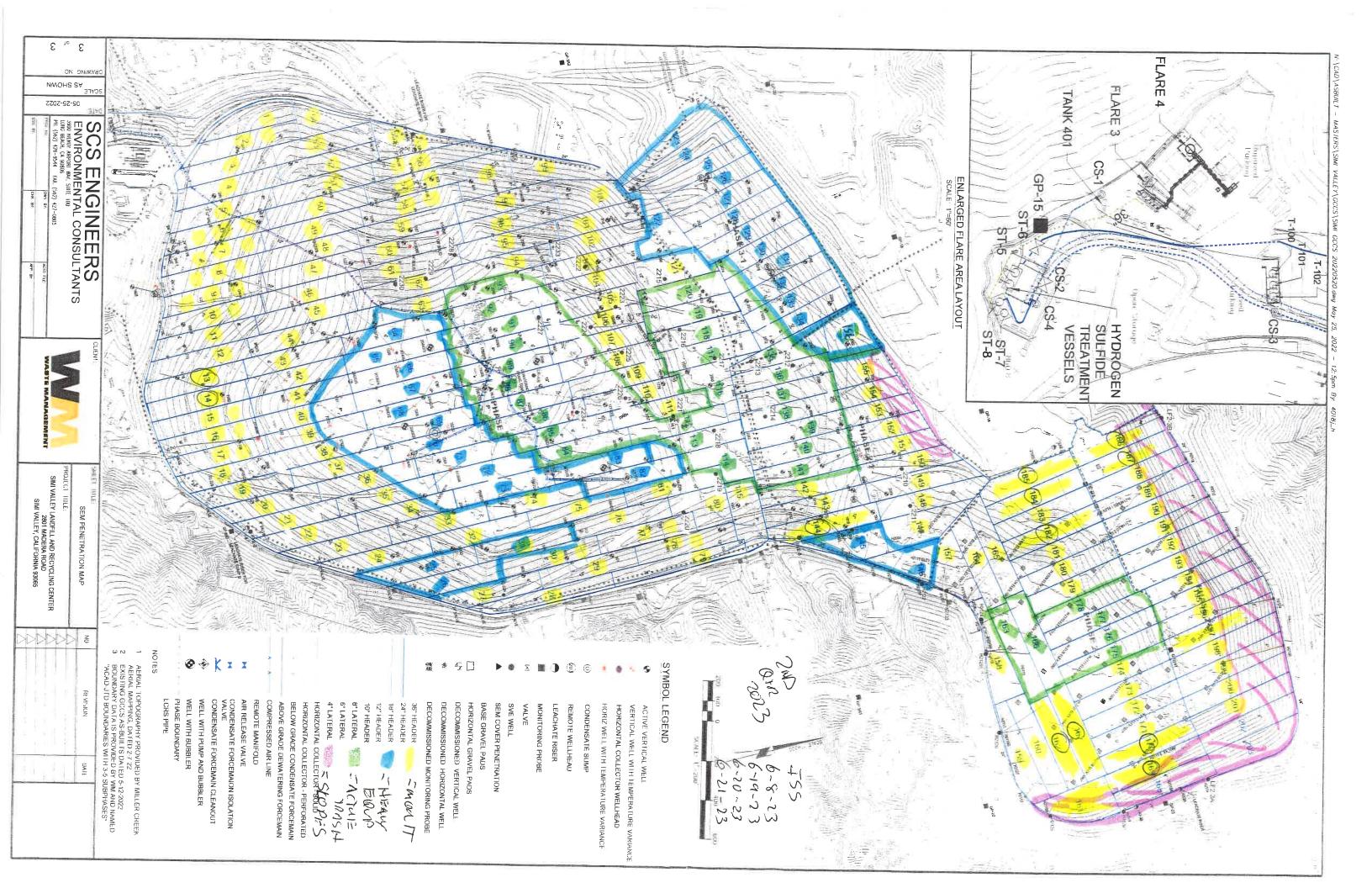
Attach Calibration Sheet
Attach site map showing grid ID

Page _ of _ 1

24.7

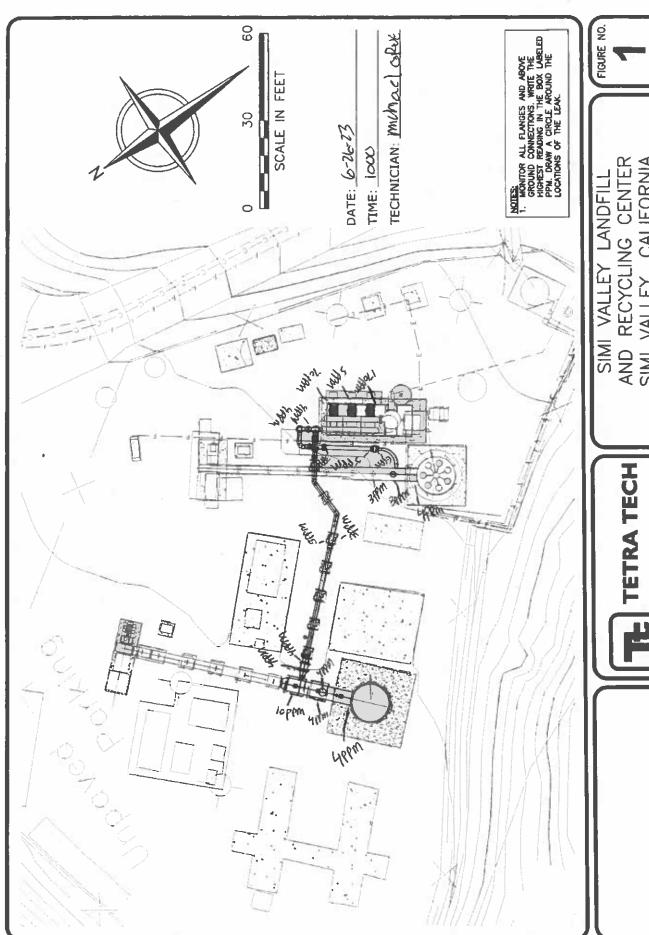
Integrated Surface Sampling 10 Day Exceedances and Monitoring Log

Site: Start Unitery


	200	2023	2nd Gra		5202					
Technician:	M. ORY	11/2	MAILE	3000						
Instrument:	IN Spec	707	CONT	TV81000						
Calibration Standard:	25 Bry	Z	26	SPM						
	Initial Monitoring Event	ıt	First Re-	First Re-Monitoring Event - 10 Days	ent - 10 Day	9	Second Re	Second Re-Monitoring Event - 10 Days	vent - 10 D	SAE
Grid Number	Field Reading (ppm)	Date	Remedial	Date	No Excd.	Excd. >25 ppm	Remedial	Date	No Excd. <25 ppm	Excd.
123	46.80	6-20-23		6-30.13	21.09					
011	14,84	6-21-23		_	21,59					
100	35.83	6-21-23			23,98					
109	45,07	6-21-23			4.94					
147	26.29	6-21-23		>	12:14		i			
						9				
										17
,										

367

Integrated Surface Sampling 10 Day Exceedances and Monitoring Log

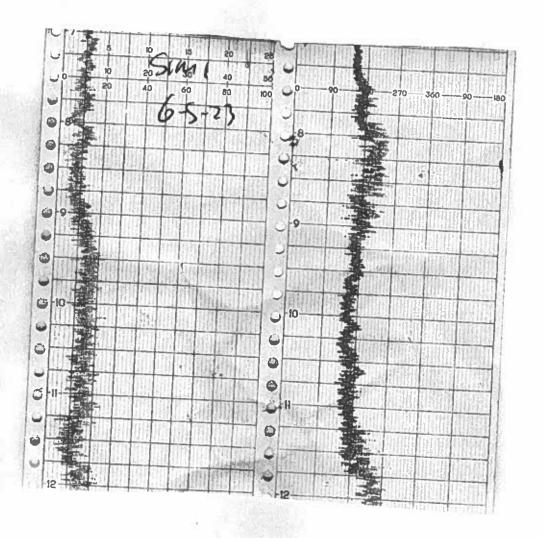

Site: SIMI VALIFUM

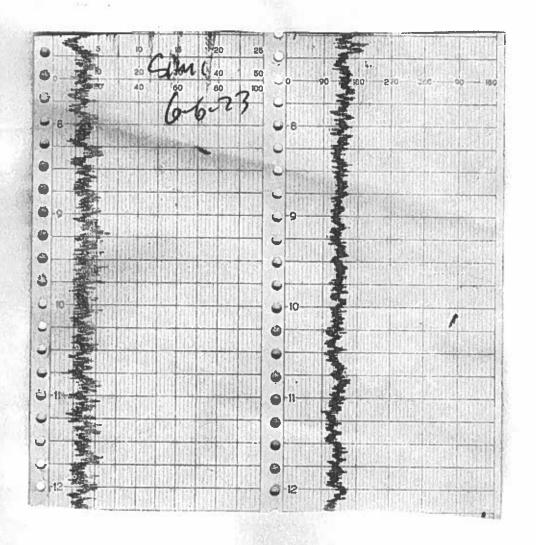
Quarter / Tear:	2WX 2023	520	245	2005 2023	+10					
Technician:	M SAVE		ALBIT	ALBIONO LOPEZ	2					
instrument:	#450F	MAX	4	CKIO'						
Calibration Standard:	25 pm	מתי		20 00						
Initial Mo	Initial Monitoring Event	ıt	First Re-	First Re-Monitoring Event - 10 Days	rent - 10 Day	2	Second Re	Second Re-Monitoring Event - 10 Days	vent - 10 D	3/5
Grid Number	Field Reading (ppm)	Date	Remedial	Date	No Excd. <25 ppm	Excd. >25 ppm	Remedial	Date	No Excd. <25 ppm	Excd.
2 63	35.58	6-26-23		7-6-23	12.1					
187	80.03	*		→	22.3					
		1								
				II						
	Ш									

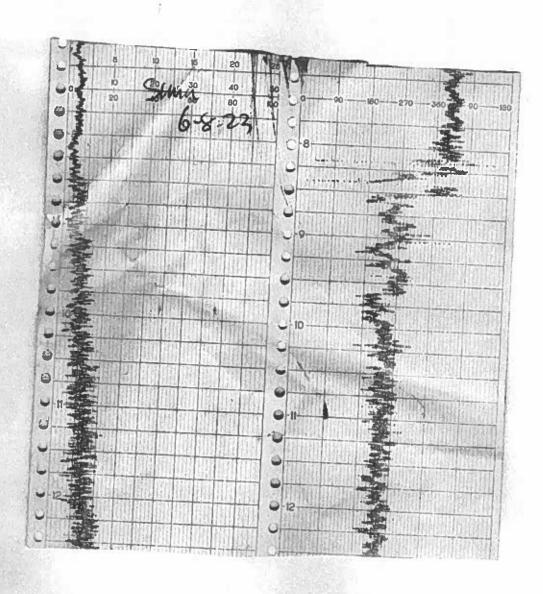
Attachment C

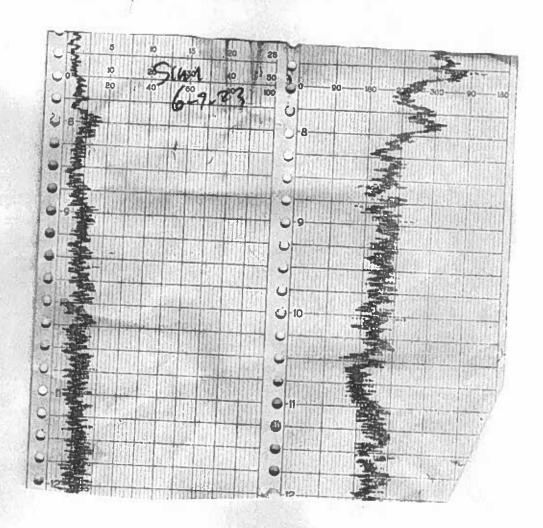
Component Leak Monitoring Event Records

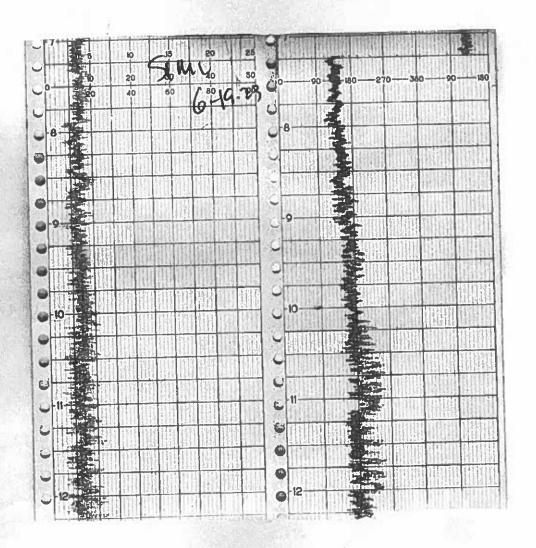
SEM RESULTS - FLARE STATION CALIFORNIA SIMI VALLEY,

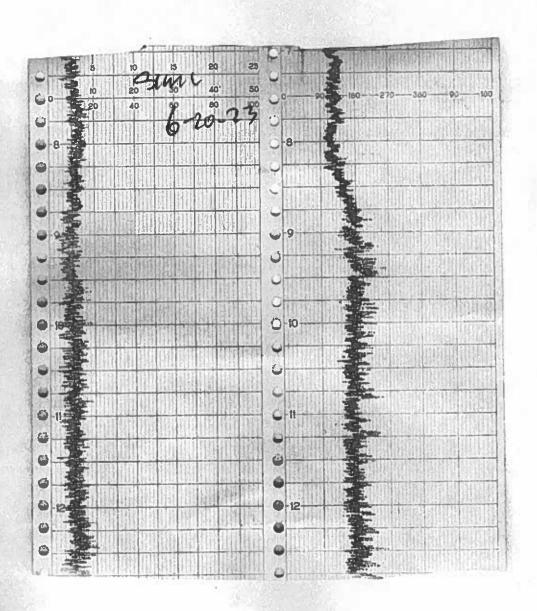

PROJECT NO. 200026

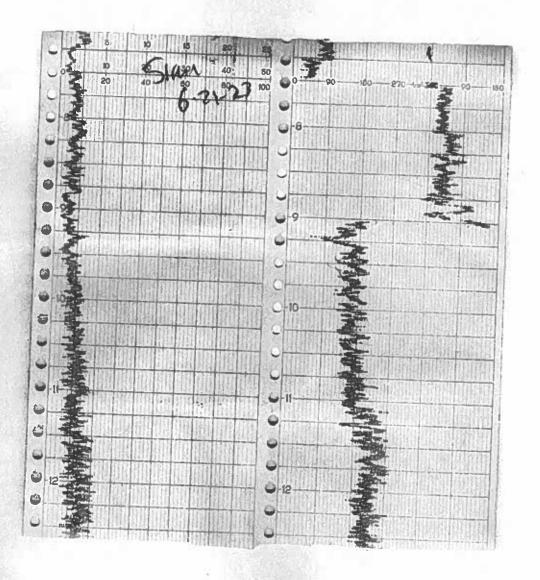

Attachment D

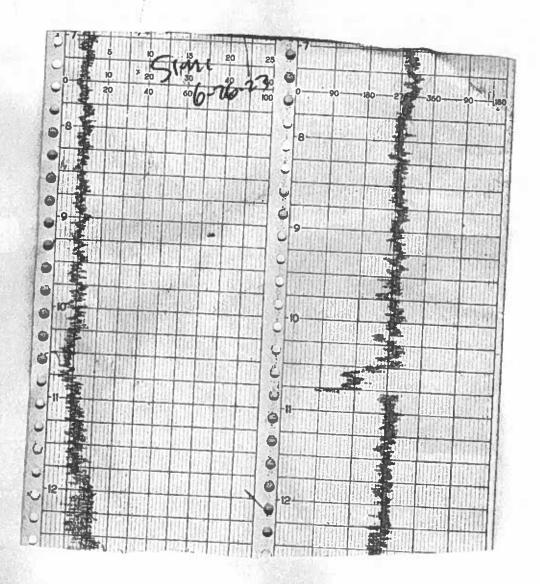

Weather Station Data




	16-POINT V	VIND DIRECTION	INDEX	
<u>NO</u>	DIRECTION		DEGREES	
		FROM	CENTER	<u>TO</u>
16	NORTH (N)	348.8	<u>369.0</u>	6.1.3
1	NORTH-NORTHEAST (NNE)	011.3	022.5	033.8
2	NORTHEAST (NE)	033.8	045.0	056.3
3	EAST-NORTHEAST (ENE)	056,3	067.5	078.8
4	EAST (E)	078.8	090.0	101.3
5	EAST-SOUTHEAST (ESE)	101.3	112.5	123.8
6	SOUTHEAST (SE)	123.8	<u>135.0</u>	146.3
7	SOUTH-SOUTHEAST (SSE)	146.3	<u>157.5</u>	168.8
8	SOUTH (S)	168.8	180.0	191.3
9	SOUTH-SOUTHWEST (SSW)	191.3	<u>202.5</u>	213.8
10	SOUTHWEST (SW)	213.8	225.0	230.5
11	WEST-SOUTHWEST (WSW)	236.3	<u>247.</u> 5	258.8
12	WEST (W)	258.8	<u>270.0</u>	281.3
13	WEST-NORTHWEST (WNW)	281.3	<u>292.5</u>	303.8
14	NORTHWEST (NW)	302.8	<u>315.0</u>	326.3
15	NORTH-NORTHWEST (NNW)	326.3	337.5	348.8







Attachment E

Calibration Records

Project:

RES_SimiValley landfill

Date/Time:

6/5/2023 4:45:49 AM

Model Number: INSPECTRA

Serial Number:

761121

Latitude :

34.056352

Longitude:

-117.3072676

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Jun-05 04:47 using one span gas.

	The High T	Measu	rement #1	Measu	rement #2	Measu	rement #3	The Park	CHEST AND A	36-45-64	STEELS
GAS USED		T90	Reading	T90	Reading	T90	Reading	Average Algebraic Difference	Calibration Pracision	Calibration Precision < 10	Average Response Time
	(ppm)	(sec)	(ppm)	(380)	(ppm)	(sec)	(ppm)		(%)		(s)
ZERO	D									12.1	
Calibration Gas #1	500	6.7	476.3	6.6	477.1	6.5	476.5	23.4	4.7%	Yes	6.6

Gas Sequence ID :

D

Gas Manufacturer :

intermountain

Gas Expiration Date:

7/10/2024

Misc Ref No :

N/A

UN#:

N/A

Date/Time:

6/5/2023 4:45:49 AM

Gas Lot Number:

20-7421

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Gas Sequence ID :

1

Gas Manufacturer:

Premier Safety

Gas Expiration Date:

3/1/2025

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

6/5/2023 4:45:49 AM

Gas Lot Number :

2-055-87

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Project:

RES_SimiValley landfill

Date/Time:

6/5/2023 4:33:42 AM

Model Number: INSPECTRA

Serial Number:

1001221

Latitude :

34.0563681

Longitude:

-117.3072921

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Jun-05 04:35 using one span gas.

	do No.	Measu	rement #1	Measu	rement #2	Messu	rement #3	ENLINES	STEEL STEEL		S. Figure
GAS USED		T90	Reading	T90	Reading	T90	Reading	Average Algebraic Difference	Calibration Pracision	Calibration Precision < 10	Average Response Time
NOTE WANTED	(ppm)	(sec)	(ppm)	(sec)	(ppm)	(sec)	(ppm)		(%)		(s)
ZERO	0										
Calibration Gas #1	500	9.5	462.9	7.0	466.6	7.1	467.1	34.5	6.9%	Yes	7.9

Gas Sequençe ID :

0

Gas Manufacturer:

intermountain

Gas Expiration Date:

7/10/2024

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

6/5/2023 4:33:42 AM

Gas Lot Number:

20-7421

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Gas Sequence ID:

1

Premier Saftey

Gas Expiration Date :

Gas Manufacturer:

3/1/2025

Misc Ref No :

N/A

UN#:

N/A

Date/Time:

6/5/2023 4:33:42 AM

Gas Lot Number:

2-055-87

Bottle Pressure :

1000

Technical Name:

N/A

Cylinder ID:

Project:

RES_SimiValley landfill

Date/Time:

6/5/2023 4:50:24 AM

Model Number: INSPECTRA

Serial Number:

811121

Latitude :

34.0563721

Longitude :

-117,3072917

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Jun-05 04:51 using one span gas.

		Measu	rement #1	Measu	rement #2	Measu	rement #3	EMERICAL STATE		The Real	N. Carlot
GAS USED		T90	Reading	T90	Reading	T90	Reading	Average Algebraic Difference	Calibration Pracision	Calibration Precision < 10	Average Response Time
MANAGE MAGE	(ppm)	(sec)	(ppm)	(sec)	(ppm)	(sec)	(ppm)	MARKET STATE	(%)		(s)
ZERO	0										7
Calibration Gas #1	500	4.7	477.9	5.7	477.3	6.7	480.7	21.4	4.3%	Yes	5.7

Gas Sequence ID:

0

Gas Manufacturer:

intermountain

Gas Expiration Date:

7/10/2024

Misc Ref No:

N/A

UN#:

N/A

Date/Time :

6/5/2023 4:50:24 AM

Gas Lot Number:

20-7421

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Gas Sequence ID :

1

Gas Manufacturer :

Premier Safety

Gas Expiration Date:

3/1/2025

Misc Ref No :

N/A

UN# :

N/A

Date/Time:

6/5/2023 4:50:24 AM

Gas Lot Number:

2-055-87

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Project:

RES_SimiValley landfill

Date/Time:

6/5/2023 4:42:17 AM

Model Number: INSPECTRA

Serial Number:

881221

Latitude:

34.0563626

Longitude :

-117.3072799

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Jun-05 04:43 using one span gas,

		Measu	rement #1	Measu	rement #2	Measu	rement #3	1 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4 5 4			
GAS USED		T90	Reading	T90	Reading	T90	Reading	Average Algebraic Difference	Calibration Practation	Calibration Precision < 10	Average Response Time
	(ppm)	(sec)	(ppm)	(sec)	(ppm)	(sec)	(ppm)	(to a law s	(%)		(s)
ZERO	0						SAI -				
Calibration Gas #1	500	6.7	481.6	6.7	480.9	6.8	481.4	18.7	3.7%	Yes	6.7

Gas Sequence ID:

0

Gas Manufacturer:

intermountain

Gas Expiration Date:

7/10/2024

Misc Ref No:

N/A

UN#:

N/A

Date/Time :

6/5/2023 4:42:17 AM

Gas Lot Number:

20-7421

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Gas Sequence ID:

1

Gas Manufacturer:

Intermountain

Gas Expiration Date :

11/10/2023

Misc Ref No :

N/A

UN#:

N/A

Date/Time:

6/5/2023 4:42:17 AM

Gas Lot Number:

0-135-81

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Project:

RES_SimiValley landfill

Date/Time:

6/5/2023 4:40:33 AM

Model Number: INSPECTRA

Serial Number:

1011221

Latitude:

34,0563919

Longitude :

-117.3072669

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Jun-05 04:41 using one span gas.

		Measu	rement #1	Measu	rement #2	Measu	rement #3	Manager 1			
GAS USED		T90	Reading	T90	Reading	T90	Reading	Average Algebraic Difference	Calibration Precision	Calibration Precision < 10	Average Response Time
	(ppm)	(sec)	(ppm)	(sec)	(ppm)	(sec)	(ppm)		(%)	See See See See	(8)
ZERO	0						0)			A 65-765-55	
Calibration Gas #1	500	7.1	473.4	7.5	474.1	6.9	474.2	26.1	5.2%	Yes	7.2

Gas Sequence ID:

0

Gas Manufacturer :

intermountain

Gas Expiration Date:

7/10/2024

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

6/5/2023 4:40:33 AM

Gas Lot Number:

20-7421

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID :

N/A

Gas Sequence ID:

1

Premier Safety

Gas Expiration Date :

Gas Manufacturer :

3/1/2025

Misc Ref No:

N/A

UN#:

N/A

Date/Time :

6/5/2023 4:40:33 AM

Gas Lot Number:

2-055-87

Bottle Pressure :

1000

Technical Name:

N/A

Cylinder ID:

N/A

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME: SIMI V	Alley	IN:	STRUMEN	IT MAKE: THORMO
MODEL TVMOOD	EQUIPMENT #: _			SERIAL #: 0332603 195
MONITORING DATE: 6-15-	73		TIME;	0730

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- Introduce calibration gas into the probe. Stabilized reading = 563 ppm
 Adjust meter settings to read 500 ppm.

Background Determination Procedure

Read	ind Backgro ling: est in 30 sec		Downwind Backgr Reading: (Highest in 30 secon		Background Value: (Upwind + Downwind) 2	
	2.3	ppm	3,8	ppm	3,0 P	m

Background Value = 3.0 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	Using	90% d Readi	of the Stabilize	ed	Time to Reach 90% Stabilized Reading switching from Zei Calibration Gas	after
#1	505	ppm		450	ppm	6	
#2	503	ppm	П	450	ppm	7	
#3	503	ppm		450	ppm	7	
	Calculate Response T	ime (<u>14</u> 3	+2+3)			6.6	#DIV/0!
<u></u>						Must be less than 30	seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Zero A	ir (A)	Meter Reading Calibration Gas		Calculate Precision [STD – (8)]
#1),2	ppm	505	ppm	5
#2	0,9	ppm	503	ppm	3
#3	1,	ppm	503	ppm	3
Calculate Precision	[STD-B1] + [STD-B 3	STD-B3] X <u>1</u> X 500	100 1	0.7% #DIV/0! Must be less than 10%	

Performed By: Michael (Rue	Date/Time: 6-15-23/0730
----------------------------	-------------------------

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME: Simi Valley	INSTRUMENT MAKE: THEY MO
MODEL: 11/14 1000 EQUIPMENT #: _	39 SERIAL #: 40141737
MONITORING DATE 6-15-23	TIME:
Calibration Procedure:	
Danislation Floceagle.	
	ng air.
Allow instrument to zero itself while introducin Introduce calibration gas into the probe. Stab Adjust meter settings to read 500 ppm.	

Background Determination Procedure

Re	wind Backgro ading: ghest in 30 sec		Downwind Backgrou Reading: (Highest in 30 seconds		Background Value (Upwind + Down 2	
	2,5	ppm	3,2	ppm	2.8	ppm

Background Value = 2.8 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading U Calibration Gas	sing	90% of th Reading	e Stabiliz	ed	Time to Reach 90% Stabilized Reading switching from Zer Calibration Gas	after
#1	495	ppm	l	150	ppm	7	
#2	495	ppm		450	ppm	7	
#3	497	ppm	- 4	150	ppm	6	
	Calculate Response Tim	ie (<u>1</u> -	-2+3)			6.6	#DIV/0!
						Must be less than 30	seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Ze		Meter Reading fo Calibration Gas (Calculate Precision [STD - (B)]
#1	0.9	ppm	495	ppm	5
#2	1.2	ppm	495	ppm	~
#3	0.7	ppm	497	ppm	3
Calculate Precision	[STD-B1] + [S	TD-B2] + [S 3	TD-B3] X <u>1</u> X <u>1</u> 500	1	0.8% #DIV/0!
					Must be less than 10%

				made do loss thair 1070
Performed By:AU	Berto L	opez	Date/Time:	6-15-73/0730
A .		_		1
Darfarman Dun (M)	D 101 A 1	. Dave		/ / - 2
Periorinea By:	(DEKTO L	0866	Date/Time	(ペー) ゲーラス / ハフスハ
		7		10 13 6310100
		•		
				1.5

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATED

LANDFILL NAME Simi Valley	INSTRUMENT MAKE: _TI+ermo
MODEL: TVA1000 EQUIPMENT#	3) SERIAL # 4917163
MONITORING DATE: 6-30-23	TIME: 0900

Calibration Procedure:

1. Allow instrument to zero itself while introducing air.

2. Introduce calibration gas into the probe. Stabilized reading = 25-9 ppm

3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
2.7 ppm	3.2 ppm	2.9 ppm

Background Value = 2,9 ppm

INSTRUMENT RESPONSE TIME RECORD

Stabilized Reading Calibration Gas	90% of the Stabilized Reading			Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
25.5	ppm		22,5	ppm	4
25.5	ppm		245	ppm	5
25.4	ppm		72.5	ppm	5-
Calculate Response Ti	me (<u>1</u> -	+2+3)			4/6 #DIV/0! Must be less than 30 seconds
	25.5 25.5 25.5	25.5 ppm 25.5 ppm 25.4 ppm	Calibration Gas Readir 25.5 ppm 25.5 ppm 25.4 ppm	Calibration Gas Reading 25.5 ppm Z2.5 25.5 ppm Z2.5 25.4 ppm Z2.5	Calibration Gas Reading 25.5 ppm ZZ.5 ppm 25.5 ppm ZZ.5 ppm Z5.4 ppm Z2.5 ppm

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement #	Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)]		
#1	1.3	ppm	25,5	ppm	0,5
#2	1.1	ppm	25.5	ppm	0,5
#3	1,7	ppm	25,4	ppm	0.4
Calculate Precisio	on [STD-B1]+[STD-B2] + [\$	STD-83] X 1 X 10 25	<u>DO</u>	1.8 #DIV/01
					Must be less than 10%

Performed By: 11BeR-10	Lopez	Date/Time:	6-36-23	10900
------------------------	-------	------------	---------	-------

CALIBRATION PROCEDURE AND BACKGROUND	REPORT - INTEGRATED
--------------------------------------	---------------------

LANDFILL NAME Simi VAlley		INSTRUME	NT MAKE:TH	rmo
MODEL: TVA 1000 EQUIPMENT #:	2		SERIAL #	7784545
MONITORING DATE: 6-30-23		TIME:	0900	

Calibration Procedure:

1. Allow instrument to zero itself while introducing air.

2. Introduce calibration gas into the probe. Stabilized reading = 24.3 ppm

3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest In 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
2.7 ppm	3. Z ppm	2.9 ppm

Background Value = 2.9 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	Using	90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	24,3	ppm	22,5	ppm	5		
#2	24.4	ppm	22.5	ppm	4	<u>.</u>	
#3	24,3	ppm	27.5	ppm	5		
	Calculate Response T	ime (<u>1</u> -	+2+3)		4,6	#DIV/0!	
					Must be less than 30	seconds	

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Measurement#	Meter Reading for Zero	Air (A)	Meter Reading for Calibration Gas (B)		Calculate Precision [STD - (B)]
#1	0.98	ppm	24,3	ppm	0,7
#2	1,2	ppm	24,4	ppm	0.6
#3	7.1	ppm	74.3	ppm	0.7
Calculate Precisio	n [STD-B1] + [ST)-B2] + [§		100 1	2.4 % #DIV/01
					Must be less than 10%

Performed By:	lope	Date/Time.	6-30-23/0900
---------------	------	------------	--------------

LANDFILL NAME: SIMI VALFY	INSTRUMENT	MAKE: 7	HARW
MODEL: TUN 1000 EQUIPMENT #:	#1	SERIAL#:	16320842
MONITORING DATE: 7-6-23	TIME:	0800	

Calibration Procedure:

Allow instrument to zero itself while introducing air.
 Introduce calibration gas into the probe. Stabilized reading = 29.3 ppm
 Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
2,3 ppm	3,1 ppm	2,7 ppm

Background Value = 27 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readin Calibration Gas	g Using	90% of the Stabilia Reading	ed	Time to Reach 90 Stabilized Readin switching from Zo Calibration Gas	g after
#1	24.3	ppm	22,5	ppm	5	
#2	24.4	ppm	27.5	ppm	4	_
#3	24.3	ppm	22.5	ppm	5	
	Calculate Response	Time (<u>1</u> -	+2+3)		4.6	#DIV/0!
					Must be less than 3	30 seconds

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 500 ppm

Measurement #	Meter Reading for Zero Air (A)	Meter Reading for Calibration Gas (B)	Calculate Precision [STD - (B)]
#1	0:69 ppm	24.3 ppm	0.7
#2	0,72 ppm	24.4 ppm	0.6
#3	0:64 ppm	24.3 ppm	0.7
Calculate Precision	[STD-B1] + (STD-B2) + 3	(STD-B3) X 1 X 100 500 1	2,4x, #DIV/01
			Must be less than 10%

Performed By:ALBIDAO LOAISC	Date/Time:	7.6-23	0800	
	_ Dato, (11110.		000	

CUSTOMER: 1275 UWIT #1		
SERIAL NUMBER:		
TECHNICIAN: Mr. MM DATE	E: 4-2-23	

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID					
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)		
100	100	100	+/- 25		
500	500	500	+/- 125		
10000	10000	10,003	+/- 2500		
<1	ZERO GAS	0.62	< 3		
	Pi	D			
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS.(ppm)	TVA READING (ppm)	TOLERANCE (ppm)		
50	50		+/- 12.5		
100	100		+/- 25		
500	500		+/- 125		
<1	ZERO GAS		< 3		

CUSTOMER: RES UNIT #2	
SERIAL NUMBER: 7784545	
TECHNICIAN: DATE:	4-2-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID				
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)	
100	100	100	+/- 25	
500	500	501	+/- 125	
10000	10000	10,001	+/- 2500	
<1	ZERO GAS	0.61	< 3	
4	Pil	0		
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS.(ppm)	TVA READING (ppm)	TOLERANCE (ppm)	
50	50		+/- 12.5	
100	100		+/- 25	
500	500		+/- 125	
<1	ZERO GAS		< 3	

CUSTOMER: MES UN #3	
SERIAL NUMBER: 15865889	
TECHNICIAN: M DATE: _	4-2-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID				
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)	
100	100	100	+/- 25	
500	500	509	+/- 125	
10000	10000	10,011	+/- 2500	
<1	ZERO GAS	0.48	< 3	
	Pil	D		
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)	
50	50		+/- 12.5	
100	100	/	+/- 25	
500	500		+/- 125	
< 1	ZERO GAS	/	< 3	

Environmental Inc. TVA1000B CALIBRATION VERIFICATION

CUSTOMER: RES UNIT #	(
SERIAL NUMBER:		
TECHNICIAN: M. M.	DATE: _	4-2-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID				
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)	
100	100	99	+/- 25	
500	500	501	+/- 125	
10000	10000	10,003	+/- 2500	
<1	ZERO GAS	0.52	< 3	
	Pil	D		
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS.(ppm)	TVA READING (ppm)	TOLERANCE (ppm)	
50	50		+/- 12.5	
100	100		+/- 25	
500	500		+/- 125	
<1	ZERO GAS		< 3	

CUSTOMER: MES # 5		
SERIAL NUMBER: 49/9480		
TECHNICIAN: Mu Mu	DATE: _	4-2-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	(00	+/- 25
500	500	500	+/- 125
10000	10000	10,003	+/- 2500
< 1	ZERO GAS	0,69	< 3
W	Pil	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS.(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50		+/- 12.5
100	100		+/- 25
500	500	/	+/- 125
<1	ZERO GAS		< 3

CUSTOMER:	MES UN	it#6	
SERIAL NUMBER:	072072	3626	
TECHNICIAN:	M	_ DATE: _	4-2-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	Fi	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	600	+/- 125
10000	10000	(0,000	+/- 2500
<1	ZERO GAS	anx	< 3
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS.(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	/	+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS		< 3

CUSTOMER:	RES UNI	# 7	
SERIAL NUMBER	: <u>0720723627</u>		
TECHNICIAN:	Mu Mu	DATE: _	4-2-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	Fii	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10.198	+/- 2500
<1	ZERO GAS	0.64	< 3
	Pil	D	_
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50		+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS	/	< 3

CUSTOMER: RES UNIT # 9	
SERIAL NUMBER: 0532-113801	
TECHNICIAN: DATE:_	4-2-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,004	+/- 2500
<1	ZERO GAS	(2,79	< 3
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS.(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50		+/- 12.5
100	100		+/- 25
500	500		+/- 125
<1	ZERO GAS		< 3

CUSTOMER:	11 # 29
SERIAL NUMBER:	145-32-4
TECHNICIAN: Mu My	DATE: 4-2-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FII	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	(00)	+/- 25
500	500	500	+/- 125
10000	10000	10,009	+/- 2500
<1	ZERO GAS	(2,71	< 3
	Pil	D —————	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS.(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	7	+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
<1	ZERO GAS		< 3

Operator:	The My	6		
Date: 6-3-23		Time:	0(030	
Model #				
erial # #1 163 20X	32			
INSTRUMENT INTEGRIT	CHECKLIST	INSTR	UMENT CALIBR	RATION
attery test	Pass / Fail	Calibration	LIBRATION CHE Actual	%
eading following ignition	2,6 ppm	Gas (ppm)	(ppm)	Accuracy
eak test	Pass / Fail / NA	500	500	1004
ean system check heck valve chatter)	Pass / Fail / NA	Calibration Gas, p	RESPONSE TIM	E 500
supply pressure gauge cceptable range 9.5 - 12)	ass / Fail / NA	90% of Calibration Time required to a	Gas, ppm	450
ate of last factory calibration	4-2-23	1. (6) 2. (7) 3. (7)		
actory calibration record instrument within 3 months	eass/Fail	Average lo Equal to or less the Instrument calibrat		Ø N _gas.
omments;				

Site:	8			
Purpose:				
Operator:	lu M			
Date: 6-3-23		Time:	0645	- in-
Model # TVA 1000				
Serial # #2 77845	45_			
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	UMENT CALIBR	ATION
Battery test	Pass / Fail	CA Calibration Gas (ppm)	LIBRATION CHE Actual	%
Reading following ignition	_2; (ppm		(ppm)	Accuracy
Leak test	Fass / Fail / NA	Soo	500	100 X
Clean system check (check valve chatter)	Pass / Fail / NA	Calibration Gas, p		≣ S <u>øo</u>
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Pass / Fail / NA	90% of Calibration Time required to a 1.		Gas ppm
Date of last factory calibration	4-2-23	2. <u></u>	0	
Factory calibration record w/instrument within 3 months	Pass / Fail	Average <u>5</u> Equal to or less the Instrument calibrate		₩ N gas.
Comments:				

Site:	+			
Purpose:				
Operator:	The M	1		
Date: 6-3-23		Time:	0700	
Model #				
Serial # #3 1586	5854			
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	RUMENT CALIBRA	ATION
Battery test	Pass / Fail	Calibration	Actual	%
Reading following ignition	_213_ ppm	Gas (ppm)	(ppm)	Accuracy
Leak test	Pass / Fail / NA	500	500	(00
Clean system check (check valve chatter)	Pass / Fail / NA	Calibration Gas, p	,prii	500
H₂ supply pressure gauge (acceptable range 9.5 - 12)	Pass / Fail / NA		ittain 90% of Cal G	CS (C) Gas ppm
Date of last factory calibration	4-2-23	2	5	
Factory calibration record w/instrument within 3 months	Pass / Fail	Average 5 Equal to or less the Instrument calibra	an 30 seconds?	y N gas.
Comments:				

Site:	
Purpose:	
Operator:	
Date: 6-3-23	Time: 0715
Model # _ tun 1000	
Serial # # 4 /63/9830	
INSTRUMENT INTEGRITY CHECKLIST	INSTRUMENT CALIBRATION
Battery test Pass / Fail Reading following ignition 210 ppm	CALIBRATION CHECK Calibration Actual % Gas (ppm) (ppm) Accuracy
eak test Pass / Fail / NA	500 S00 100Y,
clean system check	RESPONSE TIME Calibration Gas, ppm 500
2 supply pressure gauge Pass / Fail / NA acceptable range 9.5 - 12)	90% of Calibration Gas, ppm <u>440</u> Time required to attain 90% of Cal Gas ppm 1.
rate of last factory calibration 4-2-23	2. <u> </u>
actory calibration record Fas3 / Fail //instrument within 3 months	Average 5.6 Equal to or less than 30 seconds? N Instrument calibrated to Chy gas.
Comments:	

Site:				
Purpose:				
Operator:	he My			
Date: 6-3-23		Time:	0730	
Model # 70A 1000				
Serial # #5 19194	80			
INSTRUMENT INTEGRITY	Y CHECKLIST	INSTR	UMENT CALIBRA	TION
Battery test	Pass / Fail	Calibration	LIBRATION CHEC	%
Reading following ignition		Gas (ppm)	(ppm)	Accuracy
Leak test	Pass / Fail / NA	500	500	(00%
Clean system check (check valve chatter)	Pass / Fail / NA	Calibration Gas, p	RESPONSE TIME	00
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Pass / Fail / NA	90% of Calibration Time required to a 1.	Gas, ppm	(S) as ppm
Date of last factory calibration	4-2-23	2. 6 3. 6		
Factory calibration record w/instrument within 3 months	Pass / Fail	Average	an 30 seconds?	Ø N gas.
Comments:				
				

Site:					
Purpose:					
Operator:	My 1	11			
Date: 6-3-2)		Time:	0745		
Model # + 14 1000					
Serial # # 6 07207	23676				
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	UMENT CALIBRA	ATION	
Battery test	Pass / Fail	Calibration	LIBRATION CHEC	%	_
Reading following ignition	21) ppm	Gas (ppm)	(ppm)	Accuracy	
Leak test	Pass / Fail / NA	500	500	100%	
Clean system check (check valve chatter)	Pass / Fail / NA	Calibration Gas, p		500	
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	Fass / Fail / NA	90% of Calibration Time required to a 1.	Gas, ppm	as ppm	
Date of last factory calibration	4-2-23	2. <u>2</u>			
Factory calibration record w/instrument within 3 months	Pase / Fail	Average		Ø N gas.	
Comments:					
					_
					_

Purpose:				
Operator:	flu M			
Date: 6-3-23		Timė;	0800	
Madala T. A Lorda				
Model # TUA 1000	- 5 T- 8			
Serial # #7 072072	367?			
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	RUMENT CALIBRA	TION
Battery test	Pass / Fail	Calibration	ALIBRATION CHEC Actual	%
Reading following ignition	2.0 ppm	Gas (ppm)	(ppm)	Accuracy
eak test	Per / Fail / NA	500	500	100%
	Pass / Fail / NA		RESPONSE TIME	
Clean system check check valve chatter)	ass / Fail / NA	Calibration Gas, p	on C	00
		90% of Calibration		50
12 supply pressure gauge acceptable range 9.5 - 12)	Pass / Fail / NA	Time required to a	attain 90% of Cal Ga	as ppm
Date of last factory calibration	4-2-23	2. (2. (2. (2. (2. (2. (2. (2. (2. (2. (2	
actory calibration record	Pass / Fail	Average 5	6	\sim
/instrument within 3 months		Equal to or less th		CV N
		Instrument calibra	ted to COP	gas.

Site:	·			
Purpose:				
Operator:	()As			
Date: (0-3-23		Time:	0515	
Model # TVA 1000				
Serial # #9 0532	113801			
INSTRUMENT INTEGRITY	CHECKLIST	INST	RUMENT CALIBRA	LTION
Battery test	63 15-1		ALIBRATION CHEC	
Reading following ignition	Fáss / Fail 2.6 ppm	Calibration Gas (ppm)	Actual (ppm)	% Accuracy
Leak test	Pass / Fail / NA	500	500	100%
Clean system check	Rass / Fail / NA		RESPONSE TIME	
(check valve chatter)		Calibration Gas,	PP111	100
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	ass / Fail / NA		attain 90% of Cal G	as ppm
Date of last factory calibration	4-2-23	1. 2. 3.	6	
Factory calibration record	Pass / Fail	Average	5.6	
w/instrument within 3 months			than 30 seconds? rated to <u>Cl45</u>	gas.
Comments:				

Site:	<u></u>			
Purpose:				
Operator:	hu M	1		4
Date: 6-3-23		Timė:	0830	
lodel# 1000				
ierial##29 1031449	5324			
INSTRUMENT INTEGRITY	CHECKLIST	INSTR	UMENT CALIBRA	TION
Reading following ignition eak test Clean system check check valve chatter) 2 supply pressure gauge acceptable range 9.5 - 12) ate of last factory calibration actory calibration record //instrument within 3 months	Pass / Fail / NA U-2-73	Calibration Gas (ppm) SOO Calibration Gas, possible of Calibration	Gas, ppm	% Accuracy / 00 },
omments:				

Delivered to: RES ENVIRONMENTAL - COLTON

Date of the report: 4/13/2023

Identifier of the detector

Detector name

: Inspectra Laser

Serial Number

: 1011221

Scale numbers

- 1

Next visit

: 4/13/2025

Method of Checking

Internal procedures: ATE04226

Calibration Bench n°: 41

Each scale of the checked apparatus was the subject of a measurement for zero value, and of a measurement for

the value of the concentration of the gas standard injected

Scale	Gaz	Concentration of the gas standard	Traceability of the gas (N° of production)	Specifications (awaited posted values)	Uncertainty on the concentration of the gas standard
PPM	CH4	0.0009999999% GAS	70086129308	10 PPM(± 10% relative)	± 2% relative
PPM	CH4	0.05% GAS	70086030712	500 PPM(± 10% relative)	± 2% relative
PPM	CH4	0.25% GAS	70086234202	2499 PPM(± 10% relative)	± 2% relative
PPM	CH4	1% GAS	109631206	10000 PPM(± 10% relative)	± 2% relative
PPM	CH4	2% GAS	70086800812	20000 PPM(± 10% relative)	± 2% relative
PPM	CH4	100% GAS	303114089201	1000000 PPM(± 10% relative)	± 2% relative

Result of the checking

The detector is considered to be in conformity with the specifications of reference

Technical Department

V#

This document includes 1 page.

The reproduction of this report is authorized only in the shape of integral photographic facsimile.

This document cannot be used instead of a certificate of calibration.

This document is carried out according to the recommendations of the booklet of documentation X 07-011 defining the report of checking. It can be used to show the connection of the means of measurement to the national or international standards, provided it answers the recommendations of the booklet of documentation X 07-015.

Delivered to: RES ENVIRONMENTAL - COLTON

Date of the report: 4/13/2023

Identifier of the detector

Detector name

: Inspectra Laser

Serial Number

: 761121

Scale numbers

- 4

Next visit

: 4/13/2025

Method of Checking

Internal procedures : ATE04226 Calibration Bench n° : 41

Each scale of the checked apparatus was the subject of a measurement for zero value, and of a measurement for

the value of the concentration of the gas standard injected.

Scale	Gaz	Concentration of the gas standard	Traceability of the gas (N° of production)	Specifications (awaited posted values)	Uncertainty on the concentration of the gas standard
PPM	СН4	0.0009999999% GAS	70086129308	10 PPM(± 10% relative)	± 2% relative
PPM	CH4	0.05% GAS	70086030712	500 PPM(± 10% relative)	± 2% relative
PPM	CH4	0.25% GAS	70086234202	2499 PPM(± 10% relative)	± 2% relative
PPM	CH4	1% GAS	109631206	10000 PPM(± 10% relative)	± 2% relative
PPM	CH4	2% GAS	70086800812	20000 PPM(± 10% relative)	± 2% relative
PPM	CH4	100% GAS	303114089201	1000000 PPM(± 10% relative)	± 2% relative

Result of the checking

The detector is considered to be in conformity with the specifications of reference

Technical Department

V#

This document includes 1 page.

The reproduction of this report is authorized only in the shape of integral photographic facsimile.

This document cannot be used instead of a certificate of calibration.

This document is carried out according to the recommendations of the booklet of documentation X 07-011 defining the report of checking, it can be used to show the connection of the means of measurement to the national or international standards, provided it answers the recommendations of the booklet of documentation X 07-015.

Delivered to : RES ENVIRONMENTAL - COLTON

Date of the report: 4/13/2023

Identifier of the detector

Detector name

: Inspectra Laser

Serial Number

: 881221

Scale numbers

: 1

Next visit

: 4/13/2025

Method of Checking

Internal procedures : ATE04226

Calibration Bench nº: 41

Each scale of the checked apparatus was the subject of a measurement for zero value, and of a measurement for

the value of the concentration of the gas standard injected

Scale	Gaz	Concentration of the gas standard	Traceability of the gas (N° of production)	Specifications (awaited posted values)	Uncertainty on the concentration of the gas standard
PPM	CH4	0.0009999999% GAS	70086129308	10 PPM(± 10% relative)	± 2% relative
PPM	CH4	0.05% GAS	70086030712	500 PPM(± 10% relative)	± 2% relative
PPM	CH4	0.25% GAS	70086234202	2499 PPM(± 10% relative)	± 2% relative
PPM	CH4	1% GAS	109631206	10000 PPM(± 10% relative)	± 2% relative
PPM	CH4	2% GAS	70086800812	20000 PPM(± 10% relative)	± 2% relative
PPM	CH4	100% GAS	303114089201	1000000 PPM(± 10% relative)	± 2% relative

Result of the checking

The detector is considered to be in conformity with the specifications of reference

Technical Department

V#F

This document includes 1 page.

The reproduction of this report is authorized only in the shape of integral photographic facsimile.

This document cannot be used instead of a certificate of calibration.

This document is carried out according to the recommendations of the booklet of documentation X 07-011 defining the report of checking. It can be used to show the connection of the means of measurement to the national or international standards, provided it answers the recommendations of the booklet of documentation X 07-015.

Delivered to: RES ENVIRONMENTAL - COLTON

Date of the report: 4/13/2023

Identifier of the detector

Detector name

: Inspectra Laser

Serial Number

: 811121

Scale numbers

. 1

Next visit

: 4/13/2025

Method of Checking

Internal procedures: ATE04226

Calibration Bench nº: 41

Each scale of the checked apparatus was the subject of a measurement for zero value, and of a measurement for

the value of the concentration of the gas standard injected.

Scale	Gaz	Concentration of the gas standard	Traceability of the gas (N° of production)	Specifications (awaited posted values)	Uncertainty on the concentration of the gas standard
PPM	CH4	0.0009999999% GAS	70086129308	10 PPM(± 10% relative)	± 2% relative
PPM	CH4	0.05% GAS	70086030712	500 PPM(± 10% relative)	± 2% relative
PPM	CH4	0.25% GAS	70086234202	2499 PPM(± 10% relative)	± 2% relative
PPM	CH4	1% GAS	109631206	10000 PPM(± 10% relative)	± 2% relative
PPM	CH4	2% GAS	70086800812	20000 PPM(± 10% relative)	± 2% relative
PPM	CH4	100% GAS	303114089201	1000000 PPM(± 10% relative)	± 2% relative

Result of the checking

The detector is considered to be in conformity with the specifications of reference

Technical Department

7/11

This document includes 1 page.

The reproduction of this report is authorized only in the shape of integral photographic facsimile.

This document cannot be used instead of a certificate of calibration.

This document is carried out according to the recommendations of the booklet of documentation X 07-011 defining the report of checking. It can be used to show the connection of the means of measurement to the national or international standards, provided it answers the recommendations of the booklet of documentation X 07-015.

Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com

Your calibration gas manufacturer since 1992

CERTIFICATE OF ANALYSIS

Composition Centification Analytical Accuracy (+/-)

Oxygen

20.9 %

2%

Nitrogen

Balance UHP

Lot# 20-7421

Mfg. Date:

5/20/2020

Expiration Date:

Transfill Date:

see cylinder

Parent Cylinder ID NY02268

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By:

Tony Janquart

Title:

Quality Assurance Manager

Certificate Date:

5/20/2020

Service

Concentration (Mole%) Accuracy
20.9% Oxygen
Bal Nitrogen

3 68 0 70°F and 1,000 PSIG

Lot#: 20-7421 P/N:01-100

103 L

CA 92614 CA 92614 CA 9263 or (800) 201-8150 Fax (949) 757-0363

0xV00-100

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

CERTIFICATE OF ANALYSIS

Composition

Methane

Air

Certification

25 ppm

Balance

Analytical Accuracy

± 5%

Lot#

17-6074

Mfg. Date:

10/16/2017

Parent Cylinder ID

17161

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 10/16/2017

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

CERTIFICATE OF ANALYSIS

Composition

Methanc

Air

Certification

25 ppm

Balance

Analytical Accuracy

± 5%

Lot#

17-6074

Mfg. Date:

10/16/2017

Parent Cylinder ID 17161

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

> Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 10/16/2017

insupply Service
INC.
Mole%) Accuracy concentration (Mole%)

25 ppm
Balance +/- 5% ±3.6 € 70°F and 1,000 PSIG Lot#: 17-6074 P/N:23-0025 103 L teser Avenue, Irvine, CA 92614 asj or (800) 201-8150 Fax (949) 757-0363 TC-SU6495 NRC 76/104

Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com

"Your calibration gas manufacturer since 1992"

CERTIFICATE OF ANALYSIS

Composition Analytical Accuracy (+/-) Certification Methane 500 ppm 2% 20.9 % Oxygen 2% Nitrogen Balance UHP

Lot# 20-7497

Mfg. Date: 7/10/2020

Expiration Date:

Transfill Date: see cylinder

Parent Cylinder ID TWC001763

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By:

Tony Janquart

Title:

Quality Assurance Manager

Certificate Date: 7/10/2020

Methane (0) Service INC. Accuracy in (Mole%) +1-2% CONTAINS GAS UNDER Frend label between he has a feel at hand if the waspens Do not heade are at a profescive gloves, pro-10 TOT and 1,000 PSIG User a track flow presents a knowly. Close value due or a sight when around to Lot#: 20-7497 P/N:23-0500 Dispose of content in DO NOT REMOVE THE Forteral law fortice term \$124). Federal los prito 103 L ave Irvine, CA 92614 20 701-8150 Fax (949) 757-0363

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

CERTIFICATE OF ANALYSIS

Composition

Methane

Air

Certification

500 ppm

Balance

Analytical Accuracy

± 2%

Lot#

19-6955

Mfg. Date:

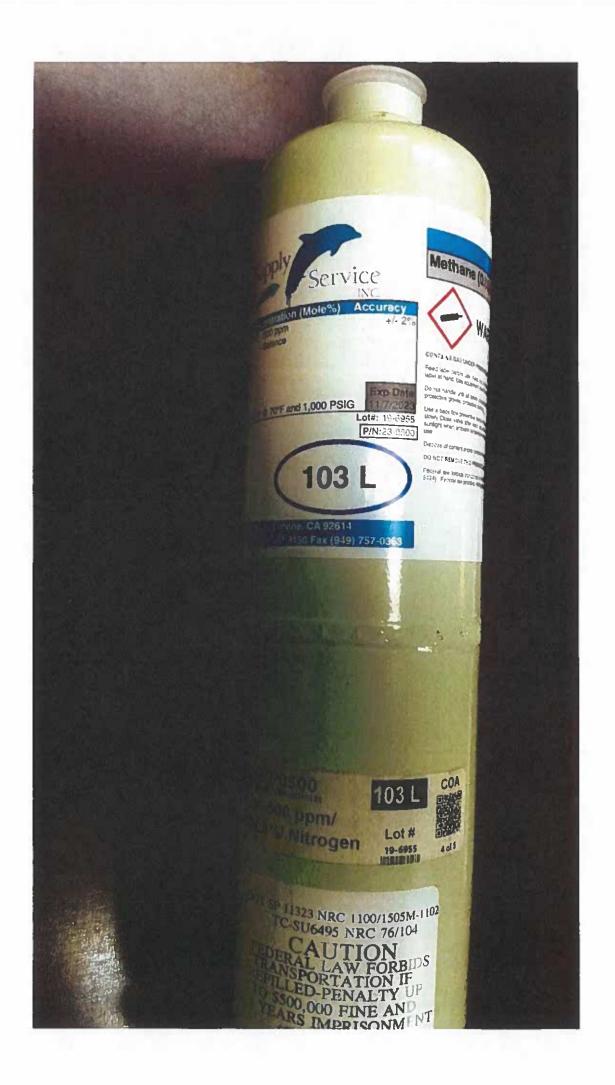
7/24/2019

Parent Cylinder ID 001763

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled


Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

> Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 7/24/2019

Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com

"Your calibration gas manufacturer since 1992"

CERTIFICATE OF ANALYSIS

CompositionCertificationAnalytical Accuracy (+/-)Methane500 ppm2%Oxygen20.9 %2%NitrogenBalance UHP

Lot# 18-6641

Mfg. Date: 12/18/2018

Expiration Date:

Transfill Date: see cylinder

Parent Cylinder ID 001763

Number:

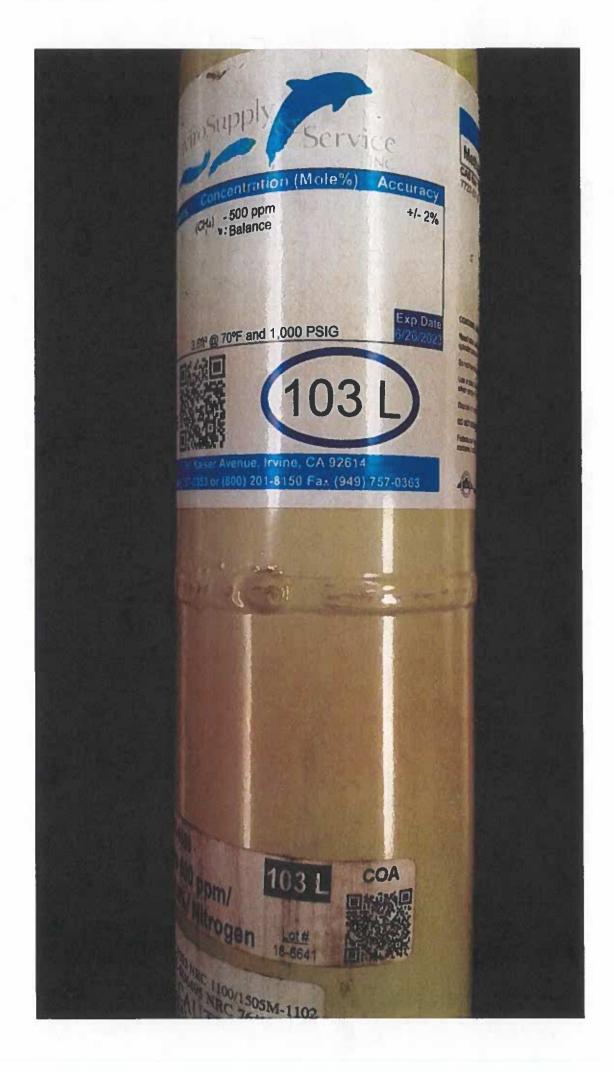
Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By:


Tony Janquart

Title:

Quality Assurance Manager

Certificate Date:

12/18/2018

CERTIFICATE OF ANALYSIS

Premier Safety & Service

46400 Continental Drivve Chesterfield ,MI 48047

Cust Number 07152 Order Number 62891146 PO Flumber 04548169

Lot Number Norlab Part#

9-325-80 J1971500PA

Cylinder Size

Number of Cyl 1

103 Liter

Customer Para NA

Date on Manufacture

12/31/2019

Expires

12/2022

Lalysical Accuracy

+/- 2 %

Component Methane Air

Reported

Concentration 500 ppm Balance

Requested

Concentration 500 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers 20180519 and 20180224

12/31/2019

Lab Technician

on 962.7837 com

46400 Continue Chesterfield, Market

moonents

Concentration (Mole

500 ppm Balance

\$435-81

4 162%

M871500PA

Malders-3.8Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

11/11/2020

11/2025

CALIBRATION GAS

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312 Cust Number 07152 Order Number 69679439 PO Number 04906817

Expires

Lot Number Norlab Part# 2-154-85 J1002 103 Liter

Cylinder Size Number of Cyl

103

Date on Manufacture

6/13/2022

Analytical Accuracy

06/2025 Certified

Customer Part# N/A

Component
Air
Oxygen
T.H.C. (as Methane)
Nitrogen

Reported
Concentration
Zero Grade
20.9 %
< 1.0 ppm
Balance

Requested
Concentration
Zero Grade
20.9 %
< 1.0 ppm
Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when compty. Never allow cylinder temperature to exceed 125 degrees F.

Minor constituents tested with standards traceable to NIST by mass or comparison to SRM's (Standard Reference Materials).

NIST Traceable Numbers are available upon request.

Approved:

David Reed

Date Signed:

6/13/2022

Lab Technician

898 W. GOWEN ROAD • BOISE, IDAHO 83705 Phone (208) 336-1643 • Fax (208) 331-3038 • 800-657-6672

PREMIER

spo.962.7837

Stering H

components

ongen THC. (as Methane) erogen

Concentration

Zero Grade 20.9 % < 1.0 ppm Balance

2-154-85

toney. Certified

J1002

103LHers-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

6/13/2012

08/2025

CALIBRATION GAS

NON-FLAMMABLE GAS

2

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Cust Number 07152 Order Number 69671309 PO Number 08361523

Lot Number

2-108-80

Norlab Part# Cylinder Size

J1971500PA 103 Liter

Number of Cyl 1

Customer Part# N/A

Date on Manufacture

6/10/2022

Expires

06/2025

Analytical Accuracy

+/-2%

Component Methane Air

Reported Concentration 500 ppm Balance

Requested Concentration 500 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traccable Numbers are available upon request.

Approved:

6/10/2022

Lab Technician

898 W. GOWEN ROAD • BOISE, IDAHO 83705 Phone (208) 336-1643 • Fax (208) 331-3038 • 800-657-6672

800.962.7837

33596 Sterling Heigh

Components

Hethane

Concentration (Mo

500 ppm Balance

Lott: 2-108-80

locaracy: 4-2%

J1971500PA

tozarts: 103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

5/5/2022

05/2025

CALIBRATION GAS

NON-FLAMMABLE GAS

0

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Norco, Inc Twin Falls Warehouse 203 S. Park Ave. West Twin Falls, ID 83301

Cust Number WH012 Order Number 71846398 PO Number 04A35563

Lot Number 3-088-88
Norlab Part# J1971500PA
Cylinder Size 103 Liter

Number of Cyl 5

3

Date on Manufacture

4/7/2023

Expires

04/2027

Analytical Accuracy

+/- 2 %

Customer Part# N/A

Component Methane Air Reported
Concentration
500 ppm
Balance

Requested
Concentration
500 ppm
Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers are available upon request.

Approved:

Jeff Kom/

Date Signed:

4/7/2023

898 W. GOWEN ROAD • BOISE, IDAHO 83705 Phone (208) 336-1643 • Fax (208) 331-3038 • 800-657-6672

1

500.962.7837

33596 Sterling Heigh

components

Concentration (Ma

500 ppm Balance

3-088-88

West # 2%

11971500PA

103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

4717003

Exp. Date:

04/2027

CALIBRATION GAS