February 14, 2024

Ventura County Air Pollution Control District 4567 Telephone Road, 2nd Floor Ventura, California 93003 805-303-4005

Mr. Matt Salazar Air Enforcement Office US EPA, Region IX 75 Hawthorne Street San Francisco, CA 94105

RE: 40 CFR 63, Subpart AAAA Semi-Annual Report Simi Valley Landfill and Recycling Center, Simi Valley, California July – December 2023

To Whom it May Concern,

Pursuant to Title 40 Code of Federal Regulations 63.1981(h), Waste Management of California, Inc. is submitting the Semi-Annual Report for the Simi Valley Landfill and Recycling Center (SVLRC). This report covers the period from July 1, 2023 to December 31, 2023.

If you have any questions or comments regarding this document, please call Collin Pavelchik at (510) 714-6098 (cpavelch@wm.com).

I certify that I have knowledge of the facts herein set forth, that the same are true, accurate and complete to the best of my knowledge and belief, and that all information not identified by me as confidential in nature shall be treated by the Ventura County Air Pollution Control District as public record.

Sincerely,

Nicole Stetson District Manager

Waste Management

cc Mr. Christian Colline, Waste Management

Ms. Miriam Cardenas, Waste Management

Ms. Paulamarie Young, Waste Management

Mr. Matthew Darr, Waste Management

FEBRUARY 2024

40 CFR 63, SUBPART AAAA SEMI-ANNUAL REPORT JULY – DECEMBER 2023

SIMI VALLEY LANDFILL AND RECYCLING CENTER

Ventura, California

2801 Madera Road, Simi Valley, CA 93065 Facility No. 01395

EXECUTIVE SUMMARY

The Simi Valley Landfill and Recycling Center (SVLRC) is a municipal solid waste (MSW) landfill located in Ventura, California in Ventura County and is owned/operated by Waste Management of California, Inc. The facility is subject to the requirements of the United States Environmental Protection Agency's (USEPA) *Standards of Performance for Municipal Solid Waste Landfills*; 40 Code of Federal Regulations (CFR) Part 63, Subpart AAAA and as such is submitting this NESHAP AAAA Report.

On June 21, 2021, new requirements from 40 CFR 62.1115(b)(2) incorporated monitoring, recordkeeping, and reporting requirements for landfill gas temperatures at wellheads from sections of 40 CFR 62, Subpart OOO that were incorporated into the California State Plan 40 CFR 62 Subpart F. As of September 27, 2021, SVLRC began complying with 40 CFR 63, Subpart AAAA in lieu of the 40 CFR 62 Subpart OOO sections that were incorporated into the 40 CFR 62 Subpart F California State Plan.

TABLE OF CONTENTS

1.0	40 CI	FR 6	3.1981(H) SEMI-ANNUAL REPORT	1
1	.1	Exce	edance of Applicable Parameters §63.1981(h)(1)	1
	1.1.1	. \	Wells Operating Under Positive Pressure §63.1958(b)	1
	1.1.2	١ ١	Wells with Temperatures >145°F or HOV §63.1958(c)	3
	1.1.3	3 9	Surface Emissions Monitoring §63.1958(d)	5
	1.1.4	ļ ⁻	Treatment System Monitoring §63.1981(h)(1)(iii)	5
1	.2	Gas	Stream Diversion §63.1981(h)(2)	6
1	.3	Cont	trol or Treatment System Downtime Events §63.1981(h)(3)	6
1	.4	Colle	ection System Downtime Events §63.1981(h) (4)	8
1	.5	Surf	ace Emissions Monitoring §63.1981(h)(5)	9
1	.6	Syste	em Expansion §63.1981(h)(6)	. 10
1	.7	Root	t Cause / Corrective Action Analyses §40 CFR 63.1981(h)(7)	. 11
1	.8	Enha	anced Monitoring §40 CFR 63.1981(h)(8)	. 11
	1.8.1	. [Enhanced Monitoring for Wellhead Temperature Exceedances	. 11
	1.8.2		Summary Trend Analyses for Wells Subject to Enhanced Monitoring Requirements	. 12
	1.8.3	, ,	Visual Observations for Wells to Enhanced Monitoring Requirements	. 12
1	.9	Encl	osed Combustor Monitoring §63.1983(c)	. 12
Арр	endix	(A (GCCS Map	
App	endix	В 5	SEM Data	

1.0 40 CFR 63.1981(h) SEMI-ANNUAL REPORT

SVLRC is submitting this Report because the existing MSW landfill owns and/or operates an active landfill gas collection and control system. The following summarizes the report requirements pursuant to §63.1981(h). This report covers from July 1, 2023 through December 31, 2023.

1.1 Exceedance of Applicable Parameters §63.1981(h)(1)

§63.1981(h)(1) Number of times that applicable parameters monitored under §63.1958(b), (c), and (d) were exceeded and when the gas collection and control system was not operating under §63.1958(e), including periods of SSM. For each instance, report the date, time, and duration of each exceedance.

(i) Where an owner or operator subject to the provisions of this subpart seeks to demonstrate compliance with the temperature and nitrogen or oxygen operational standards in introductory paragraph §63.1958(c), provide a statement of the wellhead operational standard for temperature and oxygen you are complying with for the period covered by the report. Indicate the number of times each of those parameters monitored under §63.1961(a)(3) were exceeded. For each instance, report the date, time, and duration of each exceedance.

(ii) Where an owner or operator subject to the provisions of this subpart seeks to demonstrate compliance with the operational standard for temperature in §63.1958(c)(1), provide a statement of the wellhead operational standard for temperature and oxygen you are complying with for the period covered by the report. Indicate the number of times each of those parameters monitored under §63.1961(a)(4) were exceeded. For each instance, report the date, time, and duration of each exceedance.

(iii) Beginning no later than September 27, 2021, number of times the parameters for the site-specific treatment system in §63.1961(g) were exceeded.

1.1.1 Wells Operating Under Positive Pressure §63.1958(b)

§63.1958(b) Operate the collection system with negative pressure at each wellhead except under the following conditions:

(1) A fire or increased well temperature. The owner or operator must record instances when positive pressure occurs in efforts to avoid a fire. These records must be submitted with the semi-annual reports as provided in §63.1981(h);

- (2) Use of a geomembrane or synthetic cover. The owner or operator must develop acceptable pressure limits in the design plan;
- (3) A decommissioned well. A well may experience a static positive pressure after shut down to accommodate for declining flows. All design changes must be approved by the Administrator as specified in §63.1981(d)(2);

SVLRC operated in compliance with all wellhead monitoring standards listed in §63.1958(b) during the reporting period. All instances of positive pressure were corrected within applicable Subpart AAAA timelines.

On a monthly basis operations and maintenance personnel measure the gauge pressure, temperature, and oxygen concentration at each well head. The gauge pressure taken at the wellhead is used in determining the presence of vacuum at the collector. Measurements are taken with a portable meter which is calibrated per the manufacturer's specifications.

Wells that were found to be operating at positive pressures are summarized in the following table.

Wells Operating Under Positive Pressure

	Initial Reading			5-Day	Final Re	ading	
Name	Date	Value ("H₂0)	Corrective Action Date	Corrective Action	Date	Value ("H₂0)	Duration (days)
1789S	10/27/23	0.86	10/27/23	Inc. Flow/Vac	10/27/23	-23.36	<1
2100S	10/14/23	0.76	10/14/23	Inc. Flow/Vac	10/28/23	-2.51	14
2107A	12/8/23	0.09	12/8/23	Inc. Flow/Vac	12/8/23	-0.02	<1
2330A	7/8/23	0.3	7/8/23	Inc. Flow/Vac	7/11/23	-0.07	3
2330A	8/9/23	0.17	8/9/23	Inc. Flow/Vac	8/9/23	-0.08	<1
2330A	9/6/23	0.05	9/6/23	Inc. Flow/Vac	9/6/23	-0.03	<1
2330A	11/13/23	0.2	11/13/23	Inc. Flow/Vac	11/13/23	-0.11	<1
2331A	9/6/23	0.65	9/6/23	Inc. Flow/Vac	9/18/23	-0.01	12
2331A	10/12/23	0.02	10/12/23	Inc. Flow/Vac	10/12/23	-0.15	<1
2331A	11/13/23	0.45	11/13/23	Inc. Flow/Vac	11/13/23	-0.21	<1

Wells Operating Under Positive Pressure

	Initial Reading			5-Day	Final Reading		
Name	Date	Value ("H₂0)	Corrective Action Date	Corrective Action	Date	Value ("H₂0)	Duration (days)
2332A	7/8/23	0.14	7/8/23	Inc. Flow/Vac	7/11/23	-0.13	3
2333A	7/8/23	0.17	7/8/23	Inc. Flow/Vac	7/11/23	-2.39	3
2334A	7/8/23	0.31	7/8/23	Inc. Flow/Vac	7/11/23	-0.09	3
2334A	11/13/23	0.16	11/13/23	Inc. Flow/Vac	11/13/23	-0.01	<1
2336A	7/8/23	0.25	7/8/23	Inc. Flow/Vac	7/8/23	-0.17	<1
2336A	7/11/23	0.03	7/11/23	Inc. Flow/Vac	7/11/23	-0.25	<1
2336A	11/13/23	0.56	11/13/23	Inc. Flow/Vac	11/13/23	-0.12	<1
2352S	11/3/23	1.39	11/3/23	Inc. Flow/Vac	11/3/23	-0.04	<1
2353A	11/7/23	0.07	11/7/23	Inc. Flow/Vac	11/7/23	-0.36	<1
808	9/19/23	0.11	9/19/23	Inc. Flow/Vac	9/19/23	-0.06	<1
1812	9/20/23	0.45	9/20/23	Inc. Flow/Vac	9/20/23	-28.95	<1
2065	10/14/23	0.28	10/14/23	Inc. Flow/Vac	10/14/23	-0.01	<1
2226	10/23/23	0.24	10/23/23	Inc. Flow/Vac	10/23/23	-0.41	<1
2341	7/7/23	0.77	7/7/23	Inc. Flow/Vac	7/7/23	-0.07	<1

1.1.2 Wells with Temperatures >145°F or HOV §63.1958(c)

\$63.1958(c) Operate each interior wellhead in the collection system as specified in 40 CFR 60.753(c), until the landfill owner or operator elects to meet the operational standard for temperature in paragraph (c)(1) of this section.

(1) Beginning no later than September 27, 2021, operate each interior wellhead in the collection system with a landfill gas temperature less than 62.8 degrees Celsius (145 degrees Fahrenheit).

(2) The owner or operator may establish a higher operating temperature value at a particular well. A higher operating value demonstration must be submitted to the Administrator for approval and must include supporting data demonstrating that the elevated parameter neither causes fires nor significantly inhibits anaerobic decomposition by killing methanogens. The demonstration must satisfy both criteria in order to be approved (i.e., neither causing fires nor killing methanogens is acceptable).

The applicable standard for temperature and oxygen during this reporting period was §63.1958(c)(1), [62.8°C (145°F) or higher operating value (HOV), no oxygen limits]. SVLRC operated in compliance with all wellhead monitoring standards listed in §63.1958(c) during the reporting period. There were no instances of temperatures greater than 145°F (or HOV).

Each landfill gas collector is equipped with an access port allowing for measuring temperature at each wellhead. On a monthly basis operations and maintenance personnel measure the gauge pressure, temperature, and oxygen concentration at each well head. Measurements are taken with a portable meter which is calibrated per the manufacturer's specifications.

Wells with Landfill Gas Temperature Greater than 145°F or HOV

Nome	Initial Re	ading	5-Day	Final Reading		Demotion (dove)	
Name	Date	Temp (°F)	Corrective Action	Date	Temp (°F)	Duration (days)	
	N/A						

A list of all current HOVs (greater than 145°F) is presented in the following table:

Wells with Temperature HOVs

Device	Date	HOV
SIM1778D	6/18/2021	150
SIMW1779	6/18/2021	150

Device	Date	HOV
SIMW1232	6/18/2021	150
SIMW1233	6/18/2021	150

^{*}SVLRC also has seventy-two (72) existing HOVs for temperatures equal or greater than 131°F and equal or less than 145°F.

1.1.3 Surface Emissions Monitoring §63.1958(d)

§63.1958(d)(1) Operate the collection system so that the methane concentration is less than 500 parts per million (ppm) above background at the surface of the landfill. To determine if this level is exceeded, the owner or operator must conduct surface testing around the perimeter of the collection area and along a pattern that traverses the landfill at no more than 30-meter intervals and where visual observations indicate elevated concentrations of landfill gas, such as distressed vegetation and cracks or seeps in the cover. The owner or operator may establish an alternative traversing pattern that ensures equivalent coverage. A surface monitoring design plan must be developed that includes a topographical map with the monitoring route and the rationale for any site-specific deviations from the 30-meter intervals. Areas with steep slopes or other dangerous areas may be excluded from the surface testing.

- (2) Beginning no later than September 27, 2021, the owner or operator must:
 - (i) Conduct surface testing using an organic vapor analyzer, flame ionization detector, or other portable monitor meeting the specifications provided in §63.1960(d).
 - (ii) Conduct surface testing at all cover penetrations. Thus, the owner or operator must monitor any cover penetrations that are within an area of the landfill where waste has been placed and a gas collection system is required.
 - (iii) Determine the latitude and longitude coordinates of each exceedance using an instrument with an accuracy of at least 4 meters. The coordinates must be in decimal degrees with at least five decimal places.

Surface emissions monitoring is discussed in Section 1.5.

1.1.4 Treatment System Monitoring §63.1981(h)(1)(iii)

§63.1981(h)(1) (iii) Beginning no later than September 27, 2021, number of times the parameters for the site-specific treatment system in §63.1961(g) were exceeded.

§63.1961(g) Each owner or operator seeking to demonstrate compliance with \$63.1959(b)(2)(iii)(C) using a landfill gas treatment system must calibrate, maintain, and operate according to the manufacturer's specifications a device that records flow to the treatment system and bypass of the treatment system (if applicable). Beginning no later than September 27, 2021, each owner or operator must maintain and operate all monitoring systems associated with the treatment system in accordance with the site-specific treatment system monitoring plan required in §63.1983(b)(5)(ii). The owner or operator must:

- (1) Install, calibrate, and maintain a gas flow rate measuring device that records the flow to the treatment system at least every 15 minutes; and
- (2) Secure the bypass line valve in the closed position with a car-seal or a lock-and-key type configuration. A visual inspection of the seal or closure mechanism must be performed at least once every month to ensure that the valve is maintained in the closed position and that the gas flow is not diverted through the bypass line.

SVLRC does not operate a treatment system and therefore, is not subject to the requirements of §63.1981(h)(1)(iii).

1.2 Gas Stream Diversion §63.1981(h)(2)

§63.1981(h)(2) Description and duration of all periods when the gas stream was diverted from the control device or treatment system through a bypass line or the indication of bypass flow as specified under §63.1961.

The gas collection system is not designed nor equipped to bypass the control device(s); therefore §63.1981(h)(2) is not applicable.

1.3 Control or Treatment System Downtime Events §63.1981(h)(3)

 $\S63.1981(h)(3)$ Description and duration of all periods when the control device or treatment system was not operating and length of time the control device or treatment system was not operating.

Control device and treatment system downtime events were recorded in compliance with §63.1981(h)(1) and (3) during the reporting period. The following tables summarize all the periods when the control devices and/or treatment system were not operating.

Enclosed Flare No. 3 Downtime Events

Shutdown	Startup	Duration (hours)	Reason
7/1/2023 3:15	7/1/2023 7:10	3.92	CAB 220 Failure
7/13/2023 17:08	7/14/2023 9:45	16.62	Flare 3 Cleaning
8/17/2023 0:40	8/17/2023 7:05	6.42	Blower 103 Failure/ Low Flow
9/14/2023 7:45	9/14/2023 16:45	9.00	Manual Shut Down / Blower Repairs
10/6/2023 1:05	10/6/2023 14:55	13.83	High Burner Temp
10/12/2023 23:20	10/13/2023 7:01	7.68	Manual shutdown for maintenance

Enclosed Flare No. 3 Downtime Events

Shutdown	Startup	Duration (hours)	Reason
10/17/2023 7:54	10/17/2023 12:54	5.00	Clean Out Sumps
11/15/2023 13:05	11/16/2023 11:01	21.93	Igniter failure
12/2/2023 6:15	12/4/2023 13:15	55.00	Burner damaged
12/9/2023 6:55	12/11/2023 7:52	48.95	Power Outage

Enclosed Flare No. 4 Downtime Events

Shutdown	Startup	Duration (hours)	Reason
7/1/2023 2:50	7/1/2023 8:05	5.25	CAB 220 Failure
7/13/2023 17:08	7/13/2023 22:08	5.00	Flare 3 Cleaning
7/14/2023 20:05	7/15/2023 6:34	10.48	Igniter malfunction/thermocouple failure
8/17/2023 0:40	8/17/2023 7:05	6.42	BL 103 Failure / Low Flow
9/14/2023 7:45	9/14/2023 16:45	9.00	Manual Shut Down / Blower Repairs
9/28/2023 23:41	9/29/2023 7:53	8.20	CAB Filters Cleaning
10/8/2023 15:40	10/9/2023 6:55	15.25	CAB Filters Cleaning
10/12/2023 23:20	10/13/2023 7:01	7.68	Manual shutdown for maintenance
10/17/2023 7:54	10/17/2023 12:54	5.00	Clean Out Sumps
11/4/2023 4:47	11/6/2023 9:15	52.47	CAB Fault 24 - Decel Inhibit fault tripped VFD
11/14/2023 22:45	11/15/2023 15:05	16.33	CAB Fault 24 - Decel Inhibit fault tripped VFD
11/17/2023 5:05	11/17/2023 12:04	6.98	CAB Fault 24 - Decel Inhibit fault tripped VFD

11/18/2023 7:35	11/18/2023 11:17	3.70	Manual Shut Down for Maintenance
11/26/2023 4:40	11/26/2023 9:05	4.42	CAB Fault 24 - Decel Inhibit fault tripped VFD
11/26/2023 20:50	11/27/2023 7:05	10.25	CAB Fault 24 - Decel Inhibit fault tripped VFD
12/3/2023 1:30	12/4/2023 13:03	35.55	CAB Fault 24 - Decel Inhibit fault tripped VFD

1.4 Collection System Downtime Events §63.1981(h) (4)

§63.1981(h)(4) All periods when the collection system was not operating.

§63.1958(e) Operate the system as specified in § 60.753(e) of this chapter, except:

- (1) Beginning no later than September 27, 2021, operate the system in accordance to §63.1955(c) such that all collected gases are vented to a control system designed and operated in compliance with §63.1959(b)(2)(iii). In the event the collection or control system is not operating:
 - (i) The gas mover system must be shut down and all valves in the collection and control system contributing to venting of the gas to the atmosphere must be closed within 1 hour of the collection or control system not operating; and
 - (ii) Efforts to repair the collection or control system must be initiated and completed in a manner such that downtime is kept to a minimum, and the collection and control system must be returned to operation.

The gas collection system was operated in accordance with §63.1955(c) during the reporting period to in a manner consistent with safety and good air pollution control practices to minimize emissions and downtime. All collected gases were vented to a control system design and operated in compliance with §63.1959(b)(2)(iii). In the event of collection or control system downtime the gas mover system is shut down and all valves in the collection and control system contributing to the venting of gas to the atmosphere are closed within 1 hour of the collection or control system not operating. Efforts to repair the collection or control system are initiated and completed pursuant to the work practice standards of

Section 112(h) of the Clean Air Act such that downtime is kept to a minimum, and the collection and control system is returned to operation.

Collection System Downtime Events

Shutdown	Startup	Duration (hours)	Reason
7/1/2023 3:15	7/1/2023 7:10	3.92	CAB 220 Failure
7/13/2023 17:08	7/13/2023 22:08	5.00	Flare 3 Cleaning
8/17/2023 0:40	8/17/2023 7:05	6.42	BL 103 Failure / Low Flow
9/14/2023 7:45	9/14/2023 16:45	9.00	Manual Shut Down / Blower Repairs
10/12/2023 23:20	10/13/2023 7:01	7.68	Manual Shut Down for Maintenance
10/17/2023 7:54	10/17/2023 12:54	5.00	Clean Out Sumps
11/15/2023 13:05	11/15/2023 15:05	2.00	Igniter failure
12/3/2023 1:30	12/4/2023 13:03	35.55	Burner Damage/CAB Fault 24 - Decel Inhibit fault tripped VFD
12/9/2023 6:55	12/11/2023 7:42	48.78	Power Outage

1.5 Surface Emissions Monitoring §63.1981(h)(5)

§63.1981(h)(5) The location of each exceedance of the 500-ppm methane concentration as provided in §63.1958(d) and the concentration recorded at each location for which an exceedance was recorded in the previous month. Beginning no later than September 27, 2021, for location, you record the latitude and longitude coordinates of each exceedance using an instrument with an accuracy of at least 4 meters. The coordinates must be in decimal degrees with at least five decimal places.

Surface emissions monitoring was completed in compliance with §63.1960(c) during the reporting period. Monitoring included the perimeter of the landfill, the serpentine path with a 30-meter spacing, penetration and openings monitoring and per Method 21 requirements areas where visual observations indicate possible elevated concentrations of landfill gas, such as distressed vegetation and cracks or seeps in the cover are monitored.

Monitoring for the Third Quarter 2023 was completed during the reporting period. There were twenty-two (22) locations with recorded methane concentrations greater than 500 ppm as methane. All locations were remediated within §63.1960(c)(4) timelines. Applicable

monitoring data, including the location information plus initial and final remediated methane concentrations are presented in Appendix B.

Monitoring for the Fourth Quarter 2023 was also completed during the reporting period. There were fifty-one (51) locations with recorded methane concentrations greater than 500 ppm as methane. All locations were remediated within §63.1960(c)(4) timelines. Applicable monitoring data, including the location information plus initial and final remediated methane concentrations are presented in Appendix B.

1.6 System Expansion §63.1981(h)(6)

 $\S63.1981(h)(6)$ The date of installation and the location of each well or collection system expansion added pursuant to $\S63.1960(a)(3)$ and (4), (b), and (c)(4).

SVLRC complied with the requirements of §63.1960(a)(3) and (4), (b), and (c)(4).

SVLRC continually looks for ways to optimize the collection system and additional wells or collectors are installed on an as needed basis maintain collection efficiency. The following table summarizes the locations of the wells added to the collection system during the reporting period. Locations of the wells are shown on the GCCS Map included in Appendix A.

Wellfield Expansions to Comply with §63.1960(a)(3) (Pressure Exceedances)

Well ID	Startup Date		
N/A, no expansions were required to correct pressure exceedances			

Wellfield Expansions to Comply with §63.1960(a)(4) (Temperature Exceedances)

Well ID	Startup Date		
N/A, no expansions were required to correct temperature exceedances			

Wellfield Expansions to Comply with §63.1960(b) (Collection System Coverage)

Well ID	Startup Date
2341	7/7/2023
2330, 2332, 2333, 2334, 2336	7/8/2023

Wellfield Expansions to Comply with §63.1960(c)(4) (Surface Emissions)

Well ID	Startup Date		
N/A, no expansions were required to correct surface emissions exceedances			

1.7 Root Cause / Corrective Action Analyses §40 CFR 63.1981(h)(7)

§63.1981(h)(7) For any corrective action analysis for which corrective actions are required in §63.1960(a)(3)(i) or (a)(5) and that take more than 60 days to correct the exceedance, the root cause analysis conducted, including a description of the recommended corrective action(s), the date for corrective action(s) already completed following the positive pressure or high temperature reading, and, for action(s) not already completed, a schedule for implementation, including proposed commencement and completion dates.

SVLRC complied with the requirements of §63.1960(a)(3)(i) and (a)(5). No root cause or corrective action analyses were required during the reporting period. During the reporting period all wells with positive pressures or temperatures greater than 145°F (or applicable HOV) were corrected within 0 to 60 days.

1.8 Enhanced Monitoring §40 CFR 63.1981(h)(8)

\$63.1981(h)(8) Each owner or operator required to conduct enhanced monitoring in \$63.1961(a)(5) and (6) must include the results of all monitoring activities conducted during the period.

- (i) For each monitoring point, report the date, time, and well identifier along with the value and units of measure for oxygen, temperature (wellhead and downwell), methane, and carbon monoxide.
- (ii) Include a summary trend analysis for each well subject to the enhanced monitoring requirements to chart the weekly readings over time for oxygen, wellhead temperature, methane, and weekly or monthly readings over time, as applicable for carbon monoxide.
- (iii) Include the date, time, staff person name, and description of findings for each visual observation for subsurface oxidation event.

1.8.1 Enhanced Monitoring for Wellhead Temperature Exceedances §63.1961(a)(5)

The enhanced monitoring requirements of §63.1961(a)(5) for temperature exceedances were not applicable during the reporting period.

1.8.2 Summary Trend Analyses for Wells Subject to Enhanced Monitoring Requirements

No wells were subject to the enhanced monitoring requirements of §63.1961(a)(5) during the reporting period.

1.8.3 Visual Observations for Wells to Enhanced Monitoring Requirements

No wells were subject to the enhanced monitoring requirements of §63.1961(a)(5) during the reporting period.

1.9 Enclosed Combustor Monitoring §63.1983(c)

§63.1983(c) Except as provided in §63.1981(d)(2), each owner or operator of a controlled landfill subject to the provisions of this subpart must keep for 5 years up-to-date, readily accessible continuous records of the equipment operating parameters specified to be monitored in §63.1961 as well as up-to-date, readily accessible records for periods of operation during which the parameter boundaries established during the most recent performance test are exceeded.

(1) The following constitute exceedances that must be recorded and reported under §63.1981(h):

(i) For enclosed combustors except for boilers and process heaters with design heat input capacity of 44 megawatts (150 million Btu per hour) or greater, all 3-hour periods of operation during which the average temperature was more than 28 degrees Celsius (82 degrees Fahrenheit) below the average combustion temperature during the most recent performance test at which compliance with §63.1959(b)(2)(iii) was determined.

(ii) For boilers or process heaters, whenever there is a change in the location at which the vent stream is introduced into the flame zone as required under paragraph (b)(3) of this section.

The SVLRC operated in compliance with all enclosed combustor monitoring standards listed in §63.1983(c) during the reporting period. There were no reportable exceedances under §63.1983(c)(1)(i).

SVLRC operates two enclosed combustors in accordance with the Part 70 Title V Permit No. 01395, issued by the Ventura County Air Pollution Control District (VCAPCD). As required, the enclosed combustors are equipped with thermocouple(s) that serve as the temperature monitoring device(s). The thermocouples send temperature monitoring data to the digital

data recorder. Temperature data is continuously monitored and recorded at least once every 15 minutes.

The enclosed combustors are equipped with flow meters which monitor flow to the enclosed combustors. The flow meters send the data to the digital data recorder, which must record flow rate at least once every 15 minutes.

The enclosed flares are subject to a minimum operating temperature of 28°C (50°F) below the average combustion temperature during the most recent source test (3-hr block averages). The following thresholds apply to the enclosed flares during the reporting period:

Applicable 3-hr Block Average Temperature Limits
Flare No. 3

Parameter	July 18, 2023 Source Test Report
Avg. Test Temperature	1,567 °F
3-hr Min Combustion Temperature	1,517°F

Flare No. 4

Parameter	June 30, 2022 Source Test Report
Avg. Test Temperature	1,550 °F
3-hr Min Combustion Temperature	1,500°F

Appendix A GCCS MAP

Appendix B
SEM DATA

WASTE MANAGEMENT

October 27, 2023

8491 Fruitridge Road Sacramento, CA 95826 (510) 714-6098

Ms. Nicole Stetson 2801 Madera Road Simi Valley, California 93065

Third Quarter 2023 Surface Emissions and Component Leak Monitoring Report for the Simi Valley Landfill and Recycling Center

Dear Ms. Stetson:

This monitoring report for the "Simi Valley Landfill and Recycling Center (SVLRC)" contains the results of the Third Quarter 2023 Integrated and Instantaneous Surface Emissions Monitoring (SEM) and Component Leak Monitoring. Initial surface emissions monitoring was performed by Roberts Environmental Services, LLC. (RES). Re-monitoring of site-wide surface emissions and component leak monitoring was also conducted by RES personnel.

APPLICABLE REQUIREMENTS

The monitoring discussed in this report was conducted in accordance with the following requirements:

Surface Emission Monitoring (SEM)

- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).
- New Source Performance Standard (NSPS), Title 40 of the Code of Federal Regulations (CFR) §60.755 (c) and (d), 40 CFR 60, Appendix A Method 21; and updated Title 40 CFR part 63, Subpart AAAA (63.1960), promulgated by the United States Environmental Protection Agency (USEPA).
- Ventura County Air Pollution Control District (VCAPCD) Rule 74.17.1 (Municipal Solid Waste Landfills)

Component Leak

• California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).

SVLRC Plan and Alternative Compliance Measures

An Alternative Compliance Option (ACO) Request was submitted to the California Air Resources Board (CARB) on May 24, 2011. A response from the CARB was not received to the ACO Request within 120 days from the date of submittal, therefore SVLRC assumes that the alternative compliance measures, monitoring requirements, and test measures and procedures were deemed acceptable as of September 21, 2011, per CCR Title 17 §95468(c).

All monitoring and reporting was completed in accordance with the 2011 SVLRC AB-32 SEM Plan.

PROCEDURES

General

The surface of the SVLRC disposal area has been divided into two-hundred and three (203), (approximately) 50,000 square foot monitoring grids. The entire landfill surface is monitored with the exception of active portions of the Landfill, slope areas, and as requested in the approved ACO, areas containing only asbestos-containing waste, inert waste and/or non-decomposable waste which are excluded for safety as allowed by CCR Title 17 §95466.

Field personnel walked the surface of the landfill following the walking pattern as depicted the 2011 SVLRC AB-32 SEM Plan, which traverses each monitoring grid. Additionally, in accordance with the provisions of 40 CFR 60.753(d) and 60.755(c)(1-3) and 63.1960, the entire perimeter of the landfill surface was monitored. During the event, special attention was given to monitoring unusual cover conditions (stressed vegetation, cracks, seeps, etc.) and any areas with unusual odors. In addition, penetrations were monitoring per Title 40 CFR part 63, Subpart AAAA (63.1960).

Instantaneous Surface Emissions Monitoring

The Instantaneous SEM was conducted using a Toxic Vapor Analyzer (TVA) 1000 flame ionization detector (FID), which was calibrated to 500 parts per million by volume (ppmv) methane, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a). The FID was calibrated prior to use in accordance with the United States Environmental Protection Agency (USEPA) Method 21 requirements. The Instantaneous SEM procedures followed the requirements of 40 CFR 60.755 (c) and (d), CCR Title 17 §95471(c)(2), VCAPCD Rule 74.1.7, and 40 CFR part 63, Subpart AAAA 63.1960.

RES personnel walked the surface of the landfill on a grid-by-grid basis with the wand tip held at 3 inches from the landfill surface. While sampling the grid, the technicians also checked any surface impoundments (wells or otherwise) for leaks. Technicians also checked any surface cracks, seeps, or other areas that show evidence of surface emissions (odors or distressed vegetation). Active and sloped areas excluded for safety were documented on field data sheets and maps.

All instantaneous surface monitoring was performed in accordance with the applicable requirements referenced in this report. Any detections of methane above 200 ppmv (areas of concern) or 500 ppmv (exceedances) for instantaneous were recorded, flagged, and marked on an SEM Map, which, wherever required, is included in the Attachments of this report. Applicable corrective action and re-monitoring timelines are listed below:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
 - o If the re-monitoring event shows the exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance.
 - o If the 1-month re-monitoring event shows the location is still corrected, all remonitoring requirements have been completed.
- If either the first 10-day or 1-month re-monitoring events show a second exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance. If the 1-month re-monitoring event shows the area is still corrected, monitoring requirements have been completed.
- If any location shows three exceedances, an additional well shall be installed within 120 days of the initial exceedance.

Integrated Surface Emissions Monitoring

The Integrated surface monitoring was conducted using a TVA 1000 calibrated to 25 ppmv for the integrated monitoring, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a). The field technician traversed the grid walking path over a continuous 25-minute period using the TVA 1000 held at 3 inches above the landfill surface. The Integrated monitoring procedures followed the requirements of CCR Title 17 §95471(c)(2).

Grids with results greater than 25 ppmv were recorded, marked on the SEM map, and flagged for remediation. Any grids with integrated concentrations greater than 25 ppmv are subject to the following corrective action and re-monitoring timeline:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
- If the 10-day re-monitoring event shows the exceedance is corrected, all re-monitoring requirements have been completed.

- If either the first 10-day re-monitoring event shows a second grid exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, all re-monitoring requirements have been completed.
- If the second 10-day re-monitoring event shows a third grid exceedance, an additional well shall be installed within 120 days of the initial exceedance.

Component Leak Monitoring Procedures

RES personnel monitored the exposed LFG components under positive pressure (pipes, wellheads, valves, blowers, and other mechanical appurtenances) using a TVA 1000 calibrated to 500 ppmv. All leaks measured one half inch or less from the component exceeding the compliance limit of 500 ppmv per requirements outlined in pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B) were recorded. Applicable corrective action and re-monitoring timelines are listed below:

• Leaks at or above 500 ppmv must be corrected and re-monitored within 10 days of the initial exceedance.

THIRD QUARTER SEM AND COMPONENT LEAK RESULTS

The following is a summary of the SEM and Component leak monitoring results completed during the Third Quarter 2023.

Instantaneous Surface Emission Monitoring Results

The Instantaneous surface monitoring was performed on July 10, 11, 13, 17, 18, 19, 20, and August 1, 2023 in accordance with the NSPS NESHAP, Rule 74.1.17, CCR Title 17 §95469 and ACO. Results and data from the monitoring are presented in Attachment A.

Initial Monitoring Event Exceedances of 500 ppmv

There were twenty-two (22) exceedances of 500 ppmv as methane detected during the initial monitoring events conducted on July 10, 11 & 13, 2023. RES personnel remediated the locations, and the following re-monitoring was conducted as described below.

First Ten-Day Re-Monitoring Results

RES personnel performed the first ten-day re-monitoring events on July 10 and 20, 2023. No exceedances were observed during the first ten-day re-monitoring events.

Thirty-Day Re-Monitoring Results

RES personnel performed the thirty-day monitoring events on August 9, 2023. No exceedances were observed during the thirty-day re-monitoring events.

Readings between 200 ppmv and 499 ppmv (Initial and Re-monitored)

There were two-hundred four (204) readings between 200 ppmv and 499 ppmv, measured as methane detected during the initial monitoring events on July 10, 11, 18 and August 2 & 4, 2023, respectively. Pursuant to CCR Title 17 §95471(c), instantaneous surface emissions exceeding 200 ppmv but below 500 ppmv are required to be recorded. As a best management practice, if these readings occur, SVLRC voluntarily addresses these locations by remediating and remonitoring all those within this range, during the 10-day re-checks. Therefore, SVLRC and RES personnel performed ten-day re-checks on July 20 & 26 and August 10 & 14, 2023, respectively, and the two-hundred four (204) readings were below 200 ppmv. The goal of this is effort is to reduce any future exceedances to improve and reduce overall odors/emissions. Results, if applicable, are summarized in Attachment A.

Integrated Surface Emissions Monitoring Results

The Integrated surface sampling (ISS) was performed on August 1, 2, 3 & 4, 2023, in accordance with the ACO, requirements outlined in CCR Title 17 §95469, and VCAPCD Rule 74.1.17. See Attachment B for details.

Initial Monitoring Event Exceedances of 25 ppmv

There were twenty-nine (29) grids with an exceedance above 25 ppmv as methane detected during the initial monitoring events conducted on August 2, 3 & 4, 2023. SVLRC personnel remediated the locations, and the following re-monitoring was conducted as described below.

Ten-Day Re-Monitoring Results

RES personnel performed the ten-day re-monitoring events on August 9 & 14, 2023. No exceedances were observed during the ten-day re-monitoring events.

The average methane concentration of each grid was recorded during the monitoring event per applicable requirements. See Attachment B for details.

Component Leak Monitoring Results

Component leak monitoring was conducted per the applicable requirements on August 4, 2023. There were zero (0) locations with a component leak detection of greater than 500 ppmv. See Attachment C for details.

WEATHER CONDITIONS

Wind Speed Conductions during the Surface Emission Monitoring Events

Wind speeds during initial monitoring were monitored using a portable weather station. The station has a strip chart that records the wind speed and direction. After completion of monitoring, the strip chart is reviewed by RES office staff to determine the average and maximum wind speeds during the monitoring and the average wind direction during each grid and ensure that the wind speed requirements are met (no gusts greater than 20 mph, average wind speed cannot exceed 10 mph). These values are documented in the field data sheets. The chart data is scanned and included in Attachment D.

Precipitation Requirements

Per the SVLRC's ACO, the initial monitoring event was carefully scheduled so that it could be conducted in compliance with the precipitation requirements (no measurable precipitation within 24 hours). Re-monitoring events are required to adhere to strict timelines. Any conflicts with precipitation requirements are discussed in the results section of this document.

EQUIPMENT CALIBRATION

The portable analyzers were calibrated to meet the instrument specifications requirements of U.S. EPA Method 21. The calibration gas used was methane, diluted to a nominal concentration of 25 ppmv in air for integrated sample analyses and 500 ppmv in air for instantaneous monitoring to comply with the requirements.

Nicole Stetson October 27, 2023 Page 7

All analyzers were calibrated prior to use with required response time and precision related instrument checks. Calibration records include the following: One time response time test record; One time response factor determination for methane; Calibration Precision test records (test to be performed every 3 months); and Daily Instrument Calibration and Background test records for each gas meter that was used during the quarterly monitoring event. The calibration log records are included in Attachment E.

All monitoring was completed in accordance with the applicable regulatory requirements or approved alternatives. If you have any questions regarding this report, please do not hesitate to contact the undersigned at (510) 714-6098.

Thank you,

Waste Management

Colley Pomethick

Collin Pavelchik

Environmental Protection Air Quality Specialist

Attachment A – Instantaneous Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- Surface Monitoring Weather Data
- SEM Map

Attachment B – Integrated Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- Surface Monitoring Weather Data
- SEM Map

Attachment C - Component Leak Monitoring Event Records

• Component Leak Exceedances and Monitoring Logs

Attachment D – Weather Station Data

Strip Chart Data and Legend

Attachment E – Calibration Records

• Instrument and Gas Calibration Records

Attachment A

Instantaneous Surface Emission Monitoring Event Records

emperat	ure; _ 9	P Pre	cip: 	J Upv	vind BG	1.6	• Downw	_75fT
GRID ID	STAFF INITIALS	START TIME	STOP TIME	TOC PPM	AVG	ND INFORM	DIRECTION	REMARKS
13	mo	1000	1015	24.3	SPEED	SPEED 7	16 POINT	
14	mo	1015		23.5	5		13	
1	GR	0951	1006	27.1	3	5	13	
2	GR	1007	1027		3	5	13	
3	(7R	1024	1039	4.10	4	6	13	
4	GR	1640	1055	3.2	4	5	13	
5	GR	1056	1111	3.5	И	5	13	
7	Jm	0957	1013	3.2	5	7	13	
9	Jm	1028	1043	20.5	4	Ь	13	
10	JM	1045	1100	16.7	3	5	13	
		-				-		
						20 20		
10								
				-1 1				
)			- 2 10	

029

Page ____ of ___

Personnel: G. RoBles T. Medina	
	Cal. Gas Exp. Date: 5/2 C
Date: 7-13-23 Instrument	Used: Inspectra Grid Spacing: 25ft
Temperature: 92° Precip:	O Upwind BG: 2.3 Downwind BG: 2.8

GRID ID	STAFF	START STOP TOC WIND INFORMATION				NOITA	REMARKS	
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	NE IAKKO
92	GR	0747	0802	81.10	3	5	12	Stockfiles
64	(18	0805	0825	151.5	5	10	12	
43	(7R	0823	0839	39.4	4	8	12	
-11	GR	0844	0903	31.3	5	9	13	
90	GR	0928	0944	174.0	3	4	13	STOCK PIKS
66	GR	0946	1001	39.4	3	4	12	
41	GR	1004	1021	27.8	3	4	13	
15	GR	1024	1044	34.2	3	4	12	
3,8	GR	1111	1128	6.2	5	6	12	
18	GR	1129	1147	5.0	5	b	12	
91	JM	6758	0813	21.7	5	9	12	
65	JM	0815	0830	31.10	8	10	12	
42	Im	0835	0850	32.7	5	10	13	
12	JM	0835	0910	5.07	6	10	13	_ 10.
89	Jm	0933	0944	39.5	3	4	13	
67	JM	0953	1009	40,9	3	4	13	
40	JM	1011	1026	13.4	3	4	13	
16	JM	1028	1040	28.8	3	4	12	
39	JM	1118	1133	7.9	5	10	12	
17	JM	1135	1158	11.3.	5	6	12	
	bration Si							6

Attach Calibration Sheet Attach site map showing grid ID

Personnel: J. medina	
A. Lopez	Cal. Gas Exp. Date: 5/2
Date: 7-17-23 Instrument Used: Juspectrum	Grid Spacing:
Temperature: 95° Precip: 4 Upwind BG:	1,9 Downwind BG: 2,9

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	IATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REPIARES
85	JM	0721	0736	allete	2	3	15	Mulch/Graves
71	JM	6741	0756	71.4		2	14	GRAVEL
36	ML	6803	0818	25.6	1	2	14	
20	JM	0825	0840	4,9	2	3	14	
83	JM	0920	0935	113.8	4	6	16	,
73	JM	0937	0952	58.8	3	7	12	GRAVE
34	JM	0957	1012	8.3	1	9	11.	
22	MC	1015	1030	14.5	5	E	10	
117	JM	1101	1116	407.2	5	10	10	
118	JM	1118	1133	193.11	5	10	10	
119	ML	1135	1150	297.5	5	10	10	
86	C14	0725	0735	مارادا	2	3	15	GRAVEL /compete
7.0	CH	0745	0755	56il	1	2	14	GRAVET CONCRETE
37	CH	0815	0825	5.0.	2	3	14	
19	C14	0830	0840	4.2	2	3	14	
82	CIA	0925	0935	155.0	4	b	10	. ,
74	CIT	0940	0950	3615.	3	7	12	
33	CH	1000	1015	NO.	7	9	11	Rock file
23	CH	1020	1030	8.9	5	0	10	
120	CH	1100	1115	178.7	5	10	10	
121	CH	1120	1130	262.8	5	10.	10	TRASH
68	AL	0720	0735	21.16	2	3	15	
69	AL	0737	0752	162.1		2	14	Rock Pile
88	AL	0756	0811	15.10	1	2	14	Rockfile
87	AL	0812	0827	10.9	2	3	14	Rock PH
84	AL	0854	0909	36.9	3	5	10	DINT Pile
72	AL	8911	0123	20.4	4	6	11	DIRT + ROCK PILC
35	AL	0926	0941	7.7,2	5	7	ii	Heavy Egpi Ament
21	AL	0942	0957	1.3	5	7	10	1
114	AL	1024	1039	114.7	5	9	10	AspHail+ + concrete
ttach Cali	ibration SI	heet				1		

Attach Calibration Sheet

Attach site map showing grid ID

Page of Z

Pe	rsonnel: _	J. med C. Hug A. Luft	ing hes					Cal. Gas	Exp. Date: <u>5/2</u> \(\frac{5}{2} \)	
									25 FT	
	GRID ID	STAFF INITIALS	START TIME	STOP TIME	TOC PPM	WIND INFORMATION AVG MAX. DIRECTION			REMARKS	
	110					SPEED	SPEED	16 POINT		
	113	AL	1040	1055	318.0	5	9	11	Concrete	
	112	AL	1040	1055	3180	5	9	10	Concrete	
						5		10	(oncrete (oncrete DIRT PIKS	
	112	AL	1056	1111	70.0	5	10		Concrete	

Attach Calibration Sheet Attach site map showing grid ID

Page Z of Z

Personnel: J. Medina Ci Hugnes	
	Cal. Gas Exp. Date: 5/25
Date: 7-18-23 Instrument Used: Inspective Grid	Spacing: 25 Fo
Temperature: 93° Precip: Upwind BG:	Downwind BG: _ 2, 4

GRID ID	STAFF		STOP	тос	WIND INFORMATION			REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	11011111110
101	JM	0733	0748	177.7	5	10	12	
95	JM	0757	0817	40.4	5	7	12.	
61	JM	0817	0833	44.2	4	1	13	
46	5m	0842	0856	38.2	L	8	13	
48	JM	0938	0952	38.5	4	5	12	
59	JM	0953	1011	38.2	3	5	12	
97	m	1015	1030	40.6	5	7	12	
99	JM	1033	1048	40.6	5	7	12	Veg
145	JM	1121	1136	37.3	5	9	12	Traffic
147	JM	1241	1156	36,7	4	6	12	
102	C14 -	0735	8745	4108.2	5	10	12	
94	C11-	0745	0755		1	12	12	
62	C14	0800	0815.	25.3	5	7	12	
45	C14	0820	0830	44.6	3	7	13	
47	CH:	0930	0940	14.6	5	7	12	
60	CH	0945	0955	41.7	5	6	12	
96	C47 -	1000	1015	15.1	4	5	12.	
100	:CH	1620	1630	96,8	5	7	12	Rock Pile
146	C14	1115	1125	209.11	5	g	12	
157	C17	1130	1140	92.5	6	9	12	Haul Road
								HOLO (COOE)
					3.00			
								,

Attach Calibration Sheet Attach site map showing grid ID

Page __l of _l_

Personnel: MIORUG A. LOPEZ	
C. Hughes J. Medina	Cal. Gas Exp. Date: 3/1
Date: 7-19-23 Instrument Used: Tuspectru Gri	d Spacing: 25 pt
Temperature: 95° Precip: 6 Upwind BG: 19	Downwind BG: 2.3

GRID ID	STAFF	START	RT STOP	тос	WIN	ID INFORM	IATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KLPIARRS
8	Mo	0735	0750	9.47	5	1	12	
6	mo	0750	0805	14.7	5	8	12	
103	MO	0851	0906	247.6	6	7	12	TRASIT
93	mo	8106	0921	28.2	ક	Ś	12	DIRT STOCKPILE
104	MO	1010	1025	160.3	4	7	12	
105	Mo	1027	1643	117.5	H	S	13	TRASH
55	CH	0825	0835	220.2	7	9	12	Ven ander
52	CH	0840	0850	7.8	5	C	12.	
53	CH	0900	0915	3.2	6	9	12	
54	C14	920	0930	3.5	5	8	12	Road/17111
63	CH	1020	1030	40.2	4	7	12	1
44	C17	1035	1045	23.2	4	5	13	
142	C14	1125	1135	Malale	1	7	13	
98	JM	0824	0834	175.2	7	9	12	STEEP Slope
58	JM	0845	0900	89.5	5	9	12	
49	JM	0903	0918	21.9	5	8	12	
50	JM	0970	0935	34.9	6	e	12	
56	JM	1015	1025	50.5	4	7	12	
57	JM	1030	1043	15.2	4	5	13	
51	JM	1045	1100	5.9	4	5	13	
81	AL	0732	0747	994.4	5	7	12	ASH*17
75	AL	0748	0803	102.2	5	8	12	
32	AL	0803	0818	24.9	b	g	1/	
24	AL	0818	0833	34.9	7	9	12	
77	AL	0845	0900	19.0	5	9	12	
30	AL	0900	0915	12.5	5	9	12	
26	AL	0916	0931	7.8	6	8	12	
27	AL	0932	0947	9.7	6	9	12	
106	AL	1037	1049	19.3	4	5	13	TRASH
107	AL	1050	1102	54.3	4	5	13	TRASIT
Attach Cal	ibration C		in the rest			-		

Attach Calibration Sheet

Attach site map showing grid ID

Page \int of Z

Personnel: MIOLUS CIHUSINES	A. Lopez G. Robles	
J. Medina		Cal. Gas Exp. Date: 5/25
Date: 7-19-23 Instrument Us	sed: <u>Tuspectra</u> Gri	d Spacing: 25P+
Temperature: 95° Precip:	Upwind BG: 1.9	Downwind BG: 2,3

GRID ID	STAFF	START	STOP	тос	WIND INFORMATION			REMARKS
	INITIALS	TIME	TIME	РРМ	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
108	AL	1103	1113	27,4	4	5	13	MATSH TRASH
80	GR	0724	0739	633.1	5	8	12	
76	GR	0742	0758	156,6	5	7	11	
31	GR	5080	0816	8.1	6	8	H	
75	GR	0820	6837	17.6	7	9	12	
78	GR	0847	0902	31,6	5	9	12	
29	GR	0907	0922	3.8	5	- 8	12	
28	(1/L	0932	0947	4.5	Ь	9	12	
79	GR	0952	1006	14.3	b	10	12	
109	GR	1036	1046	28,5	4	5	13	
116	GR	1056	1160	133.6	4	5	13	
111	(1R	1100	1115	34,5	니	- 5	13	
				- n 1				
					_			

Attach Calibration Sheet
Attach site map showing grid ID

Page 2 of 2

Personnel: J. medina G. Robles	
C. Hughes	Cal. Gas Exp. Date: 5/25
Date: 7-20-23 Instrument Used: INSPECTRA G	rid Spacing: 25F7
Temperature: 95° Precip: Dupwind BG: 7.6	Downwind BG: 2.9

GRID ID	STAFF	START	STOP	тос		ID INFORM	IATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
115	JM	0742	0757	90.2	4	b	4	
143	JM	0805	0820	158.7	5	7	8	TRAFFIC
144	JM	0825	0840	157.0	5	6	7	
148	JM	0849	0909	321.8	5	8	6	
149	JM	0940	0955	353,4	5		8	
150	JM	1000	1015	137.0	5	10	4	
151	JM	1020	1032	127.7	ما	10	8	STEEP Slopes
180	JM	1101	1116	84.4	4	7	8	
152	GR	0736	0746	37615	3	4	3	STEEP Slope
153	GR	0828	૦૪૩૪	252.3	4	6	7	STEEP Slope
154	GR	0849	0850	140.3	3	5	6	STEEP Slope
155	GR	0901	0911	51.3	_5	•	9	STEEP Slofe
156	GR	0912	0924	42.2	5	7	8	STEEP STUPE
134	(JR	0925	0936	17.8	5	7	9	SANCE STOCK PILE / Slop
133	GR	0938	0948	7.0	Q	10	q	Syand Stock Pile Stop
132	GR	1025	1036	80.2	6	10	8	STEEP Slope
131	GR	1037	1047	177.2	7	10	G	STEEP STOPE
130	(7R	1048	1058	16.4	2	7_		STEEP Slope
129	(1R	100	7711	16.8	4	7	g	STEER STOPE
123	GR	1120	1126	40.6	7	lo	8	6966P Sluffe
141	CH	0737	0745	500,5	_3.	4	3	
140	CH	0750	0755	309.9	4	<u></u>	4	DIPT PILES/CONCIETA
139	C14	1075	1020	143.3	ç	10	- (
138	Clt	0800	0815	404.5	4	7	8	
137	CH	0826	0830	536.0	4	16	(concrete stackflu
136	CH	0850	0900	185b.7	5	8	6	
135	CH	0910	0930	505.8	b	9	7	SOFT DIRT
128	CH	1040	1045	7.5	1	10	8	DIRT 1911/5/09e
127	CH	1050	1055	5.0	6	10	8	DIRT 17:11 /5/000

Attach Calibration Sheet

Attach site map showing grid ID

Page _ (of _ Z

SIMI VALLEY LANDFILL INSTANTANEOUS LANDFILL SURFACE MONITORING

Pe	ersonnel: _:	T. Med	lina						
		Ciltur	25				Cal. Gas	Exp. Date:	5/25
	Date: 7	-20-23	Instrur	nent Used	: <u>tusp</u>	ectra Grid	Spacing:	25	Fr
	Temperat	ure: <u>9</u>	S Pred	cip: 😝	Upv	vind BG: 2 co) Downw	vind BG: _	2,4
	GRID ID	STAFF	START	STOP	TOC	WIND INFORM	ATION	REMA	DKC

GRID ID	STAFF	START	STOP	тос	WIND INFORMATION		REMARKS	
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
126	CH CH	1100	1105	36,1	4	7	Q	STEEP Slope
125	CH	1115	1720	20.0	4	7	8	STEEP Slope
124	CIA	1120	1125	25.4	7	10	8	STEEP Slope STEEP Slope Big fissure
		4						
				-				
······································				-				
	1							
				<u> </u>				
· · · · · · · ·								
31								
	ibration S							

Attach Calibration Sheet Attach site map showing grid ID

Page Z of Z

SIMI VALLEY LANDFILL INSTANTANEOUS LANDFILL SURFACE MONITORING

sonnel	MIORU A. Lope Cillun	6 Z hcs		J. Mcc	lina		Cal Gas	Exp. Date: 5:/25
Date:{	3-1-23	Instru	ment Used	t: 108	Fect Ro	S Gri	d Spacing	25FT
Гетрегаt	ture: 4	9 Pre	cip: <i>£</i>	2 Upv	vind BG:	19	Downw	ind BG: 7,3
GRID ID	STAFF INITIALS	START TIME	STOP TIME	TOC PPM	AVG	MAX.	DIRECTION	REMARKS
160	mo	0719	0734	266 D	SPEED	SPEED	16 POINT	
159	mo Mo AL AL CIA	0735	6750	519.2	5	7	12	
161	Mo	0751	0806	29.7	5	6	12	
184	Al-	070	0735	194.4	5	8	12	
185	AL	0736	0751	Glast	5	7	12	
186	AL	0753	0803	42.4	5	8	12	
189	C17	0730	0740	1040.7	5	8	12	
188	0,1	1_0/40	0130	Inner, o	5	7	12	
187	CH	0750	0800 0734 0753	105.1	5	6	12	
181	JM	0719	0734	194.	5	É	12	
182	SM	0738	0753	867.9	6	8	12	
183	JM	0756	0811	348.5	96554		12	
164	GR	0745	0800	125.8	5	8	12	
158	GR	0802	0817	190.7	4	7	11	
165	GR	0820	0835	129.8	6	10	12	
						1		
			,					

Attach Calibration Sheet Attach site map showing grid ID

Page _____ of ____

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW0057	2	21,5					
SIMW0809	3	3.3					
SIMW0019	4	3,2					
SIMW0001	6	3.4					
SIMW0002	6	2.4					
SIMW0808	7	2.5					
SIMW0020	8	5.2					
SIMW1808	8	4.3					
SIMW0004	9	3.3	IN.				
SIMW0006	10	16.8					
SIMH021S	11	21.9					
SIMW1015	13	188.7					
SIMW709D	14	1,822.4					
SIMW709S	14	6,6					
SIMH0017	16	9.1					
SIMH018S	. 16	16.1					
SIH1363B	17	3.0					
SIMW0708	17	4,4					
SIMW2006	18	311					
SIMH022S	19	2.7					
SIMW2007	20	310					
SIMW2008	20	2.8					
SIMSVE02	21	14,3					
SIMLR00B	21	2.3					
SIM10905	24	1,7				_	
SIM10904	25	1.7				N CONTROL OF THE CONT	
SIMH022N	27	164,2					
SIM10903	27	30.2					
SIM10901	29	17.1					
SIMI0902	30	5.1					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW116R	31	2,922,8					
SIMW1565	31	12.4					
SIMW2084	31	2.4					
SIM1570D	32	4.0					
SIM1570S	32	55.D					
SIMW122S	32	2,3					
SIMW2045	33	7.7					
SIMW703D	33	2,2					
SIMW703S	33	29			- 1		
SIMW1785	35	3.5				7, 7	
SIMW2083	35	2,1					
SIMW1233	36	315					
SIMW1790	36	2.4					
SIMW1571	37	2.6					
SIM1792D	38	6.0					
SIM1792S	38	213					
SIMW1232	39	3.0					
SIMW707D	39	210					
SIMW1791	40	2.4				4	
SIM2042D	41	3.0					1
SIM2042S	41	3.2					
SIMW805D	41	7.2					
SIMW1231	42	120					
SIMW2041	43	3.2					
SIMW09RD	44	10.9					
SIMW1012	44	5.9					
SIMW1228	44	7.3					<u> </u>
SIMWO9RS	44	22,4					
SIMW010R	45	93.0					· · · · · ·
SIMW007R	46	9					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW1227	47	3.0					
SIMW1234	47	2.5					
SIM1572D	48	147					
SIM1572S	48	5.0					
SIMW810D	51	3.0					
SIMW810S	51	3,0					
SIMW0018	52	2.4	-1-1-4				
SIMW0812	52	5.2					
SIMW0811	53	2.2					
SIMLR00D	55	20.6	3			,	<u> </u>
SIMLR001	55	204.1					
SIMW0003	57	5,2					
SIMW0813	57	15.0					
SIMW2009	57	1,654					
SIMW1014	58	411					
SIMW1107	59	3.7					
SIH1405B	60	13.3				41.0	
SIH1406B	60	2.3					
SIMW1806	60	316					
SIMW2228	61	49.0					
SIMW2229	62	6.3					
SIMW2230	62	4.1					
SIMW1011	63	4.5					
SIM1673S	64	126.0					
SIM1793D	64	83.7					
SIM1793S	64	711					
SIMW012R	64	9.2					
SiH1406A	65	3.1					
SIM2044D	65	5.1					
SIM2044S	65	5.0					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW1229	65	3.4					
SIM1788D	66	4,8					
SIM1788S	66	11.0					
SIM1362A	67	21,2					9 -
SIM1404A	67	2.8					
SIMW1008	67	2.4					
SIMW1787	67	3.0					
SIM1789D	68	6.9					
SIM1789S	68	3.3					
SIM2054D	68	4.9					
SIM2054S	68	4,4					
SIMW1005	68	855.9					light .
SIMW1225	68	4,5					
SIM2043D	69	700.3				***************************************	
SIM2043S	69	6,369.4					1
SIMW1786	69	856.2					
SIM1573D	70	3616					
SIM1573S	70	10.7					0
SIM1783D	70	7,819					
SIM1783S	70	78.7					
SIM2064D	70	1,4 25,8					
SIM2064S	70	21.5					
SIM1805D	71	7.0					
SIM1805S	71	509					
SIMW1569	71	885					
SIMW2231	71	4.8					
SIM1359A	72	4.5					
SIMW1779	73	232.1			· · · · · · · · · · · · · · · · · · ·		
SIMW2232	73	311					(
SIM1568D	74	2.8					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIM1568S	74	2.7					
SIM2052D	74	52,4					
SIM2052S	74	148.8					
SIMW2065	74	1,9					
SIM1564D	75	128.0					
SIM1564S	75	683.0	<u> </u>				
SIMW115S	76	3.1					
SIMW0202	76	11.8					
SIMW1563	78	10.0					
SIMW2220	80	6210					
SIM1562D	81	14.5					
SIM1562S	81	14.8					
SIMW2219	81	13.5	-				
SIM2061D	82	296.3					
SIM2061S	82	1,160.6					
SIM1778D	83	2.2					
SIM1778S	83	2,3					
SIMW1802	83	3,3					
SIMW822D	83	78.2					
SIMW822S	83	17616					
SIM2003A	83	3.3					
SIMW1220	84	8,8					
SIMW2053	84	4,5					
SIM1780D	85	Actual					
SIM1780S	85	Actual Dumping					
SIM1401A	86	Acture Dompry Peture					
SIMW1104	86	Dunpmy					
SIMW2047	86	2.2					
SIM2002A	86	Actus Dum Pmg					
SIMW2234	86	Durapray		,			-

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIM1403A	88	2,3					
SIM2081D	88	2,4					
SIM2081S	88	2,4					i
SIMW1781	88	711					
SIMLROAR	88	14.2					
SIMHL005	88	2.6					
SIM1782D	89	2,7					
SIM1782S	89	214					
SIM1928S	89	212			***		
SIMW2056	89	2.2					
SIMW1356	90	9.8					
SIMLR00A	90	1469					
SIM1929S	91	214					
SIMW1801	91	315					
SIMW2227	91	Acture Domfma					
SIM1799D	92	426,4					
SIM1799S	92	609.4					
SIMW1222	93	911					
SIMW2046	93	3,3					ļ
SIMW2049	93	2,1					
SIMW1798	94	2,5					
SIMW1010	95	2,3					
SIMW2048	95	311					
SIMW2233	95	1310					
SIM1937S	96	2.2					
SIM1403B	97	2.8					
SIM1404B	97	3,8					
SIMW0814	98	1110					
SIMLR602	99	84.5	,				
SIMLR603	99	119.6					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW0816	99	2.6					
SIMW0817	100	1010					
SIMW0818	101	217					
SIMW0819	103	Domping					
SIMW1796	103	10.3					
SIMW2222	103	6.3		•			
SIMW2055	104	1,004	 				
SIM1938S	105	5.6					
SIMW1794	105	373.4					
SIMW2223	105	612					
SIM2001A	106	13.4					
SIMW2224	106	1,18316					The second secon
SIMW1807	107	Actue Dumfing					
SIMW1353	108	Petrole Dimping					
SIMW1795	108	Dumping	(2)				
SIMW2225	108	3.1		100.11			
SIM2001B	109	159					
SIMW1803	109	Actue Dompma					
SIM1777D	110	Achie Donnema					
SIM1777S	110	DOINDING					
SIMW1101	110	DUMPING					
SIMW1776	110	5.2					
SIMW2226	110	95,3					
SIMHL002	110	215					
SIMHL003	110	Acture Dumpng					
SIMW2057	111	95.5					
SIMW2221	112	4.9					
SIMHL001	112	103.4					
SIMW0048	113	93,2					
SIMW2062	113	71,6					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW2218	113	6,192,3					
SIMW1816	114	432,0					
SIMW2058	114	33911					
SIMW1561	115	1611					
SIMW2060	116	19,121					
SIMW2001	117	77.6	7				
SIMW2217	117	22,218.9					
SIMW2216	118	Netwo Dumping Active					
SIMW2099	119	Dynfing					
SIMW2059	120	4,123					
SIMW2215	121	Dompines Helut					
SIMW2098	122	Down Ping					
SIMLR31A	123	106.7					
SIMW2076	126	24,9					
SIMW2096	127	74.5					
SIMW2097	127	2.5					
SIMW2077	128	1723					
SIMW2095	129	20.2					
SIMW2074	130	3,480.3					
SIMW2078	131	149					
SIMW2073	132	2,814.9					
SIMW2094	132	12.9					
SIMW2079	133	11.4					
SIM2102S	133	163.4					
SIMW2093	134	14.0					
SIMW2080	135	3.0					
SIMW2213	135	303.6					
SIMW2002	136	4,635					
SIMW2212	136	2,059.8					
SIMW2088	137	37.9					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW2004	138	1,251,3					
SIMW2214	138	440					
SIMW1809	139	13,0					
SIMW1815	139	33,6					
SIMW1814	141	52,4					
SIMW2005	141	182.8					
SIMW1817	142	140					
SIMW1811	143	28.8					
SIMW1813	143	72.0					
SIMW2082	143	67					
SIMW1812	144	109.6				T.	
SIMW2070	144	46.7	1				
SIMSVE03	144	8.1					0.140
SIM2004A	145	11.9					
SIM1936S	145	45					
SIM2199A	145	31			1,000		
SIM2115F	146	41.0					
SIM2106A	146	34,0					
SIM2105A	146	28.0					
SIMW2211	148	1,114	_				
SIMW2089	149	26.7	W				
SIMW2210	150	23.9					
SIMW1810	151	28.1					
SIMW1819	151	47,6					
SIMW1818	153	53.6					
SIMW2090	153	67.0					
SIMW2091	155	24.7					
SIMW2092	156	13.6					,
SIM2115E	157	27.0					
SIM2107A	157	11,0					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIM2108A	157	4.2					
SIM2123A	157	4.5					
SIM2115D	158	613					
SIM2109A	158	1011			` .		
SIM2110A	158	12.7					
SIM2125A	158	6.7					
SIM2115C	159	3,4					
SIM2111A	159	14.2					
SIM2112A	159	28.3					
SIM2126A	159	17.4					
SIM2127A	159	25,2					
SIM2115B	161	25.4					
SIM2128A	161	26.7					
SIM2115A	168	34.4					
SIM2113A	168	35.6					
SIM2114A	168	30.9					
SIM2129A	168	20.3					
SIMLR22A	168	32.3					
SIMLR22B	168	23.6					
SIMLR23A	168	30,4					
SIM2100S	185	1.7		1111			ļ
SIMLR22C	185	1.7					
SIMLR23B	186	7,5					
SIM2116A	188	203				-	
SIM2117A	191	69					
SIM2330A	191	5.4					
SIM2331A	191	5.6					
SIM2118A	193	6,6					
SIM2232A	193	8.4					1
SIM2119A	197	16.9					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIM2233A	197	24.6					
SIM2120A	199	33.6					
SIM2334A	199	28.4					
SIM 2066	118	1,101	1				
Simw Ital	116	1,570.7					
51M 2333A	197	7.6					
SIM 2135 B	199	31.5					
Sim 2135A	168	31.7					
SIM 2336A	168	55.3					
					X X		
						0	
			Y				
	1						
	-						
	L						

Waste Management Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs

Quarter: 3rd QTN 2023

Initial Monitoring Performed By:

Follow-up Monitoring Performed By: M. ORUS

Landfill Name: Sim, Valley Landfill

	Comments		S+M (7830	Strullol	94302 1045	550m2224	Stn 206 15	695 (MUZ)	15/2 12/86	CIM 12000	(13/6/	1/2 11 (-W/) 20-C	Web 11 18060	14-11 7000	10 10 m	W Common			the bit of demonstrations of the spirits of the spi	to the second of	a destruction destruction of a commercial service of	 to the distribution of the	W distance or description of the state of th		de a minu d'étrape de selvane	
	Exceed.	mdd																								
18 20 Day Eastern 11	Exceed.	mdd .	200	36	132	707	397	150	56	962	472	493	187	727	10	7								THE REAL PROPERTY.		
18 20	Monitoring Date	4 9-72	(2/20												>		0.60									
=	Exceed.	mdd																								
1st 10-Dav Follow-Ile	No Exceed. <500	1.04	1	200	00	27	8,	2	87	901	3)1	439	181	135	=											
14 10	Monitoring	4-2007													V											
Corrective Action within 5 Days	Action taken to repair Exceedance																									
Соглес	Repair Date										1 7 1 1 1															
nt	Field Reading	816/32	1022.4	0 32h/	1188.1.	0) (0)	0000	0000	0.00	607.4	1089,3	4123	605	1023	520											
Initial Monitoring Event	Monitoring Date	7-10-25													0	7										
Initial A	e #	1.5	27	~~	72	7	1	10	0	200	5	5	= 4	77	413							_				
J	Grid	87	0//	70	10%	62	120	1 2 1	10	0	76	02)	7	20	501		=)									

Waste Management Instantaneous Landfill Surface Emissions Monitoring **Exceedance and Monitoring Logs**

Quarter: 3, d QTR 72023

Initial Monitoring Performed By:

Follow-up Monitoring Performed By: M、いんひち

Landfill Name: Sizzi, Valley Lundfill

	Comments	SEMM 2002. SEMM 2211 SEMM 2211 SEMM 2211 SEMM 101 SEMM 101 SEMM 2043S
d.	Exceed.	
1 st 30-Day Follow-Up	No Exceed. <500	1337 1337 1337 1337 1337 1337 1337
1 st 30-	Monitoring Date	8-4-73
a n	Exceed.	
1st 10-Day Follow-Up	No Exceed. <500 ppm	1871 1872 1872 1872 1872 1873 1873 1873 1873 1873 1873 1873 1873
14 10-	Monitoring Date	7.20.23
Corrective Action within 5 Days	Action taken to repair Exceedance	
Correct	Repair Date	
nt	Field Reading	21722 21722 2007 2007 2007 2007 2007 200
Initial Monitoring Event	Monitoring Date	2-11-12
Initial M	Flag	25 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -
	Grid	69

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Site: Sim, Valley Landk, 11

		1/1 B 1/1	2023	?	Sid GIR		2023		rage of rages
Technician:		Mioras			W		×		
Instrument:		In snoctou	3		H	Twspectra			
Calibration Standard:		300 ppm				Sooppm			
	E	Initial Monitoring Event	int		Re-Mc	Re-Monitoring Event - 10 Days	t - 10 Days		Comments
Grid Number N	Flag	Location	Field Reading (ppm)	Date Monitored	Remedial	Date Monitored	Field Reading <200 ppm	Field Reading >200 ppm	
, 26	18	SIM17996	476.4	7-10-23		7-20-73	89		SEW 1795 D
	BZ	55M 2061D	5'962	-		7	23		SFAN 2061 D
1	13.3	SEMIZITY	232,7	9		>	123		Str. W 1729
					>1				

362

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Site: Sim. Valley Candhill

Quarter / Year:	Year:	3v1 OTR	2022	2	3 00	300 000	223		Page of Pages	368
Technician:	in:				Mosson	20.5				1
Instrument:	nt:	Fasortha	ر			TV10000				
Calibration	L.									
Standard:		SOUPPIN	ζ			500 PMM	Z.			
		Initial Monitoring Event			Re-Mo	Re-Monitoring Event - 10 Days	nt - 10 Days	44	Comments	
Grid Number	Flag	Location	Field	Date Monitored	Remedial Work	Date Monitored	Field Reading	Field Reading		
			(mdd)				<200 ppm	>200 ppm		
	BY		250	7-11-23		7-20-17	77		Surlace	
	BS.		4.205	1		١	39		Surface	
	BK		303, 3	/			16.3		SEM WZZ13	~
	187		205,6				127		SEM WESH	_
	188		432				38		SEMMISI	2
	189		227,7				104		Surtuce	
	1310		327				74		351 M WJS	_
,	811		210,1	7		>	56		Surtain	
				7.						
							11.			
						9				
						A				

362

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Site: 5 120, 1/alle (curd/6, 1)

Page of Pages				Comments														×		
					Field Reading															
2023	25		٤	t-10 Days	Field Reading	181	168	102	189	134	177	-								
3rd are	1. chuel of	TVA 1006	SOOPPM	Re-Monitoring Event - 10 Days	Date Monitored	7-26-23					>									
38	X			Re-Mo	Remedial															
23					Date Monitored	7-18-23	,	_			7	3								
R 202		75	mila	at	Field Reading	7/8/3	9:105	364.2	352.3	274,4	1.602									
3rd ata		In 50.00 Fra	500 M	Initial Monitoring Event	Location	Sarkare	Surtain	Surtaile	2	Collace	Surface									
(ear:	.: 	t:	_		Flag Number	R13	418	8 15	8 16		8 18									
Quarter / Year:	Technician:	Instrument:	Calibration Standard:		Grid	701	701	701	701	102										

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Quarter / Year: 3RD QTR 2023					26	3rd Ore	2		Page 1 of 1 Pages
Technician: Pt. On 12						W, O'RUS	9		
Instrument: INSPECTRA						TVANCS	0		
Calibration Standard: 500PPM						Soogen	Pm		
Initial Monitor	oring Event	ıţ			Re-M	Re-Monitoring Event	Event - 10	Days	Comments
Grid	Flag	Location	Field Reading (ppm)	Date Monitored	Remedial	Date	Field Reading	Field Reading	
2023Q3_056_ISS	B153		384.7	8/2/2023		8-10-23	22		SURFACE
2023Q3_056_ISS	B154		369.2	8/2/2023			52		SURFACE
2023Q3_102_ISS	B155		332.5	8/2/2023			74		SURFACE
2023Q3_099_ISS	B156		318.6	8/2/2023			40		SURFACE
2023Q3_104_ISS	B157		301.9	8/2/2023			130		SURFACE
133	B158		284.3	8/2/2023			&		SURFACE
2023Q3_102_ISS	B159		284.2	8/2/2023			11		SURFACE
5	B160		274.3	8/2/2023			186		SURFACE
2023Q3_102_ISS	B161		258.8	8/2/2023			09		SURFACE
2023Q3_103_ISS	B162		242.7	8/2/2023		→	107		SURFACE
						-			

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Quarter / Year: 3RD QTR 2023					3rd	d Gre	5252		Page / of 9 Pages
Technician: MILKE ORUE						11126	ORVE		
Instrument: INSPECTRA							1		
Calibration Standard: 500PPM		27 27				500 APM	Sm		
Initial Monitorin	nitoring E	ig Event			Re-M	Re-Monitoring Event	1	10 Days	Comments
Grid	Flag	Location	Field Reading	Date	Remedial	Date	Field Reading	Field Reading	
Number	wumber		(mdd)	Monitored	Work	Monitored	<200 ppm	>200 ppm	
	B258		449.5	8/4/2023		8-14-23	31		SURFACE
	B259		330	8/4/2023			54		SURFACE
	B260		263.6	263.6 8/4/2023			82		SURFACE
	B261		259.9	8/4/2023			50		SURFACE
	B262		246.9	8/4/2023			29		SURFACE
	B263		239.9	8/4/2023			48		SURFACE
	B264		233.5	8/4/2023			12		SURFACE
	B265		229.4	8/4/2023			34		SURFACE
	B266		219.8	8/4/2023			7		SURFACE
	B267		214.5	8/4/2023			15		SURFACE
	B268		213.8	8/4/2023			43		SURFACE
	B269	SIMW2091	202.1	8/4/2023			77		SIMW2091
2023Q3_182_ISS	B270		499.6	8/4/2023			85		SURFACE
2023Q3_182_ISS	B271		499.1	8/4/2023			54		SURFACE
2023Q3_182_ISS	B272		495.7	8/4/2023			62		SURFACE
2023Q3_164_ISS	B273		470.6	8/4/2023			<i>ال</i>		SURFACE
2023Q3_164_ISS	B274		465.9	8/4/2023			٦,		SURFACE
2023Q3_189_ISS	B275		458.7	8/4/2023		_	37		SURFACE
2023Q3_182_ISS	B276		457	8/4/2023			9		SURFACE
2023Q3_189_ISS	B277		452.6	8/4/2023			54		SURFACE
2023Q3_182_ISS	B278		447.9	447.9 8/4/2023			23		SURFACE
2023Q3 182 ISS	B279		443.6	443.6 8/4/2023		-	28		SURFACE
				-					

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Quarter / Year: 3RD QTR 2023					300	d am	R 2023		Page 2 of 9 Pages
Technician: MILKE ORUE						MIKE	13		
Instrument: INSPECTRA						2	Š		
Calibration Standard: 500PPM						Scofpm	PPM		17
Initia	Initial Monitoring E	Event			Re-M	Re-Monitoring Event -	Event - 10	10 Days	Comments
Grid	Flag	Location	Field Reading	Date	Remedial	Date	Field Reading	Field Reading	1
Number	Number		(mdd)	Monitored	Work	Monitored	<200 ppm	>200 ppm	
2023Q3_182_ISS	B280		443.3	8/4/2023		8-14-23	34		SURFACE
2023Q3_182_ISS	B281		438.2	8/4/2023			17		SURFACE
2023Q3_182_ISS	B282	1	435.6	8/4/2023			57		SURFACE
2023Q3_189_ISS	B283		433.5	8/4/2023			5-5		SURFACE
2023Q3_182_ISS	B284		432.5	8/4/2023			20		SURFACE
2023Q3_182_ISS	B285		432	8/4/2023			152:		SURFACE
2023Q3_182_ISS	B286		426.4	8/4/2023			h]		SURFACE
2023Q3_189_ISS	B287		424.5	8/4/2023			5.0		SURFACE
2023Q3_182_ISS	B288		419.5	8/4/2023			52		SURFACE
2023Q3_189_ISS	B289		416	8/4/2023			53		SURFACE
2023Q3_164_ISS	B290		413.7	8/4/2023			_ვი		SURFACE
2023Q3_181_ISS	B291		413.7	8/4/2023			jol		SURFACE
2023Q3_188_ISS	B292	;	412.4	8/4/2023			Zi		SURFACE
2023Q3_188_ISS	B293		408.4	8/4/2023			99		SURFACE
2023Q3_160_ISS	B294		404.7	8/4/2023			77		SURFACE
2023Q3_189_ISS	B295		404.4	8/4/2023			58		SURFACE
2023Q3_164_ISS	B296		389.1	8/4/2023			50		SURFACE
2023Q3_182_ISS	B297	:	388.7	8/4/2023			63		SURFACE
2023Q3_189_ISS	B298		383.9	8/4/2023			32		SURFACE
2023Q3_182_ISS	B299		382.9	8/4/2023			18		SURFACE
2023Q3_189_ISS	B300		381.9	8/4/2023			5		SURFACE
202203 189 ISS	P204		2017	0/4/0000			7,0		CLIDEA OF

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Kualiel / Ical: JIVD & IIV 2020						Soch 6	GTR 2023	3	Page ≤ of G Pages
Technician: MILKE ORUE	0					MIKE	Oper		
Instrument: INSPECTRA						TVAICO	00		
Calibration Standard: 500PPM						500	Soofm		
Initia	Initial Monitoring Event	vent			Re-M	Re-Monitoring Event	Event - 10	Days	Comments
Grid	Flag	Location	Field Reading	Date	Remedial	Date	Field Reading	Field Reading	
Number	Number		(ppm)	Monitored	Work	Monitored	<200 ppm	>200 ppm	
2023Q3_160_ISS	B302		373.4	8/4/2023		8-14-23	45		SURFACE
2023Q3_182_ISS	B303		372.8	8/4/2023			19		SURFACE
2023Q3_182_ISS	B304		372.4	8/4/2023			1.1		SURFACE
2023Q3_189_ISS	B305		370.8	8/4/2023			33		SURFACE
2023Q3_182_ISS	B306		368.6	8/4/2023			17		SURFACE
2023Q3_160_ISS	B307		365.6	8/4/2023			8		SURFACE
2023Q3_160_ISS	B308		363.5	8/4/2023			25		SURFACE
2023Q3_182_ISS	B309		361.8	8/4/2023			81		SURFACE
2023Q3_182_ISS	B310		359.4	8/4/2023			63		SURFACE
2023Q3_182_ISS	B311		354	8/4/2023			33		SURFACE
2023Q3_182_ISS	B312		351.3	8/4/2023			17		SURFACE
2023Q3_182_ISS	B313		347.9	8/4/2023			25		SURFACE
2023Q3_189_ISS	B314		347	8/4/2023			62		SURFACE
2023Q3_164_ISS	B315		344.4	8/4/2023			73		SURFACE
2023Q3_164_ISS	B316		343.4	8/4/2023			م2	y	SURFACE
2023Q3_164_ISS	B317		334.5	8/4/2023			15		SURFACE
2023Q3_182_ISS	B318		333.2	8/4/2023			9		SURFACE
2023Q3_182_ISS	B319		332.7	8/4/2023			i ₁ 3		SURFACE
2023Q3_182_ISS	B320		330.7	8/4/2023	Ĭ		52		SURFACE
2023Q3_182_ISS	B321		330.4	8/4/2023			5		SURFACE
2023Q3_182_ISS	B322		329.1	8/4/2023			5 9		SURFACE
202203 189 188	B323		322.8	8/4/2023		>	89		SURFACE

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Quarter / Year: 3RD QTR 2023					3rd	CATR	2023		Page Y of 9 Pages
Technician: MILKE ORUE						mike	SPUE		
Instrument: INSPECTRA						TVA VOOD	0		
Calibration Standard: 500PPM						Southm	m		
Initial Monitorir	nitoring E	ng Event			Re-M	Re-Monitoring Event	- 10	Days	Comments
Grid	Flag	Location	Field Reading	Date	Remedial	Date	Field Reading	Field Reading	
Number	Number		(mdd)	Monitored	Work	Monitored	<200 ppm	>200 ppm	
2023Q3_182_ISS	B324		319.5	8/4/2023		8-14-23	50		SURFACE
2023Q3_164_ISS	B325		319.3	8/4/2023			28		SURFACE
2023Q3_183_ISS	B326		314.9	8/4/2023			23		SURFACE
	B327		314.2	8/4/2023			h(SURFACE
2023Q3_182_ISS	B328		312	8/4/2023			78		SURFACE
2023Q3_182_ISS	B329		308.9	8/4/2023			60		SURFACE
2023Q3_188_ISS	B330		307.1	8/4/2023			54		SURFACE
2023Q3_164_ISS	B331		305.9	8/4/2023			٩		SURFACE
2023Q3_182_ISS	B332		305.8	8/4/2023			7		SURFACE
2023Q3_182_ISS	B333		305.7	8/4/2023			٦٨		SURFACE
2023Q3_164_ISS	B334		301.8	8/4/2023			26		SURFACE
2023Q3_183_ISS	B335		300.8	8/4/2023			45		SURFACE
2023Q3_182_ISS	B336		300.4	8/4/2023			01		SURFACE
2023Q3_188_ISS	B337		300.2	8/4/2023			32		SURFACE
2023Q3_160_ISS	B338		299.5	8/4/2023			62		SURFACE
2023Q3_188_ISS	B339		298.9	8/4/2023			41		SURFACE
2023Q3_164_ISS	B340		297.7	8/4/2023			65		SURFACE
2023Q3_189_ISS	B341		295.9	8/4/2023			=		SURFACE
2023Q3_182_ISS	B342		292.1	8/4/2023			7		SURFACE
2023Q3_189_ISS	B343		289.4	8/4/2023			27		SURFACE
2023Q3_183_ISS	B344		285.1	8/4/2023			15		SURFACE
2023Q3_188_ISS	B345		281.2	8/4/2023		\rightarrow	8		SURFACE

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

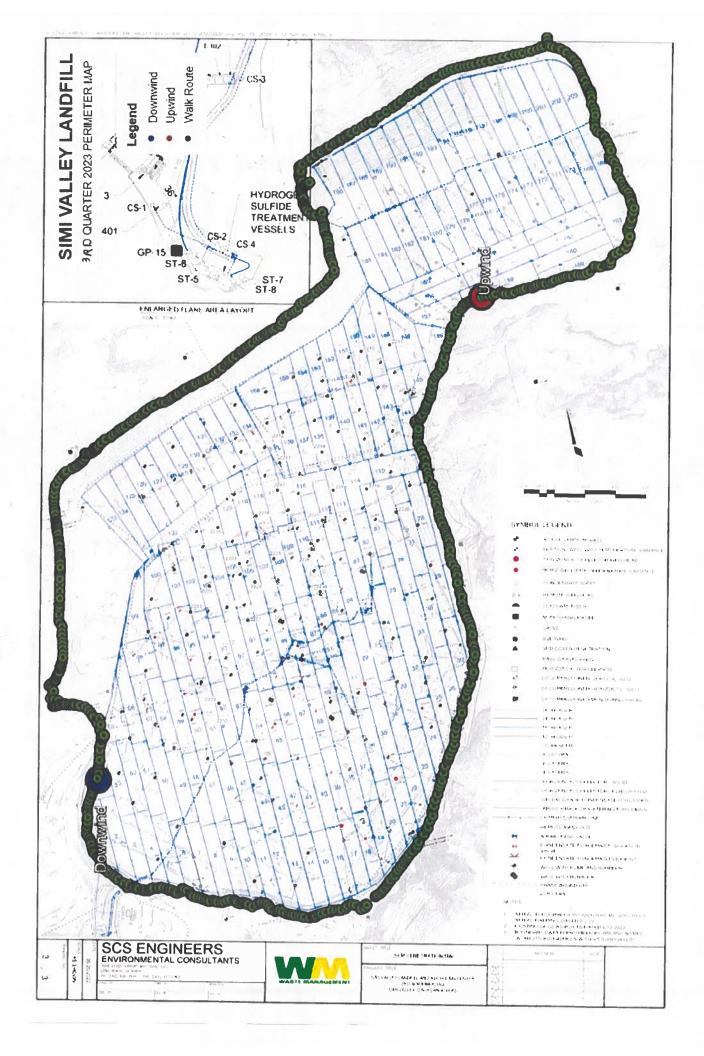
CTRA Initial Monitorin That Ha That	g Even				MIKE	oper		
Fla Num B347 B347	g Even							
Fla Numl B347 B347	g Even				TVRIDOC	00		7
Initial Monitoring Flammber B346 B346 B346	g Even				500	SOOPPM		
brid Fla Numl mber B346 B347				Re-M	Re-Monitoring Event	Event - 10	Days	Comments
mber	Location	Field Reading	Date	Remedial	Date	Field Reading	Field Reading	
	Ser	(bbm)	Monitored	Work	Monitored	<200 ppm	>200 ppm	
	3	278.5	8/4/2023		8-14-23	नेव		SURFACE
		276.8	8/4/2023			58		SURFACE
	8	276.6	8/4/2023			43		SURFACE
2023(43_182_155	6	276.2	276.2 8/4/2023			12		SURFACE
2023Q3_164_ISS B350	0	275.8	275.8 8/4/2023			39		SURFACE
2023Q3_164_ISS B351	1	275.4	8/4/2023			24		SURFACE
2023Q3_182_ISS B352	2	275	8/4/2023			79		SURFACE
2023Q3_164_ISS B353	3	274.5	8/4/2023			17		SURFACE
2023Q3_182_ISS B354	4	273.3	273.3 8/4/2023		,	24		SURFACE
2023Q3_189_ISS B355	2	268.5	8/4/2023			17		SURFACE
2023Q3_188_ISS B356	9	267.4	8/4/2023			17		SURFACE
2023Q3_182_ISS B357		266.9	8/4/2023			25		SURFACE
2023Q3_189_ISS B358	3	264.3	264.3 8/4/2023			19		SURFACE
2023Q3_182_ISS B359	6	264.1	8/4/2023			6		SURFACE
2023Q3_183_ISS B360		263.4	8/4/2023			2.1		SURFACE
2023Q3_189_ISS B361		261.7	8/4/2023			52		SURFACE
2023Q3_182_ISS B362	5	261.2	8/4/2023			7		SURFACE
2023Q3_189_ISS B363	3	261	8/4/2023			39		SURFACE
2023Q3_183_ISS B364	**	260.4	260.4 8/4/2023			5.(SURFACE
2023Q3_164_ISS B365	2	259.9	8/4/2023			45		SURFACE
2023Q3_183_ISS B366	0	252.2	252.2 8/4/2023			15		SURFACE
2023Q3_182_ISS B367		251.8	251.8 8/4/2023		7	610		SURFACE

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Quarter / Year: 3RD QTR 2023					3	Srd G	OTA 20	2023	Page (of 9 Pages
Technician: MILKE ORUE						WIKE	Shirt		
Instrument: INSPECTRA						TVANCOC	00		
Calibration Standard: 500PPM						STOPHIN	HM		
Initial Monitorin	50	Event			Re-M	Re-Monitoring Event	- 10	Days	Comments
Grid	Flag	Location	Field Reading	Date	Remedial	Date	Field Reading	Field Reading	
Ş	3000		(mdd)	Monitored	Work	Monitored	<200 ppm	>200 ppm	
2023Q3 164 ISS 2023Q3 169 ISS	B368		250.3	8/4/2023		67-48	58		SURFACE
2023Q3 164 ISS	B370		247.4				62		SURFACE
2023Q3_158_ISS	B371		245	8/4/2023			No		SURFACE
2023Q3_189_ISS	B372	\	243.6	8/4/2023			92		SURFACE
2023Q3_182_ISS	B373		241.9	8/4/2023			25		SURFACE
2023Q3_182_ISS	B374		241.2	8/4/2023			7		SURFACE
2023Q3_189_ISS	B375		239.1	8/4/2023			17		SURFACE
2023Q3_182_ISS	B376		238.9	8/4/2023			83		SURFACE
2023Q3_183_ISS	B377		238.9	8/4/2023			56		SURFACE
2023Q3_189_ISS	B378		238.8	8/4/2023			74		SURFACE
2023Q3_182_ISS	B379		238.6	8/4/2023			31	XI-	SURFACE
2023Q3_189_ISS	B380	,	238.3	8/4/2023			9		SURFACE
2023Q3_183_ISS	B381		237.6	8/4/2023			S		SURFACE
2023Q3_182_ISS	B382		236.7	8/4/2023			29		SURFACE
2023Q3_189_ISS	B383		236.7	8/4/2023			50		SURFACE
2023Q3_183_ISS	B384		236	8/4/2023			33		SURFACE
2023Q3_182_ISS	B385		235.6	8/4/2023			2),		SURFACE
2023Q3_189_ISS	B386		234.9	8/4/2023			36		SURFACE
2023Q3_158_ISS	B387	 	234.8	8/4/2023			74		SURFACE
2023Q3_182_ISS	B388		234.7	8/4/2023			ગૃત		SURFACE
2023Q3 182 ISS	B389		234.3	8/4/2023		>	80		SURFACE

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Quarter / Year: 3RD QTR 2023					350	Both 2023	2023		Page 7 of 9 Pages
Technician: MILKE ORUE					Y	1	oRue		
Instrument: INSPECTRA						TVA 1000	0		
Calibration Standard: 500PPM						500	PPM		
Initial Monitorin	itoring E	ng Event			Re-M	onitoring	Re-Monitoring Event - 10 Days	Days	Comments
Grid	Flag	Location	Field Reading	Date	Remedial	Date	Field Reading	Field Reading	
Number	Number	ï	(mdd)	Monitored	Work	Monitored	<200 ppm	>200 ppm	
2023Q3_189_ISS	B390		234.1	8/4/2023		8-14-23	78		SURFACE
2023Q3_183_ISS	B391		232.5	8/4/2023			77		SURFACE
2023Q3_189_ISS	B392		228.4	8/4/2023			34		SURFACE
2023Q3_181_ISS	B393		228.3	8/4/2023			10		SURFACE
2023Q3_161_ISS	B394		228.2	8/4/2023			69		SURFACE
2023Q3_182_ISS	B395		227.6	8/4/2023			25		SURFACE
2023Q3_183_ISS	B396		226.8	8/4/2023			18		SURFACE
2023Q3_183_ISS	B397		225.8	8/4/2023			23		SURFACE
2023Q3_189_ISS	B398		225.7	8/4/2023			17		SURFACE
189_ISS	B399		225.2	8/4/2023			619		SURFACE
2023Q3_182_ISS	B400		223.3	8/4/2023			69		SURFACE
189_ISS	B401		222.7	8/4/2023			30		SURFACE
2023Q3_164_ISS	B402		220.8	8/4/2023			75		SURFACE
2023Q3_181_ISS	B403		220.5	8/4/2023			75/		SURFACE
2023Q3_181_ISS	B404		220.4	8/4/2023			52		SURFACE
2023Q3_188_ISS	B405		220.3	8/4/2023			01		SURFACE
2023Q3_164_ISS	B406		219.5	8/4/2023			360		SURFACE
2023Q3_158_ISS	B407		219.1	8/4/2023			5.5		SURFACE
2023Q3_183_ISS	B408		217.6	8/4/2023			ر (SURFACE
2023Q3_164_ISS	B409		217.3	8/4/2023			Ή		SURFACE
2023Q3_183_ISS	B410		217.3	8/4/2023			43		SURFACE
2023Q3 189 ISS	B411		216.3	8/4/2023		>	51		SURFACE


Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Quarter / Year: 3RD QTR 2023					350	d atte	2 2023	33	Page Sof 9 Pages
Technician: MILKE ORUE						MIKE	0206		
Instrument: INSPECTRA						TVANCOC	COC		
Calibration Standard: 500PPM						50	Sochm	,	
Initial M	Initial Monitoring Event	nt			Re-M	onitoring	Re-Monitoring Event - 10 Days	Days	Comments
Grid	Flag	Location	Field Reading	Date	Remedial	Date	Field Reading	Field Reading	
Number	Number	¥0	(mdd)	Monitored	Work	Monitored	<200 ppm	>200 ppm	
2023Q3_183_ISS	B412		214.9	8/4/2023		3-14-23	6h		SURFACE
2023Q3_181_ISS	B413		214.7	8/4/2023			19		SURFACE
2023Q3_182_ISS	B414		214.4	8/4/2023			36		SURFACE
2023Q3_183_ISS	B415	i :	214	8/4/2023			1.1		SURFACE
2023Q3_160_ISS	B416		213.5	8/4/2023			20		SURFACE
2023Q3_164_ISS	B417		212.3	8/4/2023			10		SURFACE
2023Q3_189_ISS	B418		211.7	8/4/2023			72		SURFACE
2023Q3_157_ISS	B419		211.2	8/4/2023			hh		SURFACE
2023Q3_181_ISS	B420		211.2	8/4/2023			78		SURFACE
2023Q3_164_ISS	B421		210.7	8/4/2023			21		SURFACE
2023Q3_189_ISS	B422		210	8/4/2023			28		SURFACE
2023Q3_189_ISS	B423		208.3	8/4/2023			75		SURFACE
2023Q3_157_ISS	B424	,	207.6	8/4/2023			49		SURFACE
2023Q3_164_ISS	B425		205.2	8/4/2023			15		SURFACE
2023Q3_181_ISS	B426		204.6	8/4/2023			43		SURFACE
2023Q3_157_ISS	B427		204.5	8/4/2023			(0)		SURFACE
2023Q3_183_ISS	B428		204.5	8/4/2023			39		SURFACE
2023Q3_188_ISS	B429		203.6	8/4/2023			6		SURFACE
2023Q3_182_ISS	B430		202.8	8/4/2023			73		SURFACE
2023Q3_157_ISS	B431	-	202.4	8/4/2023			35		SURFACE
2023Q3_189_ISS	B432		202.3	8/4/2023			30		SURFACE
2023Q3 157 ISS	B433		202.1	8/4/2023		\rightarrow	9		SURFACE

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Quarter / Year: 3RD QTR 2023					350	3rd ONTR 2023	2023		Page 9 of 9 Pages
Technician: MILKE ORUE					W	metrick	oper		
Instrument: INSPECTRA						00014VT			
Calibration Standard: 500PPM						500	SOOPM		
Initial Monitoring Event	itoring E	vent			Re-M	Re-Monitoring Event -	Event - 10	10 Days	Comments
Grid Number	Flag Number	Location	Field Reading (ppm)	Date Monitored	Remedial	Date Monitored	Field Reading <200 ppm	Field Reading >200 ppm	
2023Q3_181_ISS	B434		202.1	8/4/2023		8 14-23	73		SURFACE
		Z.AIT.							,

I \CAO\ASHURI - MASTERS\SMN YALLET\CCCS\SMR CCCS 20220520 dmg Muy 25, 2022 - 12 Spm By 4018]_n T-102 FLARE 4 FLARE 3 HYDROGEN SULFIDE CS-1 TREATMENT TANK 401 -**VESSELS** GP-15 ST-6 ST-7 TVA 3RM CETZ ENLARGED FLARE AREA LAYOUT 2023 7-11-23 8-1-23 7-13-23 7-17-23 7-18-23 7-19-23 7-70-23 = Moult GRIBS = ACTURATION = SIOPHS SYMBOL LEGEND ACTIVE VERTICAL WELL VERTICAL WELL WITH TEMPERATURE VA HORIZONTAL COLLECTOR WELLHEAD HORIZ WELL WITH TEMPERATURE VARIANCE CONDENSATE SUMP REMOTE WELLHEAD 0 LEACHATE RISER MONITORING PROBE ы VALVE SVE WELL SEM COVER PENETRATION BASE GRAVEL PADS HORIZONTAL GRAVEL PADS DECOMMISSIONED VERTICAL WELL DECOMMISSIONED HORIZONTAL WELL DECOMMISSIONED MONITORING PROBE 36 HEADER 24 HEADER 18" HEADER 10" HEADER 6" LATERAL 6" LATERAL 4" LATERAL HORIZONTAL COLLECTOR - SOLID HORIZONTAL COLLECTOR - PERFORATED BELOW GRADE CONDENSATE FORCEMAIN ABOVE GRADE DEWATERING FORCEMAIN COMPRESSED AIR LINE REMOTE MANIFOLD AIR RELEASE VALVE
CONDENSATE FORCEMAION ISOLATION
VALVE
CONDENSATE FORCEMAIN CLEANOUT H X 4 WELL WITH PUMP AND BUBBLER WELL WITH BUBBLER PHASE BOUNDARY LCRS PIPE AERIAL TOPOGRAPHY PROVIDED BY MILLER CREEK AERIAL MAPPING, DATED 2-7-22 EXISTING GCCS AS-BUILTS DATED 5 12-2022 BOUNDARY DATA IS PROVIDED BY WIM AND NAMED "ACAO-J TO BOUNDARIES WITH 3 5 SUBPINASES" SCS ENGINEERS
ENVIRONMENTAL CONSULTANTS
MO CASOT ABOUT GOT, SUIT 100
IN (0.42) (142-90-4) (142-1005)
IN (0.42) (142-90-4) (142-1005) SEM PENETRATION MAP SMI VALLEY LANDFILL AND RECYCLING CENTER 2001 MADERA ROAD SMI VALLEY, CALIFORNIA 90065

Attachment B

Integrated Surface Emission Monitoring Event Records

SIMI VALLEY LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

Personnel: MI ORUE A. LOPEZ	J. medina Cz. Roblej	
A. Lofez C. Hughes		Cal. Gas Exp. Date: <u>\$/25</u>
Date: 8-1-23 Instrument	Used: INSPECTRA G	rid Spacing: 25F7
Temperature: 90° Precip:	Upwind BG: 1.9	Downwind BG: 2.3

GRID	STAFF	START	STOP	тос	WIN	ID INFOR	MATION	DEMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
17	Mo	0847	0912	143	2	5	12	
18	MO	0912	0937	1.50		2	13	
19	MO	0938	1003	1.64	2	3	7	
20	MO	1004	1029	1,92	4	6	10	The same of the sa
28	MO	MII	1136	2.24	6	8	10	
79	mo	1136	1201	3.07	4	7	b	
9	AL	0835	0900	3.42	니	7	.12	August 1
10	17L	0901	0923	3.79	2	3	1(
11	AL	0925	0947	3.30	2	4	10	
12	AL	0949	1010	4.61	3	5	6	
27	AL	IIII	1136	4.75	6	Q	10	
29	AL	1137	1157		5	9	7	-
	CH	0830	6850	4.00	5	1	12	
2	CH	0855	0915	2.41	2	5	12	
3	CH	0920	0940	1.23	1	2	13	
4	CH	0945	1005	1.31	2	3	7	
21	CH	1100	1125	2.13	6	9	6	
22	CH	1130	1150	2.67	5	7	7	
5	JM	0838	0903	2,97	- 4	7	12	
6	JM	0906	0931	2.79		2	13	
7	JM	0937	1002	2.54	2	3	7	
8	JM	1604	1029	2,47	4	6	6	
23	Jm	1104	1129	3.16	6	9	6	
24	JM	1130	1155	2.84	5	9	1	
13	GR	0843	0908	4.70	14	5	12	
14	(1R	0910	0935	3.56	1	2	13	
15	(1R	0953	1018	4.46	3	5	6	
16	(1R	1019	1044	4.66	4	6	6	
25	GR	1109	1134	2.57	6	8	10	
26	62	1135	1200	2,84	V	7	6	Marie Control

Attach Calibration Sheet Attach site map showing grid ID

Page ____ of ____

SIMI VALLEY LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

Personnel: MI ORUG	C. Hughes	
A. Lopez	G. RoBles	
J. Midina		Cal. Gas Exp. Date: 5/25
Date: 8-2-23 Instrument L	Jsed: TUSPECTAA C	Grid Spacing: 25f7
		O Downwind BG: 2.3

GRID	STAFF	START	STOP	тос		WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM		AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	NEI WILLIA
44	Mo	0731	0751	25.07		2	1	11	
43	MO	0752	0812	14.18		4	7	12	
42	mo	० शर	0894	10.64		u	6	12	300
41	mo	0835	0848	7.6		3	7	12	Heavy Equipment
40	mo	0849	0902	5.33		4	4	12	Heavy coursement
104	mo	1009	1029	18.19		3	4	12	1 1
105	mo	1033	1051	9.41		0	0	. 14	ACTIVE DUMPING
106	mo	1053	1105	8.18	TO THE	D	0	14	1
107	mo	1107	1118	6.07		D	D	10	
108	mo	1120	1129	6.46			1	q	
109	mo	1131	1190	4.63		0	0	Q	1
34	AL	0735	0755	22.40		2	7	1/	STEEP STORE
33	AL	0758	0818	9.90		4	7	12	1 1 1 1 1 1 1
32	AL	0820	0843			4	6	12	V
31	AL	0845	0910	6.97		3	5	12	
30	AL	0912	0937	4.82		4	6	II .	
93	AL	1009	1034	3.75		1	2	12	
63	AL	1037	1057			D	D	2	9766P Slofe
62	AL	1058	1118	4.50		0	D	10	
61	AL	1119	1139	4.23		0	D	6	
60	AL	1140	1200	6,30		i	1	6	1
49	JM	0750	0815	11.07		4	7	12	*
48	Jm	0722	0747	13.73		4	10	12	
47	JM	0820	0845	7.11		3	7	12	
46	5m	0850	4915	5.71		3	5	12	
45	JM	0920	0945	5.91		2	3	II	
103	mt	1010	1035	15.07		3	4	12	
102	JM	1036	1101	9.96		0	0	14	
101	mc	1105	1175	4.25		1	1	8	
100	JM	1129	1149	5.21		2	2	6	Heavy Legin Proces
Attac	h Calibrat	ion Sheet							J. Z. J. L.

Attach Calibration Sheet
Attach site map showing grid ID

SIMI VALLEY LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

Personnel: M1 0806	C. Hushes	
ALLOPEZ	C. Hughes G. Robles	
J. medina		Cal. Gas Exp. Date: 5/15
Date: 8-2-23 Instrument	Used: INSpectres	Grid Spacing: 25ft
Temperature: 70° Precip:	Q Unwind BG	2.0 Downwind BG: 2.3

GRID	STAFF	START	STOP	тос	ROTO-MTR,	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	CC/MIN	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
99	JM	1150	1705	15.72		1	1	6	DIRT Piles
54	CH	0720	0740	11.07		4	i,	12	Road STEEP Slot
53	CH	0745	0805	1.15		4	6	12	1
52	CH	0810	0830	1.52		4	6	12	
51	CH	0835	0850	5.51		3	7	12	
56	CH	0855	0915	5.40		3	5	12.	
55	CH	0940	1000	6.46		3	5	-11	
56	CH	1050	1115	7.16		0	D	10	
57	CH	1120	1140	2.40		0	0	8	
58	CH	1140	1700	319		1	1		
59	CH	1260	1225	6.04		2	2	6	
39	GR	0733	0758	17.94		4	6	12	
38	GR	0759	0884	9.20		4		13	
37	GR	0826	0851	6.25		3	7	12	
36	GR	0852	0917	6.47		3	5	12	
35	GR	0918	0943	5.60		2	3	11	
94	GR	1012	1037	4.66		1	2	12	
95	GR	1039	1104	4.36		0	0	14	
96	GR	1106	1131	4.47		1	1	8	
97	GR	1132	1157	6.47			1		
98	GR	1201	1226	6.42		2	2	8	veyetation

Attach Calibration Sheet Attach site map showing grid ID

Page 2 of 2

SIMI VALLEY LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

Personnel: MORUE	J. medina	
ALLOREZ	C, Hughes	
(7, Robles		Cal. Gas Exp. Date: 5/25
Date: <u>8-3-23</u> Instrument	Used: INSPECTING	_ Grid Spacing: _25f+
Temperature: 86° Precip:	Upwind BG:	1.6 Downwind BG: 2.6

GRID	STAFF	START TIME	STOP TIME	TOC PPM	WIND INFORMATION			REMARKS	
	INITIALS					AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEMAKKS
140	mo	0723	0743	47.32		2	7	12	Concrete / Asphatt
139	mo	0745	0800	67.90		2	4	10	STEEP STAPE
138	MO	0802	0819	83.96		2	5	10	concrete Steepslofe
137	mo	0823	0841	10154		4	V	10	STEEP STOPE
136	mo	0843	0853	122.19		3	5	10	Concrete/STEEP Slope
135	mo	0855	0910	41.40		4	6	10	Concrete / STEEP Sloke
125	mo	0959	1009	14.11		4	9	10	STORE Vegetation
124	mo	1013	1026	10.60		4	7	10	Stok / vegetation
123	MO	1028	1037	24.61		5	10	11	STORE / vegetation
83	AL	6723	0743	19.19		2	1	12.	Heavy Equipment /TRASI
82	AL	0743	0803	37.36		2	4	10	STEEP STOPE
81	AL	0804	0829	26.54		나	6	10	
80	17L	0830	0850	43.22		.3	5	10	STEEP Slote
78	AL	0851	0911	11.79		4	6	10	Steef Slope
150	AL	0946	1006	16.73		4	9	10	STEEP VegetAtion
151	AL	1006	1026	30.80		4	7	10	Store vegetation
152	AL	1027	1047	12.39		4	1	10	SHEP Slope
153	AL	1048	1108	16.60		4	b	10	STEEL STOPE
154	AL	1108	1128	11.85		5	G	10	STEEP STOPE
73	GR	0724	0739	6.96		4	6	13	STOCK PILC
74	GR	0741	0801	12.29		2	4	10	Heavy Equipment
75	CIR	0802	0827	18.79		4	6	10	
76	GR	0830	0845	32.03		4	10	10	TRAFIC
77	GR	0847	0907	14.20		4	6	lp	TRAFFIC
156	GR	0955	1004	3.48		4	9	10	STEEP Slope
134	GR	1006	1016	8.51		4	ها	10	loose footing
133	GR	1017	1028	10.61		4	7	10	loose footing
132	GR	1029	1039	8.93		5	10	11	STEEP Slopes
131	CIR	1040	1050	6.52		4	1	10	STEEP Slopes
110	JM	0730	0755	24.19		4	6	10	

Attach Calibration Sheet

Attach site map showing grid ID

Page _ _ of _Z__

SIMI VALLEY LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

Personnel: MI ORVE	Jimedina	
A. LOPEZ	C1 Hugues	
G. RoBles	_	Cal. Gas Exp. Date: 5/25
Date: 8-3-23 Instrument	Used: INSPECTICE	Grid Spacing: 25++
Temperature: 86° Precip:	Unwind BG:	166 Downwind BG: 2.6

GRID ID	STAFF INITIALS	START TIME	STOP TIME	TOC PPM	ROTO-MTR, CC/MIN	WIND INFORMATION			REMARKS
						AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
. 111	JM	0'757	0822	21.88		2	4	10	
112	2m	0828	0852	33.96		3	5	10	
113	Jm	0855	0915	18.65		4	6	10	
114	Jm	0916	0931	13.54		4	6	10	TRAFFIC
130	JM	1009	1019	6.84		4	7	10	STEEP STORES / ALTING
129	JM	1020	1630	7.97		5	10	U	STEP STORE / Active
128	JM	1039	1049	16.46	*	4	7	10	STEEP STOPE/Active
127	JM	1050	1100	16.83		6	8	Įl .	STOPE / ALTHE
126	5m	1101	1111	22.77		4	6	160	35tope/Active
115	CH	0720	0740	12.20		2	7	12	Haul Road
141	CH	0745	0805	26.68		2	4	10	
142	CH	0805	0825	67.0 D		4	6	lo	
143	CH	0830	0850	32.07		3	5	10	
144	CH	0855	0910	24.61		H	b	lo	Haul Road
145	CH	0940	0953	12.10		4	9	ID.	Haul Road
146	CH	1000	1015	43.95		al.	9	10	Havi Road
147	CH	1026	1040	50.19		5	10	M	
148	CH	1045	1105	26.86		4	6	0	
149	CH	1110	1130	16.10		5	•	10	
							,		
	,								,
		•							
	h Calibrat								

Attach Calibration Sheet
Attach site map showing grid ID

Page 2 of 2

SIMI VALLEY LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

Personnel: MORUE	J. medina	
ALLOREZ	C1 Hughes	
(7. Robles		Cal. Gas Exp. Date: 5/25
Date: <u>8-3-23</u> Instrument	Used: INSPECTING	Grid Spacing: 25ft
Temperature: 86° Precip:	Upwind BG: /	.6 Downwind BG: 2.6

GRID	STAFF	START	STOP	тос		WIN	D INFOR	MATION	DEMARKS
ID	INITIALS	TIME	TIME	PPM		VG EED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
140	mo	0723	0743	47.32	2	2	7	12	Concrete /Asohalt
139	mo	0745	0800	67.90	2		4	10	STEEP STARE
138	MO	0802	0819	83.96	2		5	10	concrete Steepsloke
137	mo	0823	0841	10154		4	V	10	STEP Slope
136	mo	0843	0853	122.19	3	3	5	10	concrete/ STEEP Slope
135	mo	0855	0910	41.40	4		6	10	concrete / STEEP Sloke
125	m _o	0959	1009	14.11	4	+	9	10	Stope vegetation
124	mo	1013	1026	10.60	4		7	10	Stok /vegetation
123	MO	1028	1037	24.61		5	10	11	STORE / URGARATION
83	AL	0723	0743	19.19	2	2	1	12	Heavy Equipment /TRASA
82	AL	0743	0803	37.36	2	2	4	10	STEEP STOPE
81	AL	0804	0829	26.54	4	•	6	10	
80	AL	0830	0850	43.22	2		5	10	STEEP Slope
78	AL	0851	0911	11.79	4	<u> </u>	6	10	STEEP Slope
150	AL	0946	1006	16.73		4	9	10	STEEP Vegetation
151	AL	1006	1026	30.80		4	7	10	Siepe vegetation
152	AL	1027	1047	12.39		4	1	10	STEEP Slope
153	AL	1048	1108	16.60	a.	+	b	10	STEEL STOPE
154	AL	1108	1128	11.85		5	G	10	STEEP Slope
73	GR	0724	0739	6.96			6	13	Stock Pile
74	GR	0741	0801	12.25		2	4	10	Heavy Equipment
75	(1R	0802	0827	18.79	L	4	6	10	
76	GR	0830	0845	32.03		4	6	10	TRAFIC
77	GR	0847	0907	14.20		4	6	lp	TRAFFIC
156	GR	0955	1004	3.48		4	9	10	STEEP Slope
134	GR	1006	1016	8.51		4	ما	10	loose footing
133	GR	1017	1028	10.61		4	7	10	loose footing
132	GR	1029	1039	8.93	1	5	10	11	STEEP Slopes
131	CIR	1040	1050	6.52		4	7	10	STEEP Slopes
110	JM	0730	0755	24.19	ı	1	6	10	
	h Calibrat		4						

Attach Calibration Sheet

Attach site map showing grid ID

Page ____ of _Z__

SIMI VALLEY LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

Personnel: MI ORUE	Jimedina		
4. Lopez Gr Robles	C: Hughes	Cal Cas Ev	Data: 6/20
# 2.23	sed: INSpectace	Grid Spacing:	25f+
Temperature: 86 Precip:			

GRID	STAFF	START	STOP	тос	ROTO-MTR,	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	CC/MIN	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
111	JM	0757	0822	21.88		2	4	10	1
112	2m	0828	0852	33.96		3	5	10	
113	Jm	0855	0915	18.65		4	6	10	
114	Jm	0916	0931	13.54		4	6	10	TRAFFIC
130	JM	1009	1019	6.84		나	7	10	STEEP STORES / ALTHE
129	JM	1020	1630	7.97		5	10	V	STEEP STORE / Acting
128	Jm	1039	1049	16.46		나	7	·lo	STEEP STOPE / ALTHE
127	JM	1050	1100	16.83		6	8	11	35tope / Actue
126	5m	1101	1111	22.77		나	6	169	350 pe / Actue
115	CH	0720	0740	12.20		2	7	12	Haul Road
141	CH	0745	0805	24.68		2	4	lo.	
142	CH	0805	0825	67.0 p		ᅪ	حا	40	
143	CH	0830	0850	32.07		3	5	10	
144	CH	0855	0910	24.61		H	b	lo	Haul Road
145	CH	0940	0953	12.10		4	9	lo.	Haul Road
146	CH	1000	1015	43.95		4	9	10	Haul Road
147	CH	1020	1040	50.19		5	10	VI	
148	CH	1045	1105	26.86		4	6	0	
149	CH	1110	1130	16.10		5	8	10	
						1 1 2 1	~		
							٥		0
							200		
,									
				1 5					
*.									
, we redeed a									
Attac	h Calibrat	ion Chao							

Attach Calibration Sheet
Attach site map showing grid ID

Page 2 of 2

SIMI VALLEY LANDFILL INTEGRATED LANDFILL SURFACE MONITORING

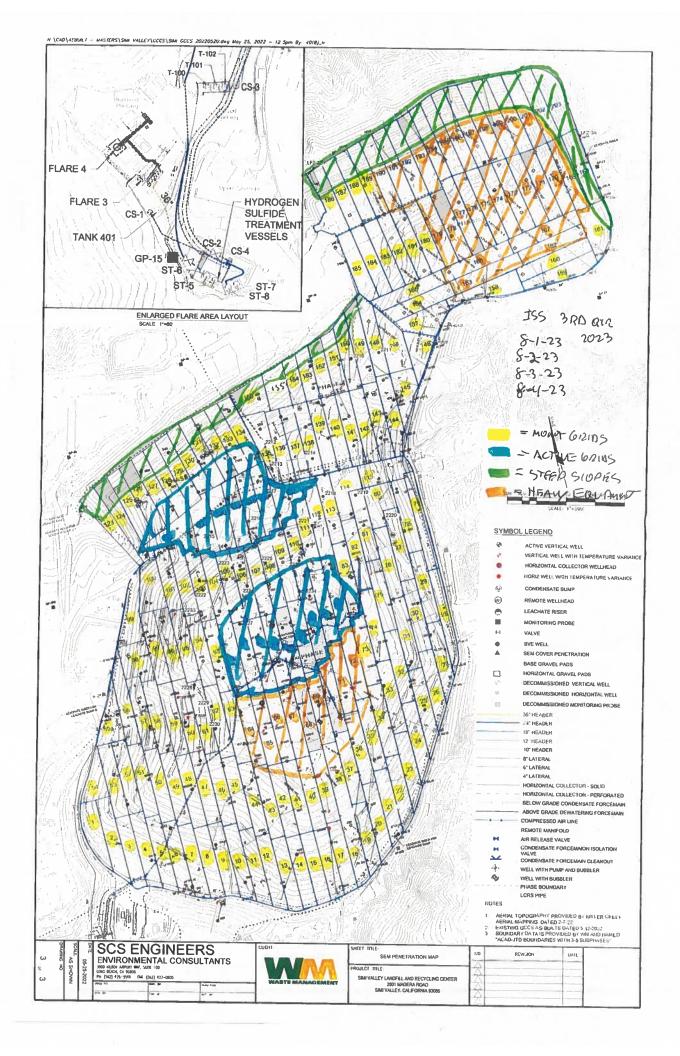
Personnel: A. Lopez	J. Medina		
G. Robles		Cal. Gas Exp. Date:	5/25
Date: 8-4-23 Instrument Us	ed: <u>Tusfectra</u> Grid S	pacing: 25 tai	Τ
Temperature: 86° Precip: +	Junying BG: 18	Downwind BG:	2.3

GRID	STAFF	START	STOP	тос		WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM		AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
189	AL	0714	0734	193.61	3	1	6	ما	Mulch Poles
188	AL	0736	0756	93.97		5	Q	6	STEEP Slope
187	AL	0757	0817	20,97		5	ĺ	ط	STEEP Slope
186	AL	0817	0837	11.06		6	10	7	STEEP Slope/LineR
157	CH	0715	0735	81.55		4	6	6	Road
158	C1+		0755	39.97		5	Ç	6	Road
159	CH	0800	0820	22.95		7	_)[Ь	Road
160	CH	0825	0845	41.14		1	10	<u>_</u> b	*
16	CH		0915	18.94		5	10	<u> </u>	Liner
182	(18	0714	0743	448.35				b	STEEP Slope
183	GR	0744	0804	33.ماما		5	7	4	STEEP Slope
184	(1R	0805	0825	17.20		7	10	ط	STEP STOPE
185	(1R	0876	0845	15.94		7	10	P	STEEP Slope
164	JM	0728	6753	92.07		5		<u> </u>	
165	JM	0758	0723	23.42		4	1	_5	
181	JM	0725		54.48		5	1	<u> </u>	Heavy Equipment
100	JM	0745	0753	20.92		_5	- 1	6	TRAFFIC/Heavy EgusPM
				7					
	2								
	Calibrati								

Attach Calibration Sheet Attach site map showing grid ID

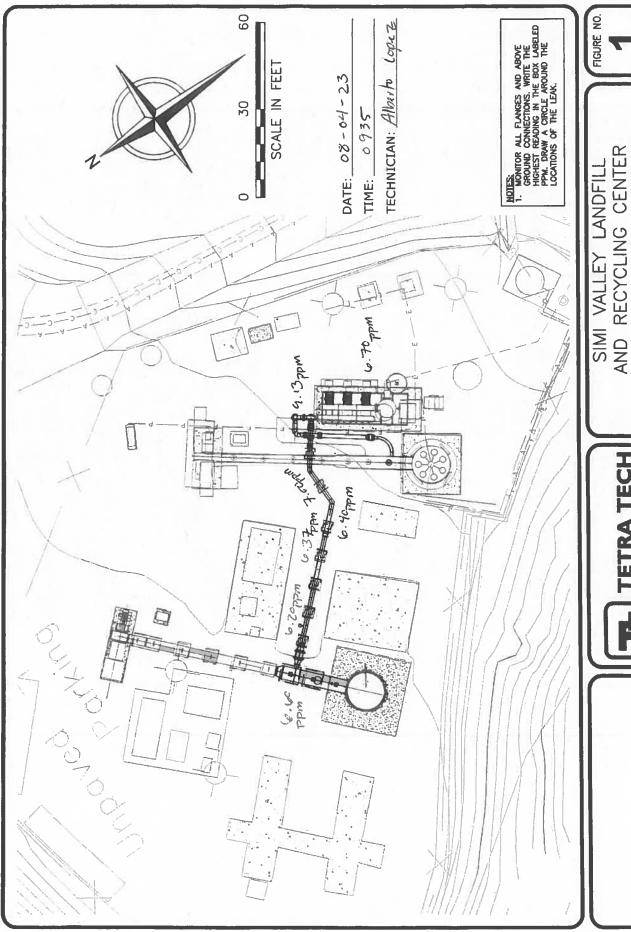
Page _____ of ____

Integrated Surface Sampling 10 Day Exceedances and Monitoring Log


Site: Sim, Valley Landhill

	316 91/2	152 202 2	3rd att	50-12	77					
Technician:	A. OR OR		15							
Instrument:	FNSNE	+/m	TVAIDED	DCA						
Calibration Standard:	25 1111	n) a	25	25PPm						
Initial M	Initial Monitoring Event	nt	First Re-	First Re-Monitoring Event - 10 Days	rent - 10 Day	90	Second Re	Second Re-Monitoring Event - 10 Days	vent - 10 B	ave
Grid Number	Field Reading (ppm)	Date	Remedial	Date Monitored	No Excd. <25 ppm	Excd. >25 ppm	Remedial Work	Date Monitored	No Excd.	Excd.
ήή	75.0	8-2-23		8-6-23	17,39					
138	83,9	82-8-9		8-6-23	5,67					
137	5'99	_			10,14					
145	67,0				72.67					
28	37.3				21,39					
85/	26,3				86,42					
2/	56,5				16.97					
740	47,3				22.9					
135	41.4				18.99					
(5)	30,8				48.12					
146	43.9				24,45					
1/2	33.9				15,55					
747	1,02				23,75					
80	43,2	ĺ			12:01					
26	32,0				12,22					
141	9'92				23.78					
143	32,0				19.02					
123	37.2				Joint 1					
139	67.9				6:32					
136	152,1	a		>	73,54	161				

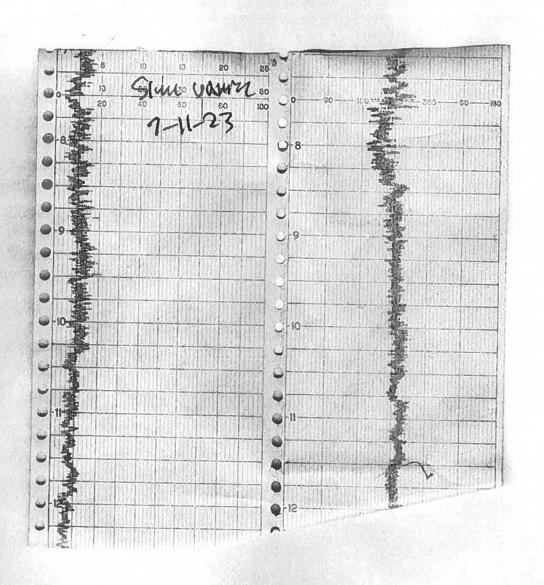
Integrated Surface Sampling 10 Day Exceedances and Monitoring Log

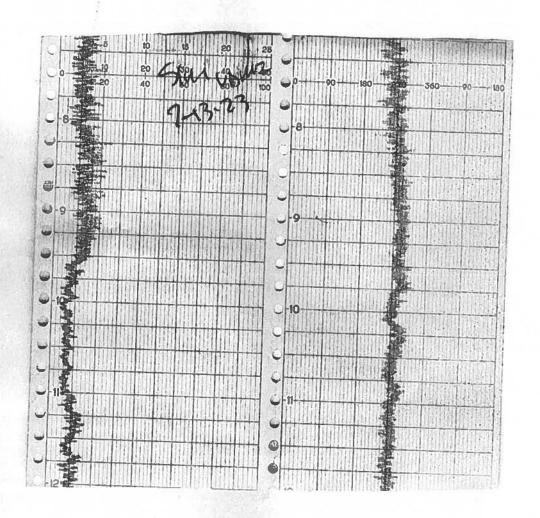

Site: SIMI VALLEY LANDFILL

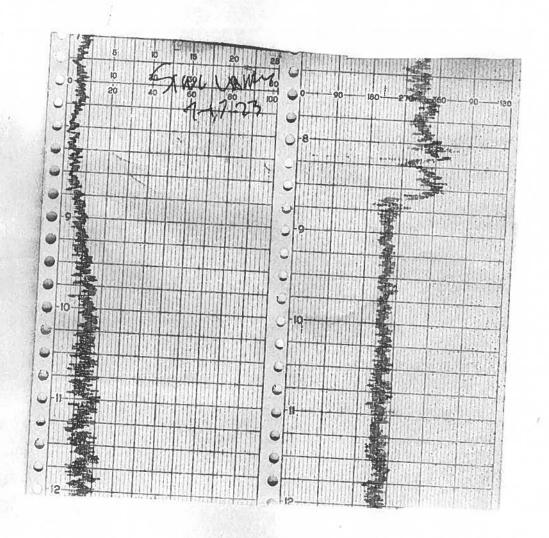
Quarter / Year:	3RD/ 2023	33	35d / 30th							
Technician:	MIKE ORUE	UE	1							
Instrument	INSPECTRA	RA	TUR1000			1000				
Calibration Standard:	25PPM		WADS2							
Initial Monit	Initial Monitoring Event		First Re-Monitoring Event - 10 Days	Event - 10 Da	ys		Second Re-Monitoring Event – 10 Days	ent - 10 Day	80	
Grid	Field	Date	Remedial	Date	No Excd.	Excd.	Remedial	Date	No Excd.	Excd.
Number	(mdd)	Monftored	Work	Monitored	<25 ppm	>25 ppm	Work	Monitored	wdd SS>	>26 ppm
2023Q3 189 ISS	193.617	8/4/2023		8-14-23	6.82					
2023Q3_182_ISS	448.355	8/4/2023			19,52					
2023Q3 188 ISS	93.9729	93.9729 8/4/2023			15					
2023Q3 164 ISS	92.0746	92.0746 8/4/2023			6,36					
2023Q3_181_ISS	54.488	8/4/2023			13,95					
2023Q3 160 ISS	41.1486	41.1486 8/4/2023			24.81					
2023Q3 183 ISS	66.3313	66.3313 8/4/2023			16.9					
2023Q3_158_ISS	39.9714	8/4/2023			19.86					
2023Q3 157 ISS	81.5575	81.5575 8/4/2023		*	16.07					
NA TAN										
									T I	
			-4							
	J.									
								- X		
		0.00	The same of the sa							
			The state of the s							

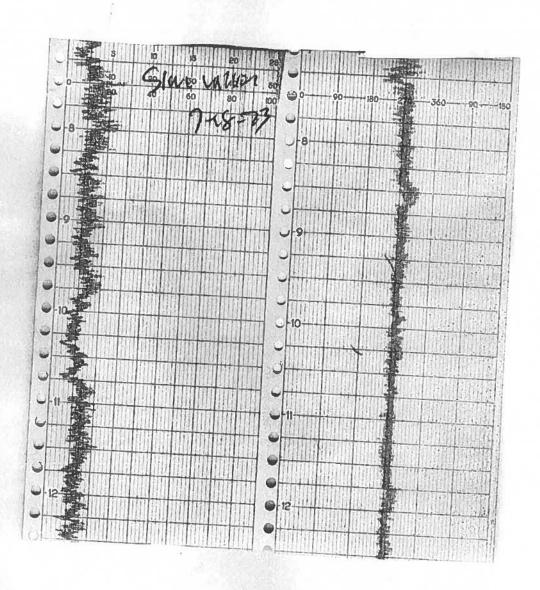
Attachment C

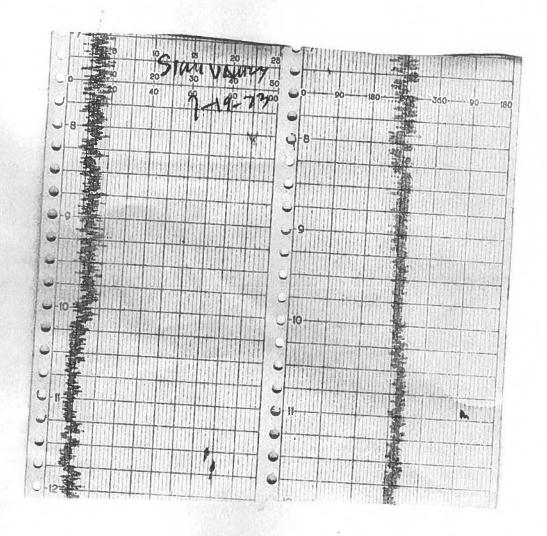
Component Leak Monitoring Event Records

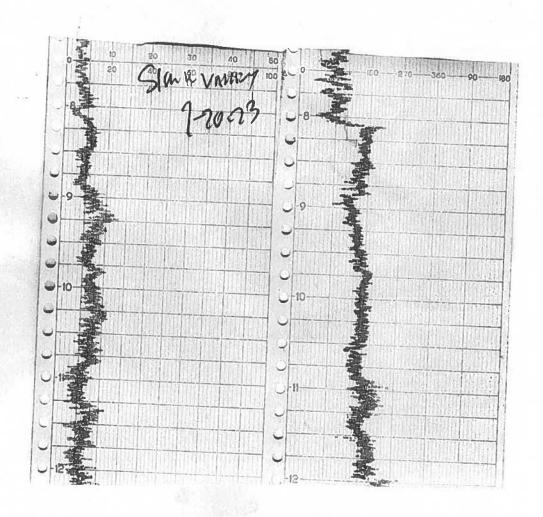

SEM RESULTS - FLARE STATION SIMI VALLEY, CALIFORNIA

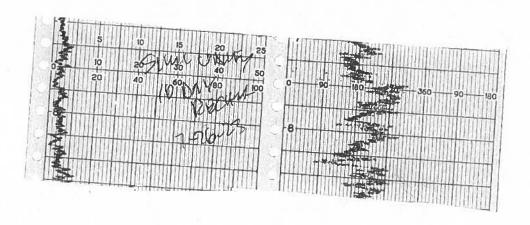

who had proposite of foreign between the the weight by when evident the the control of the foreign and the term is the target and following the foreign entire that the following the control of the following th

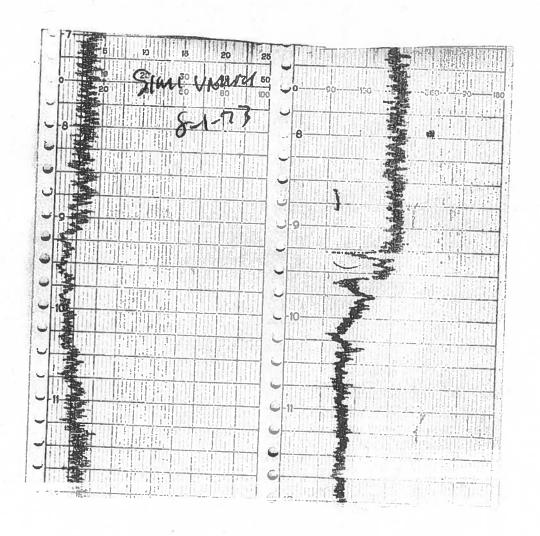

PROJECT NO. 200026

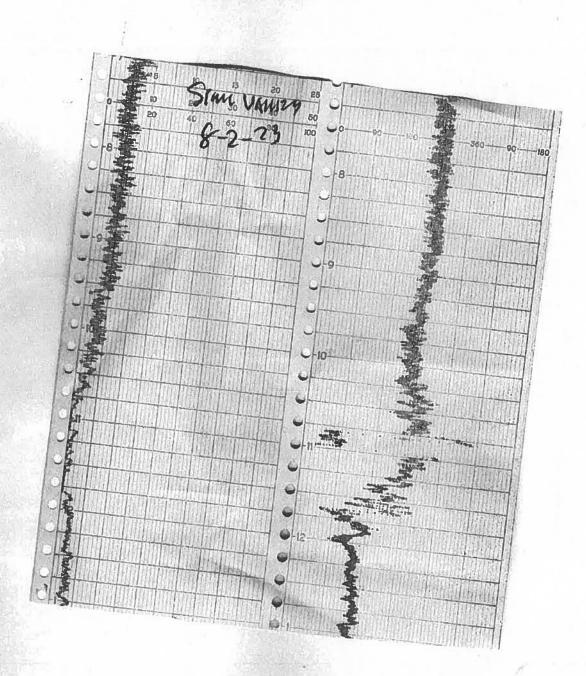

Attachment D

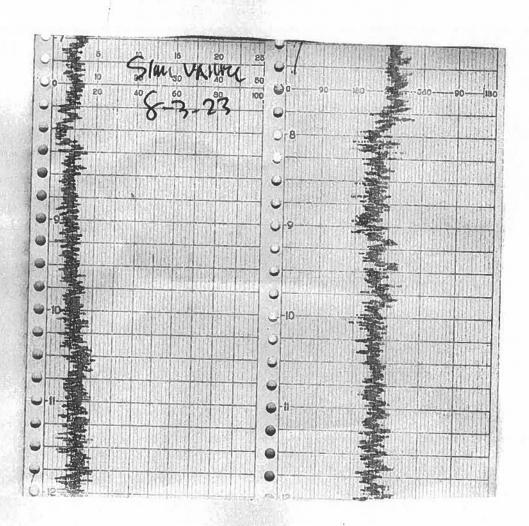

Weather Station Data

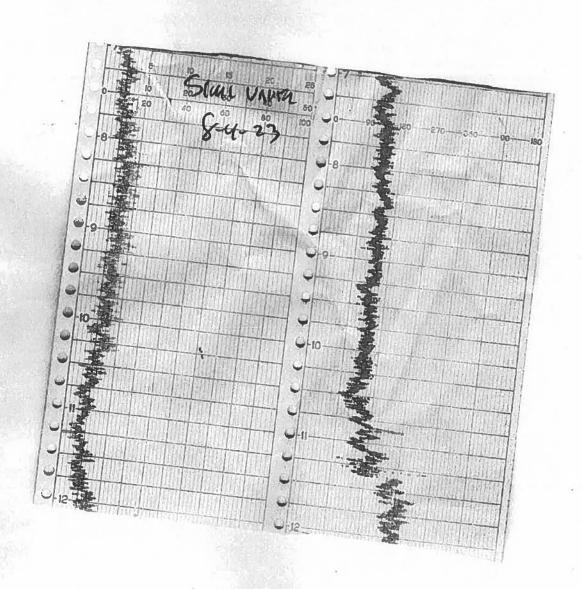


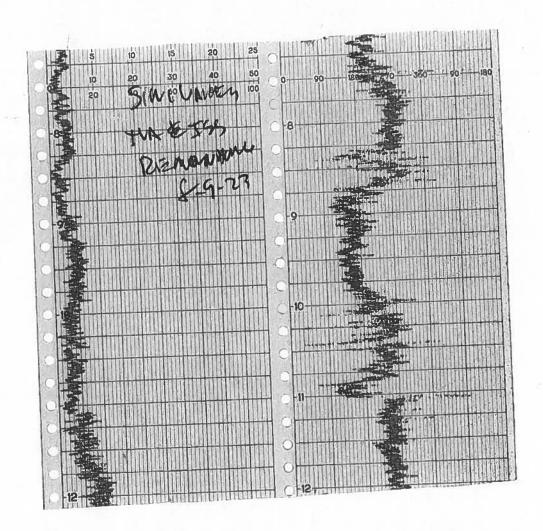


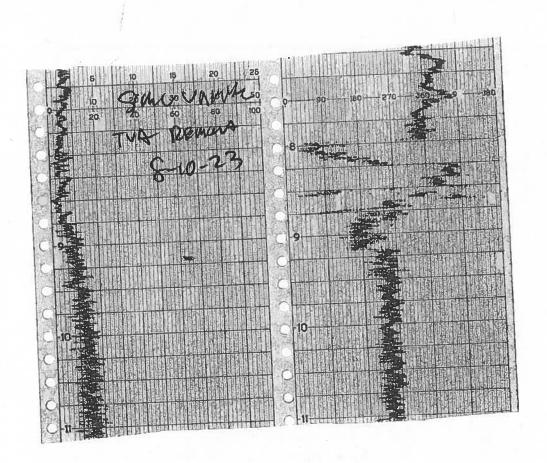


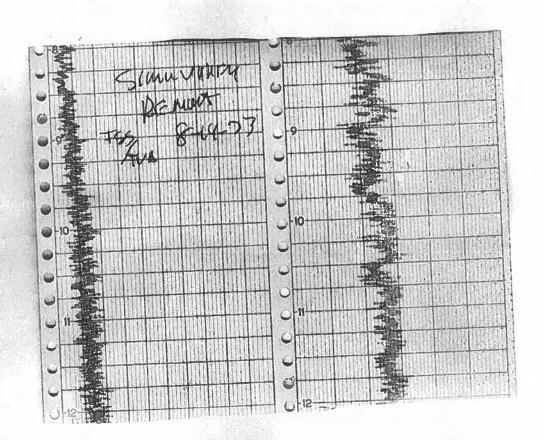












		VIND DIRECTION	HIDEK	
<u>NO</u>	DIRECTION		DEGREES	
		FROM	CENTER	<u>TO</u>
16	NORTH (N)	348.8	369.0	t: 1.3
1	NORTH-NORTHEAST (NNE)	011.3	022.5	033.8
2	NORTHEAST (NE)	033.8	045.0	056.3
3	EAST-NORTHEAST (ENE)	056.3	067.5	078.8
4	EAST (E)	078.8	090.0	101.3
5	EAST-SOUTHEAST (ESE)	101.3	112.5	123.8
6	SOUTHEAST (SE)	123.8	135.0	146.3
7	SOUTH-SOUTHEAST (SSE)	146.3	157.5	168.8
8	SOUTH (S)	168.8	180.0	191.3
9	SOUTH-SOUTHWEST (SSW)	191.3	202.5	213.8
iü	SOUTHWEST (SW)	213.8	225.0	230.3
11	WEST-SOUTHWEST (WSW)	236.3	<u>247.</u> 5	258.8
12	WEST (W)	258.8	<u>270.0</u>	281.3
13	WEST-NORTHWEST (WNW)	281.3	<u>292.5</u>	303.8
14	NORTHWEST (NW)	30.1.8	<u>315.0</u>	326.3
15	NORTH-NORTHWEST (NNW)	326.3	337.5	348.8

Attachment E

Calibration Records

LANDFILL NAME: Simi	VAlley	INSTRUM	ENT MAKE: THE	ermo
MODEL: TVA1006	EQUIPMENT #:	36	SERIAL #:	0332603195
MONITORING DATE: 7	-20-23	TIME:	0715	

Calibration Procedure:

Allow instrument to zero itself while introducing air.
 Introduce calibration gas into the probe. Stabilized reading = 498 ppm

Adjust meter settings to read 500 ppm.

Background Determination Procedure

Reading:	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
2,5 ppm	3,4 ppm	2.9 ppm

Background Value = 7.9 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	90% Read	of the Stabiliz	ed	Time to Reach 90% Stabilized Reading switching from Zer Calibration Gas	after
#1	495 ppn	1	450	ppm	8	
#2	495 ppn		450	ppm	7	
#3	498 ppn	1	450	ppm	7	
	Calculate Response Time (1+2+3) 3			7.3	#DIV/0!
					Must be less than 30	seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A)		Meter Reading for Calibration Gas (B)		Calculate Precision [STD - (B)]	
#1	1.2	ppm	495	ppm	5	
#2	1,0	ppm	495	ppm	5	
#3	1.0	ppm	498	ppm	2	
Calculate Precisio	n [STD-B1] + [S	[STD-B1] + [STD-B2] + [S		1	O 1 8 % #DIV/0! Must be less than 10%	

				9
Performed By: Michcel	ORUE	Date/Time:	7-20-23	10715

LANDFILL NAME _ SIMI	VAlley	INSTRUMENT MAKE THEYMO
MODEL TVAIWO	EQUIPMENT #	SERIAL# 16320832
MONITORING DATE7	-26-23	TIME: 0700

Calibration Procedure:

- 1 Allow instrument to zero itself while introducing air.
- 2 Introduce calibration gas into the probe. Stabilized reading = 502 ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Rea	vind Backgro iding: hest In 30 sec		Downwind Backgro Reading: (Highest in 30 seconds		Background Valu (Upwind + Down 2	
	2.9	ppm	3,7	ppm	3,3	ppm

Background Value = 3,3 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	90% of the Reading	Stabilize	ed	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	504 ppn	i L	50	ppm	8	
#2	502 ppn		150	ppm	7	
#3	502 ppn	1	150	ppm	7	
	Calculate Response Time (1+2+3) 3		1	7.3 #DI* Must be less than 30 second	

CALIBRATION PRECISION RECORD

Measurement #			Meter Reading for Calibration Gas (B)				Calculate Precision [S	ΓO – (B)]
#1	0.9	ppm	504	ppm	4	<u> </u>		
#2	0.9	ppm	502	ppm	2			
#3	1,1	ppm	502	ppm	2			
Calculate Precision	on [STD-B1] + [S	[STD-B1] + [STD-B2] + [STD-B3] X 1 X 100 3 500 1			0.5%	#DIV/0!		
					Must be less than 1	0%		

Performed By:	Michael	Ofur	Date/Time	7-26-23/0700
---------------	---------	------	-----------	--------------

LANDFILL NAME	Simi-Vallago	INSTRUMEN	T MAKE:	hermo
MODEL: TVA	1000 EQUIPMENT#	13	SER AL #	1102746775
MON'TORING DAT	E 08-04-23	TIME:	0815	
Introduce of	ure: Iment to zero itself while introducing a alibration gas into the probe. Stabilizer settings to read 500 ppm.	air. ed reading =	50Z ppm	

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
1.3 ppm	2.1 ppm	1.7 ppm

Background Value = 1.7 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	90% of the Stabili Reading	zed	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	502	ppm	450	ppm	4	
#2	503	ppm	450	ppm		
#3	503	ppm	450	ppm	4	
	Calculate Response T	ime (<u>1</u> -	-2+3)		4.3 Must be less than 3	#DIV/0!

CALIBRATION PRECISION RECORD

Measurement #			Meter Reading for Calibration Gas (B)		Calculate Precision [STD - (B)	
#1	0.8	ppm	602	ppm	1	
#2	0.7	ppm	503	ppm	3	
#3	0.9	ppm	503	ppm	7.	
Calculate Precision	[STD-B1] + [S1	[STD-B1] + [STD-B2] + [S		100 1	0 4 9 #DIV/0 Must be less than 10%	

Performed By:	Alberto	(opr.2	Date/Time	8-04-73	10815	
				/		558

LANDFILL NAME Simi VAILEY	INSTRUMENT MAKE: THE (MO
MODEL: TVAIDOC EQUIPMENT #:_	
MONITORING DATE: 8-9-23	TIME: 0715

Calibration Procedure:

1. Allow instrument to zero itself while introducing air.

2. Introduce calibration gas into the probe. Stabilized reading = 26.4 ppm

3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
7.8 ppm	317 ppm	312 ppm

Background Value = 3.2 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas	90% of the Stabilized Reading	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	26.9 ppm	ZZ,5 ppm	7	
#2	26.5 ppm		6	
#3	26.4 ppm		6	
		+2+3)	63 #DIV/0!	
			Must be less than 30 seconds	

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z	ero Air (A)	Meter Reading Calibration Gas		Calculate Precision [STD – (B)]
#1	6.9	ppm	26.9	ppm	1.9
#2	1.)	ppm	26.5	ppm	1.5
#3	1.1	ppm	76.4	ppm	1,4
Calculate Precision	on [STD-B1] + [S	3 3 TD-B2] + [S	STD-B3] X 1 X 25	100 1	Q./% #DIV/0
					Must be less than 10%

Performed By:	Michael	Opre	Date/Time: 8-9-23/07/5	
			/	

LANDFILL NAME: Sim, UA	elley	 INSTRUMENT MAKE: THERMO
MODEL: TVALOGO	EQUIPMENT # _	
MONITORING DATE: 8-9-2	3	TIME: _0715

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 24.7 ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
2.3 ppr	2.9 ppm	2.6 ppm

Background Value = 2.6 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	24.7	ppm	22,5	ppm	6	
#2	24.6	ppm	22,5	ppm	1	
#3	24.7	ppm	22.5	ppm	5	
	Calculate Response Time	3	2+3)		5.6	#DIV/0!
					Must be less than 3	30 seconds

CALIBRATION PRECISION RECORD

	eter Reading for Zero Air (A)		s (B)	Calculate Precision [STD – (B)]	
1.1	ppm	24.7	ppm	0:3	
1,2	ppm		ppm	0.4	
1,1	ppm	24.7	ppm	014	
[STD-B1] + [S	TD-B2] + [5	STD-B3] X 1 X 25	<u>100</u> 1	Must be less than 10%	
	1:1 1:2 1:1 [STD-B1]+[S	112 ppm 111 ppm	112 ppm 24.6 1.1 ppm 24.7 [STD-B1] + [STD-B2] + [STD-B3] X 1 X	112 ppm 24.6 ppm 11 ppm 24.7 ppm [STD-B1] + [STD-B2] + [STD-B3] X 1 X 100	

Performed By	Chin's Hughes	Date/Time: 8-9-23/0715	_
	•	,	•

LANDFILL NAME SIM	11 VAlley	INSTRUM	MENT MAKE: THermo
MODEL: TVALOOO	EQUIPMENT #:	10	SERIAL # 1036346773
MONITORING DATE	3-9-23	TIME:	-07/5

Calibration Procedure:

1. Allow instrument to zero itself while introducing air.

2. Introduce calibration gas into the probe. Stabilized reading = 25.7 ppm

3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
2.5 ppm	3.2 ppm	2.8 ppm

Background Value = 218 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Calibration Gas Reading		90% of the Stabilize Reading	zed	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	25.3	ppm	22.5	ppm	5	
#2	25.3	ppm	22.5	ppm	6	
#3	25.7	ppm	27.5	ppm	5	
	Calculate Response Ti	me (<u>1</u> -	+2+3)		5.3	#DIV/0!
					Must be less than 3	0 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z	Meter Reading for Zero Air (A)		for (B)	Calculate Precision [STD – (B)]	
#1	1,2	ppm	25,3	ppm	0,3	
#2	1.0	ppm	253	ppm	0.3	
#3	1.1	ppm	25.7	ppm	0.7	
Calculate Precision	on [STD-B1] + [S	3 TD-B2) + [STD-B31 X 1 X 25	100 1	0.1% #DIV/0	
					Must be less than 10%	

Performed By _	GilBert	Robles	Date/Time:	8-9-23/0715	
				,	

LANDFILL NAME SIMI	VAlley	B - 6 -	NSTRUME	NT MAKE THE	m6
MODEL: TVA 1000	EQUIPMENT #:_	#1		SERIAL #	16320837
MONITORING DATE: 8-	9-23	4 ×		0715	

Calibration Procedure:

1. Allow instrument to zero itself while introducing air.

2. Introduce calibration gas into the probe Stabilized reading = 25.9 ppm

3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Reading:	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
3.1 ppm	3,8 ppm	3,4 ppm

Background Value = 34 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading I Calibration Gas	Jsing	g 90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	25.8	ppm	22.5	ppm	5		
#2	25.6	ppm	22.5	ppm	5		
#3	25.9	ppm	225	ppm	5		
	Calculate Response Tin	ne (<u>1</u> -	+2+3)		5.0% Must be less than 30 s	#DIV/0!	

CALIBRATION PRECISION RECORD

Measurement #			Meter Reading for Calibration Gas (B)		Calculate Precision [STD - (B)]	
#1	0.8	ppm	25.8	ppm	0.8	
#2	6.8	ppm	25,6	ppm	0.6	
#3	6,8	ppm	25.9	ppm	6.9	
Calculate Precision	[STD-B1] + [ST	D-B2] + [5 3	TD-B31 X 1 X 25	<u>100</u> 1	0 1 /0 #DIV/0!	
					Must be less than 10%	

Performed By: Jovany Medina	Date/Time 8-9-23/0715
-----------------------------	-----------------------

LANDFILL NAME 5	mi VAIley	INSTRUME	ENT MAKE: Macomo
MODEL: TUPIOCO	EQUIPMENT #:	13	SERIAL #: 1102746775
MONITORING DATE:	8-9-23	TIME:	6840

Calibration Procedure:

1. Allow instrument to zero itself while introducing air.

2. Introduce calibration gas into the probe. Stabilized reading = 50Z ppm

3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
2,4 ppm	312 ppm	2.8 ppm

Background Value = 2.4 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	Using	90% of the Stabiliz Reading	ed	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas
#1	504	ppm	450	ppm	7
#2	502	ppm	450	ppm	7
#3	502	ppm	450	ppm	6
	Calculate Response T	ime (<u>1</u> -	-2+3)		#DIV/0! Must be less than 30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z	` ' '		Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)			Calculate Precision [ST	D – (B)]
#1	1.7-	ppm	504	ppm	4			
#2	1.3	ppm	502	ppm	2			
#3	1,1	ppm	502	ppm	2			
Calculate Precision	on [STD-B1] + [STD-B2] + [3	STD-B3] X <u>1</u> X 500	100	0.2%	#DIV/		
					Must be less than 10	0%		

Performed By: Michael	Opers	Date/Time: 8-9-23/0840
Performed By: MICHLUL	OKING	Date/Time: 8-9-23/0840

LANDFILL NAME: Simi VAILEY		INSTRUMENT MAKE Thermo				
MODEL: TVALCOO	EQUIPMENT #:	10	SERIAL #:	1036346773	_	
MONITORING DATE: 8-1	10-23	TIME:	0700			

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 553 ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
2,4 ppm	3.2 ppm	7.8 ppm

Background Value = 7.8 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	90% of the Stabilized Reading		Time to Reach 90 Stabilized Readin switching from Zon Calibration Gas	ig after	
#1	504	ppm	450	ppm	6	
#2	503	ppm	450	ppm	5	
#3	503	ppm	450	ppm	6	
	Calculate Response Ti	me (<u>1</u> ·	+2+3)		5.6 Must be less than	#DIV/0!

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	ro Air (A)	Meter Reading Calibration Gas		Calculate Precision [STD –	(B)]
#1	0,9	ppm	504	ppm	4	
#2	0,9	ppm	503	ppm	3	
#3	1.2	ppm	503	ppm	3	
Calculate Precision	[STD-B1] + [S	TD-B2] + [3 3	STD-B3] X <u>1</u> X 500	<u>100</u> 1	1.5°/ _U #I Must be less than 10%	DIV/0!

Performed By:	Chris	Huemes	Date/Time:	8-10-23/0700	<u>ڻ</u>
		J. J			

Reading:

2.5

(Highest in 30 seconds)

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME: SIMI VANCY	INSTRUMI	ENT MAKE: The	mo
MODEL: TVALOCO EQUIPMENT #:	#1	SERIAL #:	16320932
MONITORING DATE 8-10-23	TIME:	6700	
Calibration Procedure:			
 Allow instrument to zero itself while introducin Introduce calibration gas into the probe. Stab 	g air. ilized reading =	501 ppm	
Adjust meter settings to read 500 ppm.			
Background Determination Procedure			
Upwind Background Downwind Background	Background	Value:	

ppm

(Upwind + Downwind)
2

ppm

2.7

Background V	alua :	- 7	.7	
Background V	alue :		- 1	ppm

INSTRUMENT RESPONSE TIME RECORD

ppm

Reading:

(Highest in 30 seconds)

2.9

Measurement #	Stabilized Reading Calibration Gas	Using	90% of the Stabiliz Reading	ed	Time to Reach 90° Stabilized Reading switching from Ze Calibration Gas	g after
#1	562	ppm	450	ppm	6	
#2	503	ppm	450	ppm	6	
#3	501	ppm	450	ppm	6	
	Calculate Response T	ime (<u>1</u> - 3	+2+3)		6	#DIV/0!
					Must be less than 3	0 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z	ero Air (A)	Meter Reading Calibration Gas		Calculate Precision [S	TD – (B)]
#1	1.1	ppm	502	ppm	7	
#2	1.2	ppm	503	ppm	3	
#3	lel	ppm	501	ppm		
Calculate Precisio	n [STD-B1] + [S	3 3		<u>100</u>	25	#DIV/0
					Must be less than	10%

Performed By:	medina	Date/Time:	8-10-23	
	18			

CALIBRATION PROCEDURE	AND BACKGROUND	REPORT - INTEGRATED
-----------------------	----------------	---------------------

LANDFILL NAME 51	INSTRUMENT MAKE: THEMO				
MODEL: TVALOOC	EQUIPMENT #	10	at a	SERIAL #: _	1036346773
MONITORING DATE: _	8-14-23	TI	IME: _	0715	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 24.3 ppm
- 3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
2.3 ppm	3.\ ppm	2.7 ppm

Background Value = 2.7 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabiliz Reading	ed	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	24.3	ppm	22,5	ppm	6.24.5	
#2	24.3	ppm	22.5	ppm	6	
#3	24.3	ppm	22,5	ppm	6	
	Calculate Response T	ime (<u>1-</u> 3	+2+3)		6	#DIV/0!
					Must be less than 30	seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)			Calculate Precision [STD (B)]	
#1	1.2	ppm	24.3	ppm	017
#2	1.2	ppm	24,3	ppm	0.7
#3	1.0	ppm	241,3	ppm	0.7
Calculate Precisio	on [STD-B1] + [S	TD-B2] + [8 3	STD-B3] X <u>1</u> X 25	100 1	0 /3 °/ _O #DIV/0! Must be less than 10%

			/	
Performed By CHRIS	Hugh - 8	Date/Time:	8-14-23/07,	5
	7-1-3		21011	

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INTEGRATED

LANDFILL NAME: Simi Valley	INSTRUMENT MAKE: THE TWO
MODEL: TVAICO EQUIPMENT #:	
MONITORING DATE: 8-14-73	TIME:

Calibration Procedure:

1. Allow instrument to zero itself while introducing air.

2. Introduce calibration gas into the probe. Stabilized reading = 2.5, q ppm

3. Adjust meter settings to read 25 ppm.

Background Determination Procedure

Upwind Backgr Reading: (Highest in 30 sec		Downwind Back Reading: (Highest in 30 sec	•	Background Value (Upwind + Down 2	
2.2	ppm	3,4	ppm	2.8	ppm

Background Value = $\frac{7.8}{}$ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	Using	90% of the Stabiliz Reading	ed	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	26.2	ppm	22.5	ppm	6		
#2	26,2	ppm	22.5	ppm	5		
#3	25.9	ppm	22,5	ppm	6		
	Calculate Response Ti	ime (<u>1</u> -	+2+3)		5.6	#DIV/0!	
					Must be less than 3	0 seconds	

CALIBRATION PRECISION RECORD

Calibration Gas Standard = 25 ppm

Meter Reading for Z	ero Air (A)			Calculate Precision [STD – (B)		
1,2	ppm	26.2	ppm	1,2		
1-1	ppm	26.2	ppm	1,2		
1.1	ppm		ppm	0.9		
[STD-B1] + [S	3 3 STD-B2		<u>100</u> 1	Ф₁2 % #DIV/0! Must be less than 10%		
	1.Z 1.1	1,1 ppm	Calibration Gas 1, Z ppm 26, 2 1, 1 ppm 26, Z 1, 1 ppm 25, 9 [STD-B1] + [STD-B2] + [STD-B3] X 1 X	Calibration Gas (B) 1, Z ppm 26, Z ppm 1, 1 ppm 26, Z ppm 1, 1 ppm 25, 9 ppm [STD-B1] + [STD-B2] + [STD-B3] X 1 X 100		

Date/lime: 8-14-23/07/5
-

Project:

RES_SimiValley landfill

Date/Time:

7/11/2023 4:43:32 AM

Model Number:

INSPECTRA

Serial Number:

1011221

Latitude:

34.0563835

Longitude:

-117.3073022

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Jul-11 04:44 using one span gas.

		Measurement #1		Measu	rement #2	Measu	rement #3	611			A ARMS
GAS USED	T90	T90	Reading	T90	Reading	T90	Reading	Average Algebraic Difference	Calibration Precision	Calibration Precision < 10	Average Response Time
	(ppm)	(sec)	(ppm)	(sec)	(ppm)	(sec)	(ppm)		(%)		(s)
ZERO	D										
Calibration Gas #1	500	7.0	477.5	6.9	477.3	7.0	478.9	22.1	4.4%	Yes	7.0

n

Gas Manufacturer :

intermountain

Gas Expiration Date:

7/10/2024

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

7/11/2023 4:43:32 AM

Gas Lot Number:

20-7421

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

- 1

Date/Time:

7/11/2023 4:43:32 AM

Gas Manufacturer :

Premier Safety

Gas Lot Number :

Gas Expiration Date :

3/1/2025

1000

2-055-87

Misc Ref No:

N/A

UN#: N/A

Cylinder ID:

Bottle Pressure:

Technical Name:

N/A

Project:

RES_SimiValley landfill

Date/Time:

7/11/2023 4:47:10 AM

Model Number:

INSPECTRA

Serial Number:

811121

Latitude:

34.0564113

Longitude:

-117.3072999

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Jul-11 04:48 using one span gas.

		Measurement #1		Measurement #2		Measurement #3				43700	
GAS USED		T90	Reading	T90	Reading	T90	Reading	Average Algebraic Difference	Calibration Precision	Calibration Precision < 10	Average Response Time
	(ppm)	(sec)	(ppm)	(sec)	(ppm)	(sec)	(ppm)		(%)		(9)
ZERO	0										
Calibration Gas #1	500	6.9	475.6	7.1	476.8	7.2	475.4	24.1	4.8%	Yes	7.1

0

Gas Manufacturer:

intermountain

Gas Expiration Date :

7/10/2024

Misc Ref No:

N/A

UN#:

N/A

Date/Time :

7/11/2023 4:47:10 AM

Gas Lot Number:

20-7421

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

1

Gas Manufacturer :

Premier Safety

Gas Expiration Date:

3/1/2025

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

7/11/2023 4:47:10 AM

Gas Lot Number :

2-055-87

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Project:

RES_SimiValley landfill

Date/Time:

7/11/2023 4:39:41 AM

Model Number:

INSPECTRA

Serial Number:

1001221

Latitude :

34.0563867

Longitude:

-117.3073005

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Jul-11 04:40 using one span gas.

	Terrolles to	Measu	rement #1	Measu	rement #2	Measu	rement #3		Calibration Precision (%)	Calibration Precision < 10	Average Response Time
GAS USED		T90	Reading	T90	Reading	T90	Reading (ppm)	Average Algebraic Difference			
	(ppm)	n) (sec)	(ppm)		(ppm)	(sec)					
ZERO	D										
Calibration Gas #1	500	9.5	459.4	7.3	461.4	7.4	461.7	39.2	7.8%	Yes	8.1

0

Gas Manufacturer:

intermountain

Gas Expiration Date:

7/10/2024

Misc Ref No:

N/A

UN#:

N/A

Date/Time :

7/11/2023 4:39:41 AM

Gas Lot Number:

20-7421

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID :

1

Gas Manufacturer:

Premier Saftey

Gas Expiration Date :

3/1/2025

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

7/11/2023 4:39:41 AM

Gas Lot Number:

2-055-87

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID :

Project:

RES_SimiValley landfill

Date/Time:

7/11/2023 4:41:32 AM

Model Number:

INSPECTRA

Serial Number:

881221

Latitude:

34.0563647

Longitude:

-117,3072942

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Jul-11 04:42 using one span gas.

		Measurement #1		Measu	rement #2	Measurement #3					
GAS USED		T90	Reading	T90	Reading	T90	Reading	Average Algebraic Difference	Calibration Precision	Calibration Precision < 10	Average Response Time
	(ppm)	(sec)	(ppm)	(sec)	(ppm)	(sec)	(ppm)		(%)		(s)
ZERO	0										
Calibration Gas #1	500	6.8	475.3	6.8	475.6	6.7	475.6	24.5	4.9%	Yes	6.8

0

Gas Manufacturer:

intermountain

Gas Expiration Date:

7/10/2024

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

7/11/2023 4:41:32 AM

Gas Lot Number :

20-7421

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Gas Sequence ID :
Gas Manufacturer :

1

Premier Safety

Gas Expiration Date:

3/1/2025

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

7/11/2023 4:41:32 AM

Gas Lot Number:

2-055-87

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Project:

RES_SimiValley landfill

Date/Time:

7/13/2023 4:45:45 AM

Model Number:

INSPECTRA

Serial Number:

811121

Latitude:

34.0563802

Longitude:

-117.3072875

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Jul-13 04:47 using one span gas.

		Measu	rement #1	Messurement #2		Measu	rement #3	Serie William			
GAS USED	(ppm)	T90 (sec)	Reading (ppm)	T90	Reading (ppm)	T90	Reading (ppm)	Average Algebraic Difference	Calibration Precision	Calibration Precision < 10	Average Response Time (s)
									(%)		
ZERO	0										
Calibration Gas #1	500	7.0	474.9	7.0	474	7.0	475	25.4	5.1%	Yes	7.0

0

Gas Manufacturer: Gas Expiration Date:

7/10/2024

intermountain

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

7/13/2023 4:45:45 AM

Gas Lot Number :

20-7421

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

1

Gas Manufacturer:

Premier Safety

Gas Expiration Date :

3/1/2025

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

7/13/2023 4:45:45 AM

Gas Lot Number:

2-055-87

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Project:

RES_SimiValley landfill

Date/Time:

7/11/2023 4:45:25 AM

Model Number:

INSPECTRA

Serial Number:

761121

Latitude:

34.0563836

Longitude:

-117.307298

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Jui-11 04:46 using one span gas.

		Measurement #1		Measu	rement #2	Messu	rement #3				
GAS USED	(maa)	T90 (sec)	Reading (ppm)	T90 (sec)	Reading	T90	Reading (ppm)	Average Algebraic Difference	Calibration Precision (%)	Calibration Precision < 10	Average Response Time
					(ppm)	(sec)					
ZERO	0										
Calibration Gas #1	500	6.8	471	6.8	472	6.8	471.9	28.4	5.7%	Yes	6.8

0

intermountain

Gas Expiration Date:

Gas Manufacturer:

7/10/2024

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

7/11/2023 4:45:25 AM

Gas Lot Number :

20-7421

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

- 1

Gas Manufacturer :

Premier Safety

Gas Expiration Date :

3/1/2025

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

7/11/2023 4:45:25 AM

Gas Lot Number:

2-055-87

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com

"Your calibration gas manufacturer since 1992"

CERTIFICATE OF ANALYSIS

Composition Analytical Accuracy (+/-) Certification

Oxygen

20.9 %

2%

Nitrogen

Balance UHP

Lot#

20-7421

Mfg. Date:

5/20/2020

Expiration Date:

Transfill Date:

see cylinder

Parent Cylinder ID NY02268

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By:

Tony Janquart

Title:

Quality Assurance Manager

Certificate Date:

5/20/2020

Service entration (Mole%)

Accuracy

20.9% Oxygen Bal Nitrogen

36% 0 70°F and 1,000 PSIG

Lot#: 20-7421

P/N:01-100

103 L

Maser Avenue, Irvine, CA 92614 2053 or (800) 201-8150 Fax (949) 757-0363

103-01-100

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road ● Nampa ● Idaho ● 83687 800-552-5003 ● www.isgases.com

CERTIFICATE OF ANALYSIS

Composition

Certification

Analytical Accuracy

Methane

25 ppm

 $\pm 5\%$

Air

Balance

Lot#

17-6074

Mfg. Date:

10/16/2017

Parent Cylinder ID

17161

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 10/16/2017

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

CERTIFICATE OF ANALYSIS

Composition

Certification

Analytical Accuracy

Methane

25 ppm

± 5%

Air

Balance

Lot#

17-6074

Mfg. Date:

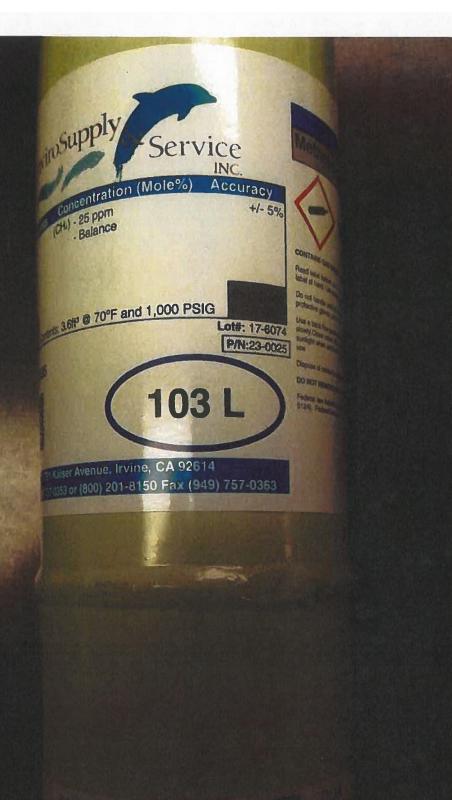
10/16/2017

Parent Cylinder ID 17161

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled


Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

> Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 10/16/2017

TC-SU6495 NRC 76/104

Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com

"Your calibration gas manufacturer since 1992"

CERTIFICATE OF ANALYSIS

Composition Certification Analytical Accuracy (+/-) Methane 500 ppm 2% Oxygen 20.9 % 2% Nitrogen **Balance UHP**

Lot# 20-7497

Mfg. Date: 7/10/2020

Expiration Date:

Transfill Date: see cylinder

Parent Cylinder ID TWC001763

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By:

Tony Janquart

Title:

Quality Assurance Manager

Certificate Date:

7/10/2020

Methane () Service Accuracy (Mole%) +1-2% CONTAINS GAS UNDER FROM Friend label before use You was listed at hand. Use explanation Do not handle tire at one protective gloves, protec 10'F and 1,000 PSIG Use a back flow present as skinway Close value whereas as milight when embed more Lot#: 20-7497 P/N:23-0500 Dispose of contant and your DO NOT REMOVE THE PRODU Poderal law forbids targette 6124). Federal law problem lectic Irvine, CA 92614 3/0 201-8150 Fax (949) 757-0363

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

CERTIFICATE OF ANALYSIS

Composition

Methane

Air

Certification

500 ppm

Balance

Analytical Accuracy

± 2%

Lot#

19-6955

Mfg. Date:

7/24/2019

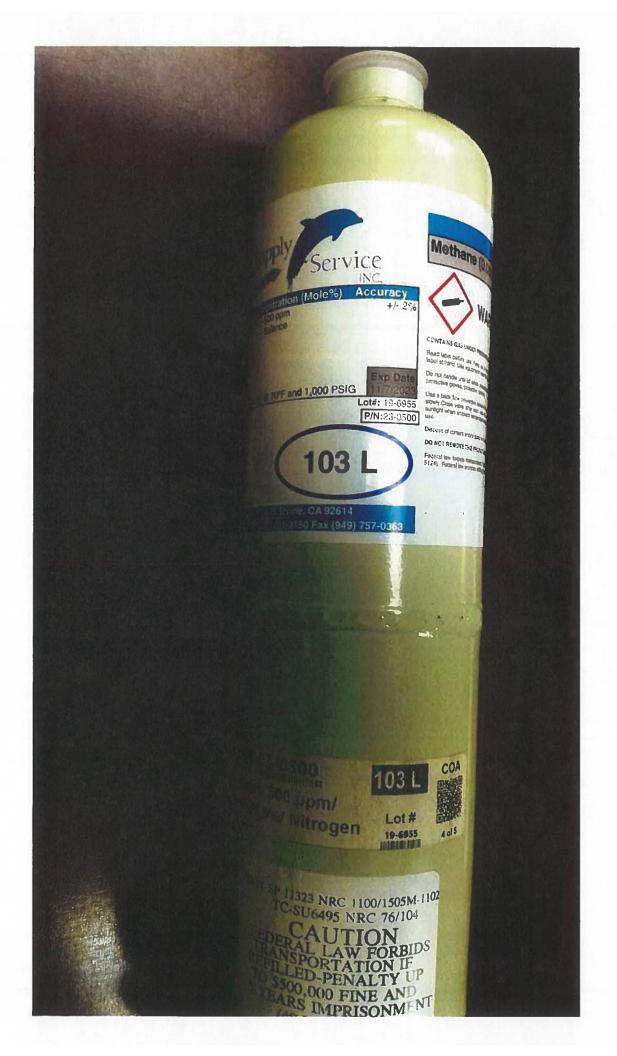
Parent Cylinder ID

001763

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled


Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 7/24/2019

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

46400 Continental Drivve Chesterfield ,MI 48047

Lot Number Norlab Part# 9-326-80 J1971500PA

Cylinder Size

103 Liter

Number of Cyl 1

Customer Part# N/A

Cust Number 07152 Order Number 62891146

PO Number 04548169

Date on Manufacture

12/31/2019 12/2022

Expires Analytical Accuracy

+/- 2 %

Component

Methane Air

Reported

Concentration

500 ppm

Balance

Requested

Concentration

500 ppm

Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the MIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers 20180519 and 20180224

Approved:

Lab Technician

12/31/2019

898 W. GOWEN ROAD . BOISE, IDAHO 83705 Phone (208) 336-16-f3 • Fax (208) 331-3038 • 800-657-6672

sponders afety.com

46400 Continued Chesterfield, M

moonents

Concentration (Mole

500 ppm Balance

9135-81

1.2%

J1871500PA

163Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

11/11/2020

11/2023

CALIBRATION GAS

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312 Cust Number 07152 Order Number 69679439 PO Number 04906817

Lot Number Norlab Part# 2-154-85 J1002

Cylinder Size 103 Liter

Number of Cyl

1

Date on Manufacture

6/13/2022

Expires Analytical Accuracy

06/2025 Certified

Customer Part# N/A

Component
Air
Oxygen
T.H.C. (as Methane)
Nitrogen

Reported

Concentration
Zero Grade
20.9 %
< 1.0 ppm
Balance

Requested

Concentration
Zero Grade
20.9 %
< 1.0 ppm
Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

Minor constituents tested with standards traceable to NIST by mass or comparison to SRM's (Standard Reference Materials).

NIST Traceable Numbers are available upon request.

Approved:

David Reed

Date Signed:

6/13/2022

David Reed
Lab Technician

PREMIER

800.962.7837 sopremiers afety.com

33596 Sterling House

components

ongen THC. (as Methane)

Concentration

Zero Grade 20.9 % < 1.0 ppm Balance

2-154-85

many: Certified

J1002

103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

6/13/2022

08/2025

CALIBRATION GAS

NON-FLAMMABLE GAS

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Order Number 69671309
PO Number 08361523

Lot Number 2-108-80
Norlab Part# J1971500PA
Cylinder Size 103 Liter

Number of Cyl 1

Customer Part# N/A

Cust Number 07152

Expires

6/10/2022

06/2025

+/- 2%

Date on Manufacture

Analytical Accuracy

Component Methane Air Reported
Concentration
500 ppm
Balance

Requested
Concentration
500 ppm
Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers are available upon request.

Approved:

David Reed

Date Signed:

6/10/2022

Lab Technician

PREMIER

800.962.7837 serv premiers afety.com

33596 Sterling Sterling Height

Components

Nethane

Concentration (Mo:

500 ppm Balance

Litt: 2-108-80

Accuracy: +/- 2 %

at J1971500PA

Contents: 103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

5/5/2022

Exp. Date:

05/2025

CALIBRATION GAS

NON-FLAMMABLE GAS

Calibration Gases & Equipment

CERTIFICATE OF ANALYSIS

Norco, Inc Twin Falls Warehouse 203 S. Park Ave. West Twin Falls, ID 83301

Cust Number WH012 Order Number 71846398 PO Number 04A35563

Lot Number 3-088-88 Norlab Part# J1971500PA Cylinder Size 103 Liter

Date on Manufacture 4/7/2023 **Expires** 04/2027 Analytical Accuracy +/- 2%

Number of Cyl

Customer Part# N/A

Component

Methane

Аіг

Reported Concentration 500 ppm Balance

Requested Concentration 500 ppm **Balance**

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traceable Numbers are available upon request.

Approved:

Date Signed:

4/7/2023

898 W. GOWEN ROAD . BOISE, IDAHO 83705 Phone (208) 336-1643 • Fax (208) 331-3038 • 800-657-6672

800.862.7837 our.premiersafety.com

33596 Sterling heigh

components

Mathane

Concentration (Make

500 ppm Balance

\$088-88

Mary #2%

J1971500PA

103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

4717853

04/2627

CALIBRATION GAS

CUSTOMER: DES VANT # 1

SERIAL NUMBER: 16320832

TECHNICIAN: MM DATE: 7-7-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID				
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)	
100	100	100	+/- 25	
500	500	500	+/- 125	
10000	10000	10,202	+/- 2500	
< 1	ZERO GAS	0.49	< 3	
	Pil			
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)	
50	50	/	+/- 12.5	
100	100	/	+/- 25	
500	500		+/- 125	
<1	ZERO GAS		< 3	

CUSTOMER: Dis vat # 2	
SERIAL NUMBER: 7784545	
TECHNICIAN: DATE:	7-7-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID				
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)	
100	100	(00	+/- 25	
500	500	500	+/- 125	
10000	10000	[0,000	+/- 2500	
<1	ZERO GAS	0.76	< 3	
	Pil	D		
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)	
50	50	1	+/- 12.5	
100	100		+/- 25	
500	500		+/- 125	
< 1	ZERO GAS	/	< 3	

CUSTOMER: <u>Niès</u> UND	#3
SERIAL NUMBER:	884
TECHNICIAN: My My	DATE:

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FII	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	99	+/- 25
500	500	500	+/- 125
10000	10000	10,006	+/- 2500
<1	ZERO GAS	0,79	< 3
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS.(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100		+/- 25
500	500		+/- 125
<1	ZERO GAS	/	< 3

CUSTOMER:	Miss Vait	#9	
SERIAL NUMBER: _	16319830	0	
TECHNICIAN:	My M	DATE:	7-7-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	(00	+/- 25
500	500	501	+/- 125
10000	10000	10,211	+/- 2500
<1	ZERO GAS	0.63	< 3
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS.(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS	/	< 3

CUSTOMER: Nis Vant	#5	
SERIAL NUMBER: 49/9480)	
TECHNICIAN: Mu M	DATE: _	7-7-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,000	+/- 2500
< 1	ZERO GAS	(2,6)	< 3
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50		+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
< 1	ZERO GAS		< 3

CUSTOMER: JUES VANT # 6

SERIAL NUMBER: 0720723 626

TECHNICIAN: M DATE: 7-7-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID				
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)	
100	100	100	+/- 25	
500	500	500	+/- 125	
10000	10000	(0,001	+/- 2500	
< 1	ZERO GAS	0,69	< 3	
	PII	D		
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)	
50	50	1	+/- 12.5	
100	100	/	+/- 25	
500	500		+/- 125	
<1	ZERO GAS	/	< 3	

CUSTOMER:	RAS Vait	#7	
SERIAL NUMBER:	0720723	627	
TECHNICIAN:	h M	DATE:	7-7-23

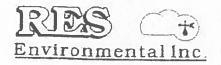
GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	(0,10)	+/- 2500
< 1	ZERO GAS	(2,64	< 3
	PI	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100		+/- 25
500	500		+/- 125
<1	ZERO GAS	/	< 3

CUSTOMER: NièS Vaix #9	
SERIAL NUMBER: 0532113801	
TECHNICIAN: DATE:	7-7-27

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	19,000	+/- 2500
<1	ZERO GAS	(2:61	< 3
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS.(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50		+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS	1	< 3


Time:
INSTRUMENT CALIBRATION
CALIBRATION CHECK Calibration Actual %
Gas (ppm) (ppm) Accuracy
500 500 100-4
RESPONSE TIME Calibration Gas, ppm 500
90% of Calibration Gas, ppm <u>USO</u> Time required to attain 90% of Cal Gas ppm 1.
2. <u>\$</u> 3. <u>6</u>
Average 5.3 Equal to or less than 30 seconds? N
Instrument calibrated to <u>CUY</u> gas.

Site:		7.57		
Purpose:				
Operator:	m M			
Date: 7-7-23		Time:	0515	
Model #				
Serial # # 2 778 49	545			
INSTRUMENT INTEGRITY	CHECKLIST	INST	RUMENT CALIBRA	ATION
Sattony toot	8215-1		ALIBRATION CHE	
Battery test	Pass / Fail	Calibration Gas (ppm)	Actual (ppm)	% Accuracy
Reading following ignition	2.3 ppm			
eak test	Pass / Fail / NA	500	500	100%
	rass / Fall / INA		RESPONSE TIME	
lean system check	Pass / Fail / NA		1.00	_
check valve chatter)		Calibration Gas,		<u> </u>
2 supply pressure gauge	Pass / Fail / NA	90% of Calibratio	n Gas, ppm attain 90% of Cal G	450
acceptable range 9.5 - 12)		4	/	ναο μριτι
ate of last factory calibration	7-7-23	2.	6	
are or last lactory calibration	1-1-1			
actory calibration record	Pass / Fail		0	<i>(</i> 2)
//instrument within 3 months			han 30 seconds?	Ø N
		metrument callor	ated to Chy	_gas,
Comments:		V/ =		
				TIST III

Date: 7-7-23		Time:	0530	
Model #				
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	UMENT CALIBRA	TION
Reading following ignition Leak test Clean system check (check valve chatter) H2 supply pressure gauge (acceptable range 9.5 - 12) Date of last factory calibration Factory calibration record w/instrument within 3 months	Pass / Fail / NA 7-7-23 Pass / Fail	Calibration Gas (ppm)	ttain 90% of Cal G	% Accuracy (ØØ%

Site:	
Purpose:	
Operator:	My
Date: 7-7-23	Time: 0547
lodel #	
eriai# #4 16319830	
INSTRUMENT INTEGRITY CHECK	IST INSTRUMENT CALIBRATION
attery test	CALIBRATION CHECK
	Fail Calibration Actual % Gas (ppm) (ppm) Accurac
	Fail / NA SOO (00)
	RESPONSE TIME
heck valve chatter)	Calibration Gas, ppm 500
supply pressure gauge (Pass / cceptable range 9.5 - 12)	Fail / NA Time required to attain 90% of Cal Gas ppm 1.
ate of last factory calibration 2-7	-23 2. <u>6</u>
actory calibration record linstrument within 3 months	
	Instrument calibrated to Clfy gas.
omments:	
zitimetitis.	

Site:	·			
Purpose:				
Operator:	in Mr.			- 3
Date: 7-7-23		Time:	0(000	
Model # _ + VA 1000	7			
Serial # # \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	80			
INSTRUMENT INTEGRITY	CHECKLIST	INST	RUMENT CALIBRA	LTION
Battery test	Pass / Fail	Calibration	CALIBRATION CHEC	CK %
Reading following ignition	10	Gas (ppm)	(ppm)	Accuracy
Leak test	ppm Gass / Fail / NA	500	SØO RESPONSE TIME	100%
Clean system check (check valve chatter)	Fass / Fail / NA	Calibration Gas,	ppm	500
H ₂ supply pressure gauge (acceptable range 9.5 - 12)	s / Fail / NA	90% of Calibration Time required to 1.	on Gas, ppm(attain 90% of Cal G	as ppm
Date of last factory calibration	7-7-23	2. 3.	5	
Factory calibration record winstrument within 3 months	Pass / Fail	Equal to or less	5.6 than 30 seconds? rated to	Ø N gas.
Comments:				
1				

Model #	Operator:	Um M.	4		
INSTRUMENT INTEGRITY CHECKLIST INSTRUMENT CALIBRATION CALIBRATION CHECK Calibration Actual (ppm) Accuracy Gas (ppm) (ppm) Accuracy Calibration Gas (ppm) (ppm) Accuracy Soo Soo (oo) Calibration Gas, ppm Soo 90% of Calibration Gas, ppm Soo 90% of Calibration Gas, ppm USO Time required to attain 90% of Cal Gas ppm 1. (O) Calibration Gas, ppm Soo 90% of Calibration Gas, ppm USO Time required to attain 90% of Cal Gas ppm 1. (O) Calibration Gas, ppm Soo 90% of Calibration Gas, ppm USO Time required to attain 90% of Cal Gas ppm 1. (O) 2. (O) Average (I) Instrument within 3 months	Date: 7-7-23		Time:	0615	
INSTRUMENT INTEGRITY CHECKLIST INSTRUMENT CALIBRATION CALIBRATION CHECK Calibration Actual (ppm) Accuracy Gas (ppm) (ppm) Accuracy Gas (ppm) (ppm) Accuracy Calibration Gas (ppm) (ppm) Accuracy Calibration Gas, ppm S00 90% of Calibration Gas, ppm 90% of Calibration Gas, ppm 100 Time required to attain 90% of Cal Gas ppm 1. Oute of last factory calibration Pass / Fail Calibration Gas, ppm S00 90% of Calibration Gas, ppm 1. Oute of last factory calibration Pass / Fail Calibration Gas, ppm 1. Calibration Gas, ppm 1. Oute of last factory calibration Pass / Fail Calibration Gas, ppm 1. Calibration Gas, ppm 1. Calibration Gas, ppm 1. Calibration Gas, ppm 2. Calibration Gas, ppm 2. Calibration Gas, ppm 1. Calibration Gas, ppm 2. Calibration Gas,		23626			
Reading following ignition Reading following ignition Reading following ignition Reading following ignition Pass / Fail / NA Response TIME Calibration Gas (ppm) Response TIME Calibration Gas, ppm 90% of Calibration Gas, ppm 90% of Calibration Gas, ppm 1.			INST	RUMENT CALIBRA	TION
Reading following ignition A cask test Clean system check check valve chatter) A calibration Gas, ppm Soo Soo Fail / NA RESPONSE TIME Calibration Gas, ppm 90% of Calibration Gas, ppm Time required to attain 90% of Cal Gas ppm 1.	Battery test	(Pass) / Fail	Calibration	Actual	%
RESPONSE TIME Clean system check check valve chatter) Clean system check check valve chatter) Calibration Gas, ppm	Reading following ignition	2.6 ppm		(ppm)	Accuracy
	clean system check check valve chatter) 2 supply pressure gauge acceptable range 9.5 - 12) ate of last factory calibration actory calibration record	Pass / Fail / NA Pass / Fail / NA 7-7-23	Calibration Gas, 90% of Calibratio Time required to 1. 2. 3. Average Equal to or less to	RESPONSE TIME ppm So on Gas, ppm 4 attain 90% of Cal Ga (0 7 (2,3) than 30 seconds?	OO (SO as ppm
comments;	Comments:				

Model #	Operator: 1-7-2-3	hu JN	/ Time:	0630	
Calibration Actual % Accuracy Reading following ignition Pass / Fail / NA Response TIME Calibration Gas (ppm) (ppm) Accuracy Response TIME Calibration Gas, ppm Soo 90% of Calibration Gas, ppm 1/40 Time required to attain 90% of Cal Gas ppm 1. Sectory calibration record Calibration Cal	ierial # #9 05721				
Reading following ignition Pass / Fail Calibration Gas (ppm) Accuracy Fass / Fail / NA RESPONSE TIME Calibration Gas, ppm Calibration Gas, ppm 90% of Calibration Gas, ppm 1/2 supply pressure gauge Calibration Gas, ppm 90% of Calibration Gas, ppm 1/4 Calibration Gas, ppm 1	MISTROMENT INTEGRIT	CHECKLIST	INSTR	UMENT CALIBRA	ATION
	Reading following ignition eak test Clean system check check valve chatter) Iz supply pressure gauge acceptable range 9.5 - 12) Pate of last factory calibration actory calibration record	Pass / Fail / NA 2-7-23	Calibration Gas (ppm) 900 Calibration Gas, p 90% of Calibration Time required to a 1	Actual (ppm) SOO RESPONSE TIME pm Gas, ppm ttain 90% of Cal G	Accuracy / OO 1/4 SOO (450 cas ppm

Operator:	M			
Date:		Time:	0645	
Model # TUA-1000				
Serial # #29 1031	445324			
INSTRUMENT INTEGRITY	CHECKLIST	INS	TRUMENT CALIB	RATION
Battery test	62 15-11		CALIBRATION CH	
rationy test	Pass / Fail	Calibration Gas (ppm)	Actual (ppm)	% Accuracy
eading following ignition	23 ppm			Accuracy
eak test	Pass / Fail / NA	500	500	100%
Suit 105t	Fass / Fall / NA		RESPONSE TIM	ΛE
lean system check	Pass / Fail / NA			Cm
check valve chatter)		Calibration Gas 90% of Calibrat		500
2 supply pressure gauge	Pass / Fail / NA		on Gas, ppm attain 90% of Ca	
acceptable range 9.5 - 12)		1.	6	Oas ppiii
ate of last factory calibration	7-7-23	2.	6	
ate of idet idetory campidtion		3.	5	
actory calibration record	Pass / Fail	Average	5.6	
/instrument within 3 months			than 30 seconds?	
		mounterit call	rated to Chy	gas.
comments:				

perator:	Mu //	N		
ate: \$4-23		Time:	0530	
erial # # 1 (6320	832			ř
INSTRUMENT INTEGRIT	Y CHECKLIST	INST	RUMENT CALIBR	ATION
attery test	ass / Fail	Calibration Gas (ppm)	ALIBRATION CHE Actual	%
eading following ignition	21 ppm	The state of the s	(ppm)	Accuracy
ak test	Pass / Fail / NA	500	Soo	100%
ean system check neck valve chatter)	Pass / Fail / NA	Calibration Gas, p	RESPONSE TIME	500
supply pressure gauge ceptable range 9.5 - 12)	Pass / Fail / NA	90% of Calibration Time required to a 1.	n Gas, ppm attain 90% of Cal C	450 Gas ppm
te of last factory calibration	7-7-23	2. 3.	6	
ctory calibration record instrument within 3 months	Rass / Fail	Average 6. Equal to or less the linstrument calibrations		Ø N _gas.

Operator:	n ym			<u> </u>
Date: 8-4-23	- A	Time:	0545	
10del # TUA 1000				
Serial # #2 77840	745			
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	RUMENT CALIBR	ATION
-M			LIBRATION CHE	CK
sattery test	Pass / Fail	Calibration	Actual	%
eading following ignition	2.0 ppm	Gas (ppm)	(ppm)	Accuracy
eak test	ass / Fail / NA	500	500	100%
lean system check	Pass / Fail / NA		RESPONSE TIME	
heck valve chatter)		Calibration Gas, p		600
supply pressure gauge acceptable range 9.5 - 12)	Pass / Fail / NA	90% of Calibration Time required to a		150 Gas ppm
	7-7-23	1. <u>(0</u> 2. <u>0</u> 3. 6	, ,	
ate of last factory calibration	Pass / Fail	Average 6.	0	
actory calibration record	ago / I all	Equal to or less th		
actory calibration actory calibration actory calibration record //instrument within 3 months	(age / Fall	Instrument calibra	160 10 <u>0 17 7</u>	9

Reading following ignition Leak test Clean system check (check valve chatter) Clean System Check (check valve chatter)	
Battery test Reading following ignition Leak test Clean system check (check valve chatter) Pass / Fail / NA Cal	CALIBRATION CHECK alibration Actual % as (ppm) (ppm) Accuracy
Reading following ignition Leak test Clean system check check valve chatter) Clean System Check Check valve Clean Cle	alibration Actual % as (ppm) (ppm) Accuracy
Leak test Clean system check (check valve chatter) Pass / Fail / NA Cal	500 500 100 K
Time 1. Pals / Fail / NA Time 1. Pals / Fail /	RESPONSE TIME ibration Gas, ppm 6 of Calibration Gas, ppm 90% of Cal Gas ppm 6 5 6 rage 5 6 rument calibrated to

Purpose:	Mr. Mrs			
Operator: ()	m ()v '	Time:	0615	
Model # 44 1000				
Serial # # 4 16319 8	<u> </u>			
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	UMENT CALIBRA	ATION
Battery test	Pass / Fail	CA Calibration	LIBRATION CHE	
Reading following ignition	1.2 ppm	Gas (ppm)	Actual (ppm)	% Accuracy
eak test	Fass / Fail / NA	500	500	100%
clean system check check valve chatter)	Pass / Fail / NA	Calibration Gas, p	RESPONSE TIME	<u> </u>
l ₂ supply pressure gauge acceptable range 9.5 - 12)	Pass / Fail / NA	90% of Calibration Time required to a 1.		
ate of last factory calibration	7-7-23	2.	6	
actory calibration record /instrument within 3 months	Pass / Fail	Average 5. Equal to or less the Instrument calibra	an 30 seconds?	Ø N _gas.
omments:				a 1

Site:				-
Purpose:	M	4		
	(Z /Vh			
Date: 8-4-23		Time:	0630	
Model # TVA 1000				
Gerial # #5 49199	180			
INSTRUMENT INTEGRIT	Y CHECKLIST	INS	TRUMENT CALIBRA	ATION
	a		CALIBRATION CHEC	CK
attery test	Pass / Fail	Calibration	Actual	%
eading following ignition	2.3 ppm	Gas (ppm)	(ppm)	Accuracy
	000	500	500	100%
ak test	(Pass / Fail / NA	,,,,		'
ean system check	Pass / Fail / NA		RESPONSE TIME	
neck valve chatter)	C GOOT TOWN	Calibration Gas		00
cumbi nancum anun	6	90% of Calibrati	· · · · · · · · · · · · · · · · · · ·	450
supply pressure gauge cceptable range 9.5 - 12)	(Pass / Fail / NA	L .	attain 90% of Cal G	as ppm
	0 202	1. 2.	5	
ate of last factory calibration	7-7-23	3.	-3	
actory calibration record	Pass / Fail		5.3	
instrument within 3 months	(Caso / Fall		than 30 seconds?	(Ý) N
		Instrument calib	rated to Clary	_gas.
omments:				
Zimilyinto.				
	<u> </u>			

Purpose:	w M				
Pate: 8-4-23		Time:	0645		
Model # 1000	<u> </u>				
Serial # #6 07 20	723626				
INSTRUMENT INTEGRIT	Y CHECKLIST	INST	RUMENT CALIBR	ATION	
Sattery test	Pass / Fail	Calibration Gas (ppm)	ALIBRATION CHE Actual (ppm)	CK % Accurac	су
eak test	Pass / Fail / NA	500	SUO RESPONSE TIME	100	1,
lean system check heck valve chatter)	Pass / Fail / NA	Calibration Gas, 90% of Calibratio	ppm	500 USO	
z supply pressure gauge acceptable range 9.5 - 12)	Pass / Fail / NA	Time required to 1.	attain 90% of Cal (
ate of last factory calibration	7-7-23	2. 3.	5		
actory calibration record /instrument within 3 months	Fase / Fail		han 30 seconds? ated to		N
omments:		1			1

Time: 0700				
INSTRUMENT CALIDRATION				
INSTRUMENT CALIDRATION				
INSTRIMENT CALIDRATION				
MOTIONILITI CALIBRATION				
CALIBRATION CHECK				
Calibration Actual %				
Gas (ppm) (ppm) Accura				
500 500 100				
RESPONSE TIME				
Calibration Gas, ppm \$600				
90% of Calibration Gas, ppm 450 Time required to attain 90% of Cal Gas ppm				
2				
Average 5.0				
Equal to or less than 30 seconds?				
nstrument calibrated to Ctry gas.				
1 2 3 4 5 7				

Operator:	//h		
Pate: 8-4-23	Time:	0115	
lodel # TVA (000			
erial # #9 053113	801		
INSTRUMENT INTEGRITY CH	ECKLIST II	NSTRUMENT CALIBRA	ATION
attery test	ass / Fail Calibration	, 101401	%
eading following ignition	2:0 ppm Gas (ppm)		Accuracy
eak test	ass / Fail / NA	500	100 /
	ass / Fail / NA Calibration G	and bhitt	00
supply pressure gauge cceptable range 9.5 - 12)		ration Gas, ppm d to attain 90% of Cal G	450 Sas ppm
ate of last factory calibration	7-7-23 2.	5	
actory calibration record /instrument within 3 months	ase / Fail Average Equal to or le	f to ess than 30 seconds?	(V) N
	ase / Fail Average Equal to or le	f to ess than 30 seconds?	gas.

WASTE MANAGEMENT

January 29, 2024

8491 Fruitridge Road Sacramento, CA 95826 (510) 714-6098

Ms. Nicole Stetson 2801 Madera Road Simi Valley, California 93065

Fourth Quarter 2023 Surface Emissions and Component Leak Monitoring Report for the Simi Valley Landfill and Recycling Center

Dear Ms. Stetson:

This monitoring report for the "Simi Valley Landfill and Recycling Center (SVLRC)" contains the results of the Fourth Quarter 2023 Integrated and Instantaneous Surface Emissions Monitoring (SEM) and Component Leak Monitoring. Initial surface emissions monitoring was performed by Roberts Environmental Services, LLC. (RES). Re-monitoring of site-wide surface emissions and component leak monitoring was also conducted by RES personnel.

APPLICABLE REQUIREMENTS

The monitoring discussed in this report was conducted in accordance with the following requirements:

Surface Emission Monitoring (SEM)

- California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).
- New Source Performance Standard (NSPS), Title 40 of the Code of Federal Regulations (CFR) §60.755 (c) and (d), 40 CFR 60, Appendix A Method 21; and updated Title 40 CFR part 63, Subpart AAAA (63.1960), promulgated by the United States Environmental Protection Agency (USEPA).
- Ventura County Air Pollution Control District (VCAPCD) Rule 74.17.1 (Municipal Solid Waste Landfills)

Component Leak

• California Code of Regulations (CCR) Title 17, Subchapter 10, Article 4, Subarticle 6, §95460 to §95476, known as the Assembly Bill 32 (AB32) landfill methane rule (LMR).

SVLRC Plan and Alternative Compliance Measures

An Alternative Compliance Option (ACO) Request was submitted to the California Air Resources Board (CARB) on May 24, 2011. A response from the CARB was not received to the ACO Request within 120 days from the date of submittal, therefore SVLRC assumes that the alternative compliance measures, monitoring requirements, and test measures and procedures were deemed acceptable as of September 21, 2011, per CCR Title 17 §95468(c).

All monitoring and reporting was completed in accordance with the 2011 SVLRC AB-32 SEM Plan.

PROCEDURES

General

The surface of the SVLRC disposal area has been divided into two-hundred and three (203), (approximately) 50,000 square foot monitoring grids. The entire landfill surface is monitored with the exception of active portions of the Landfill, slope areas, and as requested in the approved ACO, areas containing only asbestos-containing waste, inert waste and/or non-decomposable waste which are excluded for safety as allowed by CCR Title 17 §95466.

Field personnel walked the surface of the landfill following the walking pattern as depicted the 2011 SVLRC AB-32 SEM Plan, which traverses each monitoring grid. Additionally, in accordance with the provisions of 40 CFR 60.753(d) and 60.755(c)(1-3) and 63.1960, the entire perimeter of the landfill surface was monitored. During the event, special attention was given to monitoring unusual cover conditions (stressed vegetation, cracks, seeps, etc.) and any areas with unusual odors. In addition, penetrations were monitoring per Title 40 CFR part 63, Subpart AAAA (63.1960).

Instantaneous Surface Emissions Monitoring

The Instantaneous SEM was conducted using a Toxic Vapor Analyzer (TVA) 1000 flame ionization detector (FID), which was calibrated to 500 parts per million by volume (ppmv) methane, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a). The FID was calibrated prior to use in accordance with the United States Environmental Protection Agency (USEPA) Method 21 requirements. The Instantaneous SEM procedures followed the requirements of 40 CFR 60.755 (c) and (d), CCR Title 17 §95471(c)(2), VCAPCD Rule 74.1.7, and 40 CFR part 63, Subpart AAAA 63.1960.

RES personnel walked the surface of the landfill on a grid-by-grid basis with the wand tip held at 3 inches from the landfill surface. While sampling the grid, the technicians also checked any surface impoundments (wells or otherwise) for leaks. Technicians also checked any surface cracks, seeps, or other areas that show evidence of surface emissions (odors or distressed vegetation). Active and sloped areas excluded for safety were documented on field data sheets and maps.

All instantaneous surface monitoring was performed in accordance with the applicable requirements referenced in this report. Any detections of methane above 200 ppmv (areas of concern) or 500 ppmv (exceedances) for instantaneous were recorded, flagged, and marked on an SEM Map, which, wherever required, is included in the Attachments of this report. Applicable corrective action and re-monitoring timelines are listed below:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
 - o If the re-monitoring event shows the exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance.
 - o If the 1-month re-monitoring event shows the location is still corrected, all remonitoring requirements have been completed.
- If either the first 10-day or 1-month re-monitoring events show a second exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, the location shall be re-monitored within 1 month of the initial exceedance. If the 1-month re-monitoring event shows the area is still corrected, monitoring requirements have been completed.
- If any location shows three exceedances, an additional well shall be installed within 120 days of the initial exceedance.

Integrated Surface Emissions Monitoring

The Integrated surface monitoring was conducted using a TVA 1000 calibrated to 25 ppmv for the integrated monitoring, which meets or exceeds all guidelines set forth in the CCR Title 17 §95471(a). The field technician traversed the grid walking path over a continuous 25-minute period using the TVA 1000 held at 3 inches above the landfill surface. The Integrated monitoring procedures followed the requirements of CCR Title 17 §95471(c)(2).

Grids with results greater than 25 ppmv were recorded, marked on the SEM map, and flagged for remediation. Any grids with integrated concentrations greater than 25 ppmv are subject to the following corrective action and re-monitoring timeline:

- Re-monitoring shall be conducted within 10 days of the initial exceedance.
- If the 10-day re-monitoring event shows the exceedance is corrected, all re-monitoring requirements have been completed.

- If either the first 10-day re-monitoring event shows a second grid exceedance, additional corrective actions shall be completed and a second re-monitoring event shall be conducted within 10 days of the second exceedance.
- If the second 10-day re-monitoring event shows the second exceedance is corrected, all re-monitoring requirements have been completed.
- If the second 10-day re-monitoring event shows a third grid exceedance, an additional well shall be installed within 120 days of the initial exceedance.

Component Leak Monitoring Procedures

RES personnel monitored the exposed LFG components under positive pressure (pipes, wellheads, valves, blowers, and other mechanical appurtenances) using a TVA 1000 calibrated to 500 ppmv. All leaks measured one half inch or less from the component exceeding the compliance limit of 500 ppmv per requirements outlined in pursuant to CARB Title 17 of California Code of Regulations Subchapter 10, Article 4, Subarticle 6, Section 95464(b)(1)(B) were recorded. Applicable corrective action and re-monitoring timelines are listed below:

• Leaks at or above 500 ppmv must be corrected and re-monitored within 10 days of the initial exceedance.

FOURTH QUARTER SEM AND COMPONENT LEAK RESULTS

The following is a summary of the SEM and Component leak monitoring results completed during the Fourth Quarter 2023.

Instantaneous Surface Emission Monitoring Results

The Instantaneous surface monitoring was performed on November 1, 2, 6, 7, 10, 14, 29 & 30, 2023 in accordance with the NSPS NESHAP, Rule 74.1.17, CCR Title 17 §95469 and ACO. Results and data from the monitoring are presented in Attachment A.

Initial Monitoring Event Exceedances of 500 ppmv

There were fifty-one (51) exceedances of 500 ppmv as methane detected during the initial monitoring events conducted on November 1, 2, 6, 10, 14, 29 & 30, 2023. RES personnel remediated the locations, and the following re-monitoring was conducted as described below.

First Ten-Day Re-Monitoring Results

RES personnel performed the first ten-day re-monitoring events on November 10 & 15, 2023. Seven (7) exceedances were observed during the ten-day re-monitoring events. RES personnel remediated the locations, and the following re-monitoring was conducted as described below.

Second Ten-Day Re-Monitoring Results

RES personnel performed the second ten-day re-monitoring events on November 20, 2023. No exceedances were observed during the second ten-day re-monitoring event.

Thirty-Day Re-Monitoring Results

RES personnel performed the thirty-day monitoring events on December 1, 8, 13, and 28, 2023. No exceedances were observed during the thirty-day re-monitoring events.

Readings between 200 ppmv and 499 ppmv (Initial and Re-monitored)

There were fifty-four (54) readings between 200 ppmv and 499 ppmv, measured as methane detected during the initial monitoring events on November 1, 2, 6, 14, 29, & 30, 2023, respectively. Pursuant to CCR Title 17 §95471(c), instantaneous surface emissions exceeding 200 ppmv but below 500 ppmv are required to be recorded. As a best management practice, if these readings occur, SVLRC voluntarily addresses these locations by remediating and remonitoring all those within this range, during the 10-day re-checks. Therefore, SVLRC and RES personnel performed ten-day re-checks on November 10, 15, 20, & 21, and December 8, 2023, respectively, and fifty-three (53) of the fifty-four (54) readings were below 200 ppmv, with a second 10-day re-check conducted on November 20, 2023 for the remaining reading, which was subsequently below 200 ppmv. The goal of this is effort is to reduce any future exceedances to

Nicole Stetson January 29, 2024 Page 6

improve and reduce overall odors/emissions. Results, if applicable, are summarized in Attachment A. The goal of this is effort is to reduce any future exceedances to improve and reduce overall odors/emissions. Results, if applicable, are summarized in Attachment A.

Integrated Surface Emissions Monitoring Results

The Integrated surface sampling (ISS) was performed on November 15, 28, 29 & 30, 2023, in accordance with the ACO, requirements outlined in CCR Title 17 §95469, and VCAPCD Rule 74.1.17. See Attachment B for details.

Initial Monitoring Event Exceedances of 25 ppmv

There were thirty (30) grids with an exceedance above 25 ppmv as methane detected during the initial monitoring events conducted on November 29 & 30, 2023. SVLRC personnel remediated the locations, and the following re-monitoring was conducted as described below.

Ten-Day Re-Monitoring Results

RES personnel performed the ten-day re-monitoring events on December 8, 2023. No exceedances were observed during the ten-day re-monitoring events.

The average methane concentration of each grid was recorded during the monitoring event per applicable requirements. See Attachment B for details.

Component Leak Monitoring Results

Component leak monitoring was conducted per the applicable requirements on November 10, 2023. There were zero (0) locations with a component leak detection of greater than 500 ppmv. See Attachment C for details.

WEATHER CONDITIONS

Wind Speed Conductions during the Surface Emission Monitoring Events

Wind speeds during initial monitoring were monitored using a portable weather station. The station has a strip chart that records the wind speed and direction. After completion of monitoring, the strip chart is reviewed by RES office staff to determine the average and maximum wind speeds during the monitoring and the average wind direction during each grid and ensure that the wind speed requirements are met (no gusts greater than 20 mph, average wind speed cannot exceed 10 mph). These values are documented in the field data sheets. The chart data is scanned and included in Attachment D.

Precipitation Requirements

Per the SVLRC's ACO, the initial monitoring event was carefully scheduled so that it could be conducted in compliance with the precipitation requirements (no measurable precipitation within

24 hours). Re-monitoring events are required to adhere to strict timelines. Any conflicts with precipitation requirements are discussed in the results section of this document.

EQUIPMENT CALIBRATION

The portable analyzers were calibrated to meet the instrument specifications requirements of U.S. EPA Method 21. The calibration gas used was methane, diluted to a nominal concentration of 25 ppmv in air for integrated sample analyses and 500 ppmv in air for instantaneous monitoring to comply with the requirements.

All analyzers were calibrated prior to use with required response time and precision related instrument checks. Calibration records include the following: One time response time test record; One time response factor determination for methane; Calibration Precision test records (test to be performed every 3 months); and Daily Instrument Calibration and Background test records for each gas meter that was used during the quarterly monitoring event. The calibration log records are included in Attachment E.

All monitoring was completed in accordance with the applicable regulatory requirements or approved alternatives. If you have any questions regarding this report, please do not hesitate to contact the undersigned at (510) 714-6098.

Thank you,

Waste Management

Colley Pomethick

Collin Pavelchik

Environmental Protection Air Quality Specialist

Attachment A – Instantaneous Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- Surface Monitoring Weather Data
- SEM Map

Attachment B – Integrated Surface Emission Monitoring Event Records

- Monitoring Logs and Exceedances
- Surface Monitoring Weather Data
- SEM Map

Attachment C – Component Leak Monitoring Event Records

Nicole Stetson January 29, 2024 Page 8

• Component Leak Exceedances and Monitoring Logs

Attachment D – Weather Station Data

• Strip Chart Data and Legend

Attachment E – Calibration Records

• Instrument and Gas Calibration Records

Attachment A

Instantaneous Surface Emission Monitoring Event Records

SIMI VALLEY LANDFILL INSTANTANEOUS LANDFILL SURFACE MONITORING

Personnel: J. Medina G. Lo Pez	
G. LOPEZ C. HUGHES	Cal. Gas Exp. Date: 4/2/
Date: 1/2/23 Instrument Used: Tusped To	Grid Spacing: 25 ft
Temperature: 57° Precip: O Unwind RG	1.9 Downwind BG: 7.8

GRID ID	STAFF	START	STOP	тос	WIN	D INFORM	ATION	REMARKS
Olds is	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
89	JM	0743	0757	150.5	3	3	1	
90	JM	0805	0820	562.6	2	3	16	
91	JM	0823	0841	207.8	3	5	16	
92	JM	0845	0905	38.7	3	나	2	
93	JM	0909	७१२३	23.1	2	2	14	
94	JM	0926	0946	42.4	1	2_	6	
95	JM	0954	1519	76.1	3	3	7	
96	JM	1024	1045	106.5	2	3	8	
97	Jm	1048	1108	53.6		2	1	
98	JM	1110	1131	159.4	3	5	11	
65	Im	1150	1205	106.0	-1	3	10	
66	Jm	B-06	1220	141.6	2	3	10	
64	GL	0800	0815	123.1	3	5	16	
63	GL	0816	0831	90,6	2	3	14	
68	GL	0834	0849	165.3	3	4	2.	
61	96	0850	0905	105.6	3	4	2	70 E 50 E
60	GL	0906	0921	51.2	2	2	14	
59	GL	0921	0937	93.8	D	l	12	
38	GL	0938	0953	69.1	1	3		
57	GL	0955	1010	177.0	2	3	7	
56	GL	1011	1026	216.1	2	4	7	
55	GL	1029	1042	224.2	2	3	8	
86	(7L	1145	1200	141,3	2	3	10	
85	GL	1201	1216	31.7		3	11	
108	CH	6744	0800	126.7	3	3		
107	CH	0802	0817	61.0	.2	3	16	
106	CH	0819	0834	102.1	2	3	طا	
105	CH	0838	0854	232.3	4	5	2	
104	CH	0855	0910	123.8	3	4	2	
103	CH	0913	0928	230.5	2	2	14	

Attach Calibration Sheet Attach site map showing grid ID

SIMI VALLEY LANDFILL INSTANTANEOUS LANDFILL SURFACE MONITORING

	G. LOF	ez nes					Cal. Gas	Exp. Date: 4/2
ate: <u>[]</u>	12/23	Instrui	ment Used	1: <u>I</u> N5(ectra	Grid	d Spacing:	25 FT
emperat	ure: <u>5</u>	9 ⁶ Pre	cip: <u></u>	Upv	ind BG:	1.9	Downwi	ind BG: 2.8
GRID ID	STAFF	TAFF START STOP TOC WIND INFORMATION		TATION	REMARKS			
oldb ib	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEMAKAS
102	C14	6941	0956	758.1		3	6	
101	CH	1003	1018	80.9	3	3	7	
100	CH	1024	1039	31.7	2	3	6	
99	CH	1042	1059	88.6	2	3	6	
88	CH	1146	1201	19.9		3	11	
87	CH	1204	1219	33.9		3	10	
						06.5		
		-						
			3 1 1 1	`				
	_		1					
						17		

Attach Calibration Sheet Attach site map showing grid ID

Page 2 of 2

Personnel: M. Estrada	
	Cal. Gas Exp. Date: 4/27
Date: 11-6-23 Instrument Used: Inspector	Grid Spacing: 25f+
Temperature: 51° Precin: (C) Unwind BG:	1:3 Downwind RG: 2 1/

GRID ID STAFF		TAFF START	TART STOP TOC		WIN	ID INFORM	REMARKS	
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
10	me	ono	0745	151.6	2	3	14	Vegetation
9	WE	0747	0800	81.0	4	b	14	Veyetration
8	m6	0802	0812	30,2	2	3	16	Vegetation
7_	me	0813	0827	35.1	5	7	2	Vegetiation
6	me	0835	0848	1.2	5	C	4	Varetration
5	me	0850	0901	2.5	5	7	į,	Vegetation
4	ME	0904	0915	3.1	5	b	6	Vegetation
3	mE	0917	0923	2.3	5	4	6	Veyetation
2	ME	0924	0933	13.2	3	5	6	Vegetation
	ME	0935	0946	83.2	2	5	4	veyetation
72	ME	1055	1109	61.9	5	6	14	STEEPSlofe
73	me	1112	1131	34.6		3	12	STEEPSlope
74	me	1133	1143	10.1	4	_ 7	(STEEP STOPE
								•
45	CH	0707	0722	166.3	4	5	16	
46	C17	0733	0745	63.6	3	3	14	
47	CH	6747	5080	72.0	5	6	16	
48	Clt	0805	0820	99.8	4	U	2,	
49	CH	0835	0850	21.7	5	6	5	
50	CH	0850	0905	35.3	5	7	6	
SI	CH	0909	0923	53.2	3	4	6	
52	CH	0926	0941	46.6	2	5	4	
53	CH	0950	1005	17.7	5	10	2	
54	CH	1010	1021	11.6	3	5	10	Road
67	CH	1047	1103	46.3	2	5	14	DIRT Hills
68	CH	1105	1117	67.7	3	5	10	Rock Pile
69	CH	1120	1134	15.9	2	5	12	Rock Pile
70	CH	1137	1151	34.9	3	Ь	4	DIRT STOCKPILL
71	CH	1153	1208	18.0	2	3	6	

Attach Calibration Sheet

Attach site map showing grid ID

Page _____ of ____

Personnel: C. Hughas MI Estrada	
THE SHILLIAN	Cal. Gas Exp. Date: 4/27
Date: 11-7-23 Instrument Used: Inspected G	irid Spacing: 25 /
Temperature: 56° Precip: (1) Unwind BG: 16	Downwind RG: ").

GRID ID	STAFF	START	STOP	тос	WIN	D INFORM	NOTTAN	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
44	CH	0713	0725	11.3	5	6	16	
43	CH	0728	0741	17.8	2	3	2	
42	CH	0743	0757	46.3	3	5	2	
41	CH	0800	0815	27.9	2	3	15	Steep Slofe
40	CH	0818	0830	21.0	3	4	16	Steep slope
39	CIA	0833	0843	29.2	3	5	ماا	STEEP Slope
38	CH	0846	0900	7.8	3	4	اما ا	STEEP Slape
37	CH	0905	0920	4.1	3	4	2	
36	CH	0922	0936	18.9	2	4	2	
35	CH	0940	0955	6.3	5	6	U	
114	CH	1031	1046	111.5	b	-	7	
81	CH	1048	1028	119.1	5	E	7	
82	CH	1100	1115	30.42	7	9	7	
113	CH	1120	1134	121.0	5	7		
112	CH	1135	450	74.7	5	7	8	
11	ME	0715	0738	9.7	2	3	2.	
12	ME	0739	0752	7.2	3	5	2	
13	ME	0802	0817	8.6	2	3	15	
14	ME	0847	0855	22.3	3	3	2	
15	M6	0857	0905	2.4	3	4	16	
16	mE	0906	0915	2.4	2	4	16	
17	ME	0916	0930	2.6	2	5	2	
18	ME	0930	0944	2.9	3	5	5	Hyprosecting
19	ME	0949	0954	2.7	5	6	4	Hypro Seeding
111	ME	1037	1050	2.5		10	7	Actur Rod
110	ME	1051	1102	2.3	5	1	7	Actus Road
109	ME	1108	1122	2.4	4	6	7	Active Road
-117	ME	1127	1132	2.8	5	1	b	Heart Egui PMen
118	ME	1136	1140	2.6	4	1	Ĺ	Heavy equipment
ttach Cal	ibustion C				<u> </u>	<u> </u>		5 0

Attach Calibration Sheet
Attach site map showing grid ID

Page ____ of ___

Personnel: G. Robles	
Personnel: G. Robles C. Hugnes M. Abraham	Cal. Gas Exp. Date: 4/27
Date: 11-10-23 Instrument Used: Inspector	Grid Spacing:ZSFT
Temperature: 540 Precip: O Howind i	BG: 1.9 Downwind BG: 2.7

GRID ID	STAFF	START	STOP	тос	WIND INFORMATION		REMARKS	
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KEPAKS
34	GR	6726	0741	5.0	3	4	2	STEEPSLOPE
33	GR	0746	0801	3.1	3	3	2	Rock file
32	GR	0803	0818	17.2	3	4	3	STEEPSlates
	GR	0821	0836	2.6		2	2	loose facting
76	GR	0837	0852	2.6	2	4	2	TRAFFIC.
80	GR	0853	0908	3.0	2	3	2	STEEP Slofe
77	GR	0909	150	2.1		3	4.	
30	GR	0925	0940	2.6	3	5	اما	
29	(7R	0942	6957	2,6	3	7	4	
78	(TR	1000	1015	2.6	4	4	4	
119	GR	1041	1051	2.1	6	10	(TRASH Pile
120	GR	1652	1102	2.5	b	10	6	TRASH PILE
121	GR	1103	1113	2.5	5	8	8	TRASH PILE
122	GR	1113	1123	2.8	1	9	1	TRASH Pile
76	CH	07:14	0775	5.6	3	5	2	
21	CH	0728	0741	6.0	3	4	2	
22	CH	0742	0755	10.9	2	4	2	
23	CH	0800	0812	15.2	3	4	3	
24	CH	0815	0825	8.0	2	4	2	
25	CH	0830	0845	8.8	2	3	2	
26	CIT	0845	0858	8.9	2	4	2	
27	CH	0900	0915	23.5	2	2	16	
28	CH	0920	0930	2.3	1	3	4	Havi Road
79	CH	0933	0945	62.1	3	6	R	Haul Road
147	CH	1644	1059	532.2	5	8	4	
148	CH	1100	1115	361.4	5	9	8	
149	CH	1/20	1135	140.9	7	9	8	
150	CH	1140	1156	64.9	7	16	8	Heavy BrusH
146	mn	0729	0745	194.0	3	4	2	J
145	mA	0745	0800	629.6	3	3	2	

Attach Calibration Sheet Attach site map showing grid ID

Page 1 of Z

Personnel: GIROBIES	
M. ABraham	Cal. Gas Exp. Date: 4-27
Date: 11-10-23 Instrument Used: INSPective	Grid Spacing: 25'
Temperature: 54° Precip: Upwind B	3G: 1.9 Downwind BG: 2,7

GRID ID	STAFF	START	STOP	тос	WIN	D INFORM	ATION	REMARKS
	INITIALS	TIME	TIME	PPM	M AVG MAX. DIRECTION SPEED SPEED 16 POINT	KLITAKKS		
144	mp	0801	0821	94.6	3	4	3	
115	MA	0822	0838	59.9	1	2	2	
143	ma	0844	0901	46.1	2	4	2	
142	MA	0902	0917	192.6	2	2	16	
141	MA	0917	0938	45.7	3	5	6	
140	MA	0939	0954	131.6	4	7	7	
139	MA	0955	1012	195.6	4	6	6.	
138	MA	1014	1029	84.4	5	7	G	
83	MA	1048	1104	4861	6	10	8	
84	MA	1105	1120	16.7	7	9	7	STEEP DIRT HII
116	MA	1124	1140	159.5	6	10	(
					-			

Attach Calibration Sheet Attach site map showing grid ID

Page 2 of Z

Personnel: M. ORUG	Cittughes		-
M. ABraham		Cal. Gas Exp	o. Date: 4/17
Date: 11-14-23 Instrument Use	ed: <u>Inspection</u>	_ Grid Spacing:	25fr
Temperature: 56° Precip: C) Unwind BG:	14 Downwind	1. P. 5

GRID ID	STAFF	START	STOP	тос	WIND INFORMATION		REMARKS	
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	KENAKIS
157	MO	0816	0832	78.9	l	2	2	Haw Road
158	Mo	0833	6843	78.2		2	2	Active TRASH
159	mo	0844	902	17.3	2	3	4	
160	mo	0904	0918	98.7	2	4	8	
161	MO	0919	6934	64.5	4	6	8	Concrete / STEEP Slote
168	mo	0936	0941	130.7	2	5	16	concrete/ STEEPSlope
169	mo	0942	0954	130.3	4	6	11,	
197	Mo	1032	1045	408.4	3	5	10	Liner
196	MO	1047	1058	111.1	2	3	.lb	Liner
195	MO	100	1112	273.9	4	5	10	LineR
194	mo	W13	1125	152,1	4	6	8	Liner
193	mo	1126	1132	170.1	4	6	7	Liner Dumping DIET
192	MO	1133	1140	ble &	5	j	7	Dumping DIRT
190	Mo	1145	1156	158.6	4	6	8	Liner
132	GR	0814	0824	1594 1	2	3	3	STEEP STORE
131	GR	0826	6830	200b.3	. 1	2	2	mulch
130	GR	6838	0846	262.7	1	2	2	STEEP Slope
129	GR	0849	0900	233.2	2	3	6	mulch
128	GR	6901	0911	137.2	2	4	7	STEEP Slope
127	(1R	0912	0922	260,5	2	4	7	STEEP Slope
126	GR	0923	0933	192.0	4	6	8	STEEP Slope
125	GR	0934	0945	79.5	2	5	10	STEEPSIEFE
124	GR	0946	0957	32.9	4	b	IJ	STEEP STOPE
123	(1R	0959	1010	137.5	3	4	12	Vegetation
202	GR.	1030	1040	137.5	3	5	8	Liner
201	GR	1041	1051	77.6	2	3	10	LineR
200	GR	1053	1104	83.2	3	4	10	Liner
. 199	GR	1105	W17	495.9	4	5	10	Rock Pile
198	GR	1119	1131	194.2	4	6	7	Henry Egur PMENT
185	MA	0809	0944	222.1	2	5	10	J

Attach Calibration Sheet

Attach site map showing grid ID

Page ____ of __2__

Personnel: MIORUE G. ROBLES	C. Hughes	
M. ABraham		Cal. Gas Exp. Date: 4/27
Date: 11-14-23 Instrument U	sed: <u>Inspectra</u> Gri	d Spacing: ZSFT
Temperature: 56° Precip:	O Upwind BG: 1, 4	Downwind BG: 2:3

GRID ID	STAFF	START	STOP	тос	WIN	ID INFORM	IATION	REMARKS
	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
186	mA	0845	0901	108.3	2	3	6	
187	MA	0905	0920	28,4	2	3	E	
184	MA	0921	0936	105.4	4	6	Ç	
183	mA	0937	0952	113.9	4	6	H	
188	MA	0953	1009	195.8	3	4	12	
189	mA	1010	1025	479.4	3 3 3	5	8	
182	MA	1026	1041	669.2	3	5	8.	
165	MA	1042	1057	86.6	2	3	10	
164	mA	1057	1057	184.9	3	4	12	Havi Road
133	CH	0810	0825	1544.1	2	3	3	STEEPSLOPE
134	CH	0825	0840	7326.4		2	2	STEEP Slope
135	CH	0845	0900	610.2	2	3	D (S)	LEACHATE
136	CH	0905	0920	342.7	2		8	Henry Equipment Concrete Piles
137	CH	6925	0940	241.0	2	5	10	Concrete Piles
138	CH	0950	1005	234.2	3	5	M	Concrete Piles
150	CH	1010	1030	79.1	3	5	8	
151	CH	1032	1045	85,4	3	5	10	STEEPSlope
152		1648	1058	294	2	3	10	STEEP Slope
153	CH	1100	Mo	241.1	4	5	8	STEEP Slope
154	CH	IIII	1122	145.1	4	6	8	STELPSING
155	CH	W23	1133	87.6	4	6	7	STEEP STOPE
156	CH	1146	1145	41.1	4	6	7	STEEP Slope STEEP Slope Heavy Equipment
191	GR	1148	1201	233.1	6	8	b	Heavy Egy Pment
					35			3

Attach Calibration Sheet
Attach site map showing grid ID

Page 2 of 2

							Cal. Gas	Exp. Date	2:
Date: <u>11</u>	-14-23	_ Instrur	nent Used	d:		Gri	d Spacing:		
emperat	ure:	Pred	cip:	Up	wind BG:		Downw	ind BG:	
GRID ID	STAFF INITIALS	START TIME	STOP TIME	TOC PPM	AVG	MAX.	DIRECTION	RE	MARKS
162		-			SPEED	SPEED	16 POINT	и.	
								Actus	178457
163									
166									
167					T- I				
170									
171									
172			W. I						
173					1,-11				
174					mil		75 = 1		
175									
176									
177									
178									
179									
180									
181									
	-								
203								LINER	
		V							1
						, I	7		
					FT =T				
	2.0				10	- 1			
				w = c					
							11		

Attach site map showing grid ID

Page _____ of ____

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW0057 11/1	2	2,8					
SIMW0809 11/2	3	7.8					
SIMW0019 11/2	4	4.1	11 11 11 11				
SIMW0001 1/2	6	7.5				1 - 1	
SIMWOOO2 11/2	6	4.2					
SIMW0808 "//	7	2.2					
SIMW0020 11/2	8	6.4					•
SIMW1808 1/2	8	6.5					
SIMW0004 11/,	9	2.9				7	
SIMW0006 11/7	10	210					
SIMHO21S II/	11	2,4					
SIMW1015 11/1	13	725.5	10-13		12-1-23		
SIMW709D 11/7	14	2,2					
SIMW7095 11/7	14	5.0					
SIMH0017 11/7	16	210					
SIMH018S 11/7	16	2,0					
SIM1363B 11/7	17	1.7					
SIMW0708 11/1	17	2.8					
SIMW2006 11/1	18	215					
SIMH0225 W/7	19	1.9					
SIMW2007 11/1	20	2.1					<u> </u>
SIMW2008 11/1	20	2,4					
SIMSVE02 W/7	21	4.2				ř	
SIMLROOB 11/7	21	1.8					
SIMW0905 14/1	24	1.8					
SIMW0904 11/	25	1.6					
SIMHOZZN H/7	27	9.3					
SIMW0903 4/	27	2.8				y	
SIMW0901 W/7	29	2.0			1 - 1		(1
SIMW0902 11/1	30	116					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW116R 11/1	31	27.6					7,177
SIMW1565 \\	31	10.1					
SIMW2084 11/1	31	2.5					
SIM1570D 11/4	32	2.4			129		
SIM1570S \\/\	32	2.7					
SIMW2045 11/1	33	2.9					
SIMW703D	33	2.5					
SIMW7035 11/7	33	1.6					
SIMW1785 11/1	35	2,217	11-10-23		11.50		
SIMW2083 11/1	35	2.3		9	11.70		
SIMW1233 11/2	36	41.9				11 10	
SIMW1790 11/1	36	2.4					
SIMW1571 11/1	37	52,9					
SIM1792D 11/2	38	2.4					
SIM17928 17/2	38	3.0					
SIMW1232 11/2	39	27,7					
SIMW707D 11/	39	3.7					
SIMW1791 11/1	40	2.5					
SIM2042D 11/1	41	1.3					
SIM20428 11/1	41	2.0			1 1		
SIMW805D 11/2	41	18.3					
SIMW2235 11/2	41	158,2					
SIMW1231 1/2	42	19,9					
SIMW2041 11/2	43	20.1					<u> </u>
SIMWOORD 4/7	44	3.4					
SIMW1012 11/2	44	70.4					
SIMW1228 11/2	44	17.5					
SIMWOORS 11/7	44	2.0					
SIMW010R 11/2	45	148.2					
SIMWOOTR 11/2	46	14.0					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW122711/2	47	10,9				y a m	-
SIMW1234 1//2	47	1216				TIT	
SIM1572D 11/2	48	613.3	11-10-23		87.21		
SIM15725 11/2	48	1,866,5	135		87.21 12-1-27 26:30		
SIMW810D 11/2	51	8.7		= ps = = 101			
SIMW810S 11/2	51	7.7					
SIMW0018 11/2	52	4.8					
SIMW0812 1/2	52	9.4		Augi es			
SIMW0811 11/2	53	12:1					
SIMLROOD 11/2	55	15,2					
SIMLR001 11/2	55	9.4					
SIMW0003 11/2	57	34,9					
SIMW0813 11/2	57	36.1					
SIMW2009 11/2	57	53.2					
SIMW1014 11/2	58	23,6					
SIMW1107 11/2	59	28.5		1			
SIM1405B 11/2	60	10.2					
SIM1406B 11/	60	3.1					6
SIMW1806 11/Z	60	424.4					
SIMW2228 11/Z	61	39,2					
SIMW2229 11/2	62	7,277.8	4,000	11-20-23	12-1-23		
SIMW2230 11/2	62	15.2					
SIMW1011 11/7	63	4.1					
SIM1673S 11/1	64	5,9					
SIM1793D 11/2	64	6.4					
SIM1793S 11/2	64	11.2					
SIMW012R 11/1	64	2,6					
SIM1406A 11/1	65	10.9					
SIM2044D 11/1	65	35					
SIM20445 11/1	65	3,9					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW1229 1/1	65	4,9			Y-1		
SIM1788D 11/1	66	5.1					Series V
SIM1788S 4/1	66	45.9					
SIM1362A 4/7	67	5.8					
SIM1404A 11/1	67	3,6					
SIMW1008 11/7	67	2.3					
SIMW1787 11/1	67	3.1					
SIM1789D W/7	68	5,2					
SIM1789S 11/1	68	10.8					
SIM2054D 11/1	68	4,5					
SIM2054S 11/1	68	3,9					
SIMW1005 11/1	68	139					7
SIMW1225 W/1	68	3,2					
SIM2043D 11/1	69	14,5					
SIM2043S 11/1	69	102					
SIMW1786 11/1	69	2,9					
SIM1573D 11/	70	2,7		5 II S		U	
SIM15735 11/1	70	3,0					
SIM1783D 11/1	70	5.0				2	
SIM1783S 11/1	70	4,5				ŀ	
SIM2064D 11/1	70	3011			- J		
SIM2064S 11/1	70	91.4		1 4 4 6			
SIM1805D 11/1	71	776.6	12.9		6.58		
SIM1805S 11/1	71	25.5					
SIMW1569 11/1	71	2.8					
SIMW2231 11/	71	1,9					
SIM1359A 11/	72	2.5					
SIMW1779 4/7	73	15.4					
SIMW2232 11/1	73	3.1		= = = = = = = = = = = = = = = = = = = =			
SIM1568D 11/1	74	2,8					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIM15685 11/1	74	3,8	= // // = 141		- House		
SIM2052D 11/1	74	22,6					
SIM2052S 11/	74	2011	- 11				
SIMW2065 11/1	74	4.8					
SIM1564D 11/1	75	4.0					1
SIM15645 11/1	75	4.6					
SIMW1155 11/7	76	2.4					
SIMW0202 11/1	76	2.1					
SIMW1563 4/7	78	6.4					
SIMW2220 11/	80	3,3			1 12		
SIM1562D 11/1	81	3.5					
SIM1562S W/1	81	2,1					
SIMW2219 11/1	81	2.7					
SIM2061D 11/1	82	87,3					
SIM2061S 11/1	82	103.7					-76
SIM1778D 11/1	83	7,0					
SIM1778S 11/1	83	12,0					
SIMW1802 11/1	83	36,9					
SIMW822D W	83	34.7					
SIMW822S 11/1	83	230,9					
SIM2003A 11/	83	4,0					
SIMW1220 11/1	84	6,7					
SIMW2053 11/1	84	40,5					
SIM1780D 4H	85	35.7					
SIM1780S 11/7	85	140.7					
SIM1401A W	86	9.3	_				
SIMW1104 M	86	23,/					
SIMW2047 11/1	86	3,9					
SIM2002A 117	86	3.5				P SH	
SIMW2234 11/	86	1,677	(1-10-2> 436		18.75		

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIM1403A 11/	88	7,1					
SIM2081D W/	88	5,3					
SIM20815 11/7	88	2.4				F I	
SIMW1781 11/	88	6.8					
SIMLROAR W/1	88	6.9					
SIMHL005 11/7	88	5.5					
SIM1782D 11	89	3.4					
SIM17825 11/7	89	1.5					
SIM19285 11/1	89	3,8					
SIMW2056 11/	89	3,3					
SIMW1356 11/1	90	2,4					
SIMLROOA U/7	90	55.1			Here y In		
SIM19295 11/1	91	2,7					W = 1
SIMW1801 11/1	91	3./					
SIMW2227 11/1	91	335					
SIM1799D 11/1	92	4.8					
SIM1799S 11/1	92	5,1					
SIMW1222 11/1	93	402					
SIMW2046 11/1	93	5,4					
SIMW2049 11/1	93						
SIMW1798 11/1	94	3.7				7	Ī.
SIMW1010 11/2	95	18,5			— д - 1		
SIMW2048 11/1	95	6.0					
SIMW2233 1/Z	95	28,4					
SIM1937S 11/7	96	2.6	-				
SIM1403B 11/7	97	2.5					
SIM1404B 11/7	97	1.8					
SIMW0814 11/2	98						
SIMLR602 11/7	99	114.7					
SIMLR603 W/7	99	12.7)

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW0816 11/2	99	9.6					
SIMW0817 11/2	100	1,798.4	11-10-23		12-1-23		
SIMW0818 11/2	101	9.4			2 11 1 1	P-1	
SIMW0819 11/1	103	88:3	11 17				
SIMW1796 11/1	103	6.0					
SIMW2222 4/2	103	25.6					1 -
SIMW2055 11/1	104	7,9					
SIM1938S 11/	105	4,2					
SIMW1794 11/1	105	4.4				v	
SIMW2223 11/7	105	10.2					
SIM2001A 11)	106	3.6					
SIMW2224 11/1	106	4,6					
SIMW1807 11/7	107	9.5					
SIMW1353 11/	108	21.2					
SIMW1795 11/7	108	16.8					
SIMW2225 11/1	108	3.4					
SIM2001B 11/1	109	9.9					
SIMW1803 11/1	109	55,5	2 - 1				
SIM1777D 11/1	110	109,4					
SIM1777S W	110	110,9					
SIMW1101 11/1	110	5,8					
SIMW1776 11/1	110	10.3					-
SIMW2226 11/1	110	44,0					
SIM2339A 11/1	110	6,4					
SIMHL002 11/7	110	12.3					
SIMHLOO3 11H	110	11				- 5	
SIMW2057 11/1	111	13.1					
SIM2340A 11/	111	5.0					
SIMW2221 11/1	112	6.9					
SIMHLOO1 11/1	112	35.2		- 1			

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW0048 11/1	113	4,0					
SIMW2062 11/1	113	5,6					
SIMW2218 11/1	113	2.6					
SIMW1816 11/6	114	23.0					
SIMW2058 11/,	114	4,8					
SIMW1561 11/6	115	1,323,4	11-15-23		12-1-2>		
SIMW2060 11/1	116	46.5					
SIMW2001 11/1	117	117.4					Til I
SIMW2217 11/	117	133,3					
SIM2338A 11/1	117	9,2			<u> </u>		
SIMW2216 11/	118	9.0					
SIM2337A 11/1	118	7.1					
SIMW2099 \\/	119	13,9					
SIMW2059 11/1	120	310					
SIMW2215 11/1	121	378.3			1 = 1		
SIMW2098 11/1	122	381,6					
SIMLR31A 11/6	123	173,2					
SIMW2076 11/6	126	13,3					
SIMW2096 11/6	127	20.8	11 10 03	M_		- 4	
SIMW2097 11/2	127	1,221,6	11-10-2>		8.53		
SIMW2077 1/6	128	230,3			7		
SIMW2095 (1/6	129	12.4	11 10 75				
SIMW2074 11/1	130	2,345.4	11-10-63		12-1-23		
SIMW2078 11/6	131	4.7	// 1/0 7.3	W 20 22	10		
SIMW2073 11/1	132	361,148.2	(1-10-23	357	12-1-23		
SIMW2094 11/6	132	259.7					
SIMW2079 11/6	133	3.9	II SE MA				
SIM2102S 11/6	133	2,2234	20,000	110	12-1-23		
SIMW2093 11/6	134	9:8		-			
SIMW2080 11/6	135	395.9					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW2213 11/	135	223.3					
SIMW2002 11/1	136	6,814,5	11-10-23	357	12-1-23		
SIMW2212 11/1	136	5,300,2	6,380	11-20-23	18.17		
SIMW2088 11/6	137	5.3					
SIMW2004 11/6	138	9,662.7	11-15-23	11-20-23	12-1-23 51.16 12-1-23		
SIMW2214 11/6	138	2,380		パー20~2>	154		
SIMW1809 11/6	139	4.119	11-15-23		12-1-23		,
SIMW1815 11/6	139	22.3					
SIMW1814 11/6	141	56.2					
SIMW2005 17/6	141	8,684.2	11-15-23		12-1-23 33,23		
SIMW1817 1/6	142	3218	W. W				
SIMW1811 U/6	143	407.8				,	
SIMW1813 11/6	143	41.3					
SIMW2082 11/6	143	203.8				_	
SIMW2341 11/6	143	31.9			13 1 0 3		
SIMW1812 146	144	7,119	11-15-23		12-1-23		
SIMW2070 11/6	144	Z85.9					, lex
SIMSVE03 11/6	144	255.8					
SIM2004A II/6	145	136.7	// 23		34 1 3 3		
SIM1936S 11/6	145	612.8	27.9	generalise (2000)	12-1-23	2	
SIM2199A 11/6	145	16.7					
SIM2115F 11/6	146	71.3		_	<u> </u>		
SIM2106A 11/6	146	1017					
SIM2105A 11/6	146	70.9	11-15-23		12.1.77		
SIMW2211 4/6	148	2,2887			24.98		
SIMW2089 11/4	149	2,199	11-15-23	-	12-1-23		
SIMW2210 11/6	150	2,2519	94.8		12-1-23		
SIMW1810 11/6	151	738.5	11-15-23		182		
SIMW1819 11/6	151	158.4					
SIMW1818 11/6	153	5.6					

PENETRATION ID	GRID#	INITIAL (PPM)	1st 10 DAY (PPM)	2nd 10 DAY (PPM)	1st 30 DAY (PPM)	3rd 10 DAY (PPM)	2nd 30 DAY (PPM)
SIMW2090	153	28.1					
SIMW2091 11/6	155	63.3					
SIMW2092 11/6	156	3,2					
SIM2115E	157	28.4					
SIM2107A W	157	834.7	1175-23		12-1-23		
SIM2108A 11/6	157	61.7		4.6			
SIM2123A 11/6	157	162.6					
SIM2115D IL/C	158	69.0					
SIM2109A	158	65.4					
SIM2110A	158	110.0					
SIM2125A 11/6	158	38.8					
SIM2115C 11/6	159	78.4					
SIM2111A 11/6	159	243.5		T U TOX			
SIM2112A	159	22.5					
SIM2126A 11/6	159	151.5					/
SIM2127A 11/6	159	124.4					
SIM2115B 46	161	15.3			1 - 1 - 1		
SIM2128A 11/6	161	14.4					
SIM2115A 11/6	168	33.2					
SIM2113A 11/6	168	67.8					
SIM2114A 11/6	168	33,9					
SIM2129A UG	168	37.2					
SIM2336A 11/6	168	28.6					
SIMLR22A 11/6	168	45.1					
SIMLR22B 11/6	168	37.8	7				
SIMLR23A 11/6	168	147.1					
SIM2100S 11/7	185	1.6					
SIMLR22C 11/7	185	1.8					
SIMLR23B 11/7	186	1.8					
SIM2116A 11/7	188	5.0					

SIM2117A 11/6 191 SIM2330A 11/7 191 SIM2331A 11/7 191 SIM2135D 11/7 193 SIM2135C 11/7 193 SIM2135C 11/7 197 SIM2333A 11/6 197 SIM2334A 11/6 199 SIM2135B 11/6 199 SIM2135A 11/6 203	15.4 11.9 25.0 165.4 200.7 6.0 34.2 293.9				
SIM2331A 11/7 191 SIM2135D 11/7 191 SIM2118A 11/6 193 SIM2332A 11/6 197 SIM2135C 11/7 193 SIM2133A 11/6 199 SIM2334A 11/6 199 SIM2135B 11/6 199	11.9 25.0 165.4 200.7 6.0 34.2 293.9 63.7 59.3 51.4				
SIM2135D 11/7 191 SIM2118A 11/6 193 SIM2332A 11/6 193 SIM2135C 11/7 193 SIM2119A 11/6 197 SIM2333A 11/6 199 SIM2334A 11/6 199 SIM2135B 11/6 199	25.0 165.4 200.7 6.0 34.2 293.9 63.7 59.3 51.4				
SIM2118A 11/6 193 SIM2332A 11/6 193 SIM2135C 11/7 193 SIM2119A 11/6 197 SIM2333A 11/6 199 SIM2334A 11/6 199 SIM2135B 11/6 199	165.4 200.7 6.0 34.2 293.9 63.7 59.3 51.4				
SIM2332A 11/6 193 SIM2135C 11/7 193 SIM2119A 11/6 197 SIM2333A 11/6 199 SIM2334A 11/6 199 SIM2135B 11/6 199	200,7 6,0 34,2 293,9 63,7 59,3 51,4				
SIM2135C 11/7 193 SIM2119A 11/6 197 SIM2333A 11/6 199 SIM2334A 11/6 199 SIM2135B 11/6 199	200,7 6,0 34,2 293,9 63,7 59,3 51,4				
SIM2119A 11/6 197 SIM2333A 11/6 199 SIM2120A 11/6 199 SIM2334A 11/6 199 SIM2135B 11/6 199	34.2 293.9 63.7 59.3 51.4				
SIM2333A 11/6 199 SIM2334A 11/6 199 SIM2335B 11/6 199	293.9 63.7 59.3 51.4				
SIM2333A 11/6 199 SIM2334A 11/6 199 SIM2335B 11/6 199	63.7 59.3 51.4				
SIM2334A 11/6 199 SIM2135B 11/6 199	59.3 51.4				
SIM2135B 1/6 199	51.4	(
SIM2135B 11/6 199 SIM2135A 11/6 203	51.4				
SIM2135A 11/6 203	75.5				
		N. I			
					11
			J.		
	1 -			7.	
					1

Waste Management Instantaneous Landfill Surface Emissions Monttoring Exceedance and Monitoring Logs

Quarter: 4TH GTR 2023 Initial Monitoring Performed By: MIKE ORUE Follow-up Monitoring Performed By: MIKL でいい。 られくねしい ひこつ トンコート Landfill Name: Sital VALLEY LANDFILL

Grid#								,	1 - SU-USY FOILOW-UP			
	Flag#	Monitoring	Field	Repair	Action taken to repair	Monitoring	No Exceed.	Exceed.	Monitoring	No Exceed.	Exceed,	
		Date	Reading	Date	Exceedance	Dete	₩ 000 ppm	₩00 00¢<	Date		2500 non	
132	۲,	11/1/2023	361148.188			11-10-23		Crusoo	19 193			SIMMA(COTTS
136	Y2	11/1/2023	6814.5					100.00	1	2		SIMMAZO/S
136	X 3	11/1/2023	5300,2002					200	F	10/2	T	SUMMAZOUZ
130	74	11/1/2023	2345 3999				180	Jac ica		1	+	SIMVEZTZ
35	75	11/1/2023	2217.8				7 7			1	\dagger	SIMMAZO/4
98	У.е	11/1/2023	1677				12.17	T		1000	†	C9/LAAMIS
71	77	11/1/2023	7766				17.0		Ī	1	1	SIMVVZZ34
12	Α8	11/1/2023	725.5				1		1	V		COBLINIS
						7	1	T	7	7		SIMWY1015
									5000	T		
										T		
											-	
										T	T	
											T	
				100						Ī		
											T	
/								100				
										T	+	
											T	
				4							l	
											l	

Waste Management Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs

Quarter: 4TH QTR 2023

Initial Monitoring Performed By: MIKE ORUE Follow-up Monitoring Performed By: \widehat{M} I KC ORUC STACK in the Landfill Name: SIMI VALLEY LANDFILL

	-				Γ	Г	Γ	Γ		Γ	Γ		Γ	Γ			T	Γ	Ī	Γ	Γ		Γ			
Comments			SIMW2073	SIMW2002	SIMW2212	SIMW2074	SIMW1785	SIMW2234	SIM1805D	SIMW1015					110		The second secon								1000000	
٩	Exceed.	>200 ppm																								
Day Follow-U	No Exceed.	~\$00 ppm	357	907	857									7												
2.NUS (O Day Follow-Up	Monitoring	Date	1120-33		,																					
d,	Exceed.	>500 ppm	acilios,	30,000	6,380																	2 mm				
ኅ ^ແ 10-Day Follow-Up	No Exceed.	~500 ppm				184	37.3	436	6'21	101														3.0		
1 ⁸⁸ 10.	Monitoring	Date	11-10-23						100							Company of the	1000									
Corrective Action within 5 Days	Action taken to repair	Exceedance								Anna M																
Correct	Repair	Date																	`			2.15				
	Field	Reading	361148.188	6814.5	5300.2002	2345 3999	2217.8	1677	9.922	725 5																
, tu	Monitoring	Date	11/1/2023	11/1/2023	11/1/2023	11/1/2023	11/1/2023	11/1/2023	11/1/2023	11/1/2023																
Initial Monitoring Event	Flag#		7.1	72	۲3	74	75	У6	77	YB						2000										
Initial M	@rid#		132	136	136	130	35	86	71	12		The second secon				2000			(1)				10000			

Waste Management Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs

Quarter: 4TH QTR 2023 Initial Monitoring Performed By: Mike orue Follow-up Monitoring Performed By: Mike orue うびらん うびんがん iScrがん i

Comments			COCCAMA	SZZZANIC	SZ/CI WIS	/Lanavaust	SIMANAGA	SIM IS/2D	2023C4 102 ISM	2023G4 090 ISM													
	Exceed	2500 000						+	+			-				-	-	0.7					
1** 30-Day Follow-Up	No Exceed.	-500 ppm	10.00	おった	50.50	ルベ	25.00	2/2	200	3			Ī	T	I					T			T
14304	Monitoring		5	ΛĪ		-																	
	Exceed.	₩00 00\$<	1					Ī	Ī	Ī	7				T							Ī	
14 10-Day Follow-Up	No Exceed.	<500 ppm	_	35	7	767	46.2	174	273	1													
1* 10	Monitoring	Date	11-10-23												Same and the same								
Corrective Action within 5 Days	Action taken to repair	Exceedance																					
Correcti	Repeir	Date																			- 88		
	Fletd	Reading	7277.2002	1866.5	1798.4	1221.6	613.3	758 1	562.6														
TE.	Monitoring	Date	11/2/2023	11/2/2023	11/2/2023	11/2/2023	11/2/2023	11/2/2023	11/2/2023														2
Initial Monitoring Event	Flag #		λЭ	Y10	711	Y12	Y13	Y14	715														
Entiel M	Grid#		62	. 48	100	127	48	102	06														

Quarter: 4TH QTR 2023

Initial Monitoring Performed By: MIKE ORUE
Follow-up Monitoring Performed By: 州北た・沿メ らTECがいっ 」らったいしょ
Landfill Name: SIMI VALLEY LANDFILL

Initial W	Initial Monitoring Event	T .		Correct	Corrective Action within 5 Days	1416	1" 10-Day Follow-Up	ā	2000 10 Day Follow-Up	Day Follow-U	<u>a</u>	Comments
Grid#	Flag#	Monitoring	Field	Repair	Action taken to repair Exceedance	Monitoring	No Exceed.	Vo Exceed. Exceed.	Monitoring	No Exceed.	Exceed.	
62	У9	11/2/2023	7277.2002			201-1		4,000	11-20-23	STREET, SQUARE, SQUARE,		SIMW2229
48	Y10	11/2/2023	1866.5				135				7	SIM1572S
100	Y11	11/2/2023	1798.4				211					SIMW0817
127	Y12	11/2/2023	1221.6				176,7					SIMW2097
48	Y13	11/2/2023	6133				5.5%					SIM1572D
102	Y14	11/2/2023	758.1				176					2023Q4 102 ISM
90	Y15	11/2/2023	562.6			>	272					2023Q4 090 ISM
					30000							
				-		ç						
		,										
					The second secon							

Waste Management Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs

Quarter: 4TH QTR 2023

Initial Monitoring Performed By: Mike ORUE
Follow-up Monitoring Performed By: Mike ORUE
Landfill Name: SIMI VALLEY LANDFILL

Commente			NO CONTRACTO	SINIANZOOS	SIMWZUUS	CIMMA/1900	CHANAIOCA	P. ZZVAMIO	SIZZANMIS	SIMVAZZIO	SIMISTOS	SIMWZOBS	SIMON IOCI	SIMISTONA	SIMAVIOLO	SOCIAL SOCIAL							
d ()-w	d. Exceed.		4-					0	5 0		1					+							No. of the last of
1* 30-Day Follow-Up	No Exceed.	<500 nnm	1.0	32.23	7 5	01	10	5000	70 27	4	1	50.00	0,00		120	7							
. 8 J	Monitoring	Date	É	1			-	-	-					+	-	*							
d ₁	Exceed.	>600 ppm		3			8			20,000													
1* 10-Day Follow-Up	No Exceed.	<500 ppm		27.3	חממ	111	-	165	900		436	5	220	427	7.7.9			Γ	I				
18 10.	Monitoring	Date	11-15-22																				
Corractive Action within 6 Days	Action taken to repair	Exceedance																					
Correcti	Repair	Date												Ī									
	Field	Reading	9662.7002	8684,2002	7119	4119	2380	2288.7	2251 8999	2223.3999	2199	1323.4	8347	738.5	6128								
14	Monitoring	Date	11/6/2023	11/6/2023	11/6/2023	11/6/2023	11/6/2023	11/6/2023	11/6/2023	11/6/2023	11/6/2023	11/6/2023	11/6/2023	11/6/2023	11/6/2023								
mitlal Monitoring Event	Flag#		Y16	Y17	Y18	Y19	Y20	Y21	Y22	Y23	Y24	Y25	Y26	Y27	Y28								
hitel	Shd #		138	141	144	139	138	148	150	133	149	115	157	151	145								

Guarter: 47H GTR 2023 Initial Monitoring Performed By: MIKE ORUE Follow-up Monitoring Performed By: MIKE ORUE Candrill Name: SIMI VALLEY LANDFILL

initial Mo	initial Monttoring Event	Tr.		Сотва	Corrective Action within 5 Days	14410	1** 10-Day Follow-Up	ďn	2 ivi) O -Day Follow-Up	-Day Follow-U	٩	Comments
Grid#	Flag #	Monitoring	Fleid	Repair	Action taken to repair	Monitoring	No Exceed.	Exceed.	Monitoring	No Exceed.	Exceed.	
		Date	Reeding	Date	Exceedance	Dete	<500 ppm	>500 ppm	Date	₩dd 00\$>	mdd 005≺	
138	Y16	11/6/2023	9662,7002			82-51-(1		Solce!	52-05-11	724		SIMW2004
141	Y17	11/6/2023	8684,2002				22.7					S(MW2005
144	Y18	11/6/2023	7119				488					SIMW1812
139	Y19	11/6/2023	4119				411					SIMW1809
138	Y20	11/6/2023	2380					801CYT	11-20-22	331		SIMW2214
148	Y21	11/6/2023	2288 7				165					SIMW2211
150	Y22	11/6/2023	2251.8999				94,8					SIMW2210
133	Y23	11/6/2023	2223 3999					20,000	20,00 W-2093	011		SIM2102S
149	Y24	11/6/2023	2199				136					SIMW2089
115	Y25	11/6/2023	1323.4				470					SIMW1561
157	Y26	11/6/2023	834.7				234					SIM2107A
151	Y27	11/6/2023	738.5			,	78 K					SIMW1810
145	Y28	11/6/2023	612.8				5.7.2					SiM1936S
							-					
					(0.50)							

Waste Management Instantaneous Landfill Surface Emissions Monitoring Exceedance and Monitoring Logs

Quarter: 4TH QTR 2023 Initial Monitoring Performed By: MKE ORUE Follow-up Monitoring Performed By: MA | おう りんいち Landfill Name: SIMI VALLEY LANDFILL

Comments		SURFACE	SURFACE													
<u>.</u>	Exceed.															
1" 30-Day Follow-Up	No Exceed.	1525	47.76	5												
1, 30	Monitoring	3														
9	Exceed.	_														
14 10-Day Follow-Up	No Exceed.	371	152													
1416	Monitoring	11-2023	1													
Corrective Action within 5 Days	Action taken to repair											A CONTRACTOR OF THE PERSON OF				
Correct	Rapelr									8		,				
	Field	629.6	532.2					•						1		
nt	Monitoring	11/10/2023	11/10/2023													
hitial Monitoring Event	Flag #	Y29	×30													
Initias M	Grid #	2023Q4_145_ISM	2023Q4_147_ISM											the same of the sa		

Quarter: 4TH QTR 2023

Initial Monitoring Performed By: MIKE ORUE Follow-up Monitoring Performed By: 子氏内内炎 よるこん やパ Landfill Name: SIMI VALLEY LANDFILL

Intial M	Initial Monitoring Event	ent		Сотве	Corrective Action within 5 Days	1416	1* 10-Day Follow-Up	d _n	1*30.	14 30-Day Follow-Up	<u>a</u>	Comments
Grid#	Flag#	Monitoring	Fleid	Repair	Action taken to repair	Monitoring	No Exceed.	Exceed.	Monttoring	No Exceed.	Exceed.	
2023Q4_134_ISM	Y31	11/14/2023	7326.3999		The second second	11-21-27	16:31		12-14-23	15.31		SURFACE
2023Q4_131_ISM	Y32	11/14/2023	2006.3				17 11			76 12		SURFACE
2023Q4_132_ISM	Y33	11/14/2023	1594.1				24.8			21.12	1000	SURFACE
2023Q4_133_ISM	Y34	11/14/2023	1544.1				14.68			03.57		SURFACE
2023Q4_135_ISM	Y35	11/14/2023	610.2			,	5705			25:10		SURFACE
2023Q4_182_ISM	Y36	11/14/2023	889.2		-	7	15.19			13.16		SURFACE
			1									
							,					
						,						
											8 8	

Quarter: 4TH QTR 2023

Initial Monitoring Performed By: MIKE ORUE
Follow-up Monitoring Performed By: MIKE O PUR
Landfill Name: SIMI VALLEY LANDFILL

initial M	Initial Monitoring Event	ent		Correct	Corrective Action within 5 Days	14 10	1" 10-Day Follow-Up	d _n	1*30	1#30-Day Follow-Up	۵	Comments
Grid#	Flag #	Monitoring	Field	Repair	Action taken to repeir	Monitoring	No Exceed.	Exceed.	Monitoring	No Exceed.	Exceed.	
		Dute	Reading	Date	Exceedance	Date	<500 ppm	>500 ppm	Date	~500 ppm	mqq 002<	
2023Q4_117_ISS	Y36	11/29/2023	894.1			12-8-23	319		17-25-23	160		SURFACE
2023Q4_118_ISS	Y37	11/29/2023	830.6				277		-	260		SURFACE
2023Q4_113_ISS	Y38	11/29/2023	708.1				8:55			10-1		SURFACE
2023Q4_102_ISS	Y39	11/29/2023	693,2				81,1			7.16		SURFACE
2023Q4_147_ISS	Y40	11/29/2023	657.4				42.6			から		SURFACE
2023Q4_146_ISS	Y41	11/29/2023	643.5				89.2			77.1		SURFACE
2023Q4_084_ISS	Y42	11/29/2023	565.3				8:41			2.5		SURFACE
2023Q4_117_ISS	Y43	11/29/2023	533,6			Ø	34.4		ر	33.0		SURFACE
	0											
		0		,								

fritial t	Initial Monitoring Event	ant.		Сотъс	Corrective Action within 5 Days	4 4	1" 10-Day Follow-Up	ล์	1#30	1* 30-Day Follow-Up	4	Comments
Grid#	Flag #	Monitoring	Field	Repair	Action taken to repair	Monitoring	No Exceed.	Exceed.	Monitoring	No Exceed.	Exceed.	
		Date	Reading	Date	Exceedance	Date	200 ppm	₩dd 00\$<	Date	~\$00 ppm	₩dd 00\$<	
2023Q4_134_ISS	Y44	11/30/2023	5034.7002			12-8-23	204	-	12.79.73	274		
2023Q4 195 ISS	Y45	11/30/2023	3243.8999			2	357		-	330		
2023Q4_132_ISS	746	11/30/2023	1063.4				23.8		-	ולי		
2023Q4_189_ISS	Y47	11/30/2023	844.5				58,1			ر د د د		
2023Q4_131_ISS	Y48	11/30/2023	839.2				9,48			1 58		
2023Q4 148 ISS	Y49	11/30/2023	740				78.2			17.77		
2023Q4_133_ISS	Y50	11/30/2023	736				767			166		
2023Q4_183_ISS	Y51	11/30/2023	6.909				361			200		
	_											

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Technician: MIKE ORUE Instrument: INSPECTRA						1.5			
Instrument: INSPECTRA							w		
						<u>و</u> ا	00		
Calibration Standard: 500PPM						Southm	Pm		
Initial Monitor	oring Event	int			Re-M	Re-Monitoring Event -		10 Days	Comments
Grid	Flag	Location	Field Reading	Date	Remedial	Date	Field Reading	Field Reading	
	B4		402	`.	45	11-10-23	39.5	Inde post	SIMW1222
	B2		381.6		11000		190		SIMW2098
121	B3		378.3	11/1/2023			194		SIMW2215
91	B4		335	11/1/2023			23.5		SIMW2227
83	B5	2	230.9	11/1/2023			165		SIMW822S
135 E	B6		223.2	11/1/2023		>		80,000	SIMW2213
Si .									
			-						
				11/11/11					

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Site: STAI VALLINY

Tochnician.		して ないし ハファン		+	プード (ダアー 602)	^		1.0	Pages
	MITHE DOWN	ا ع.		S. Boo	S. BODCHIRS				
	TUND 11000			+	TIN 1000				
	My ODS			Se	Soo pm				
15.1	REMO	vent -10 DAYS	\$ Z	2AV) Re-Mo	Re-Monitoring Event - 10 Days	nt - 10 Days		Comments	
Flag		Field Reading (ppm)	Date	o d	Date	Field Reading	Field Reading		
121	SIMMIZE	80.5	52-01-11						
23	SIMUZOGE	061							
135	SIM WIZIT	h 3)							
18 Y	SIM 62227	23,5							
24	51m W 8728	165							
	SIMW 2213	Do 000	-)		11-20-23	75,20			
			y						
									П

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

					7.7	4.hr OTR	2013		Page 1 of 1 Pages
Technician: MIKE ORUE					1W	mikė opue			
Instrument: INSPECTRA					-	WALOOD			
Calibration Standard: 600PPM						500ffm			
Initial Monitoring	oring Event	int			Re-M	Re-Monitoring Event -		10 Days	Comments
Grid Number	Flag Number	Location	Field Reading (ppm)	Date	Remedial	Date Monitored	Field Reading	Field Reading	
90	87		424.4			N-10-23	7		SIMW1806
105	B8		232.3	11/2/2023			9.18		2023Q4 105 ISM
103	B9		230.5	11/2/2023			52,8		2023Q4 103 ISM
55	B10		224.2	11/2/2023			76.1		2023Q4 055 ISM
56	B11		216.1	11/2/2023			48.0		2023Q4 056 ISM
91	B12		207.8	11/2/2023		>	4769		
72									

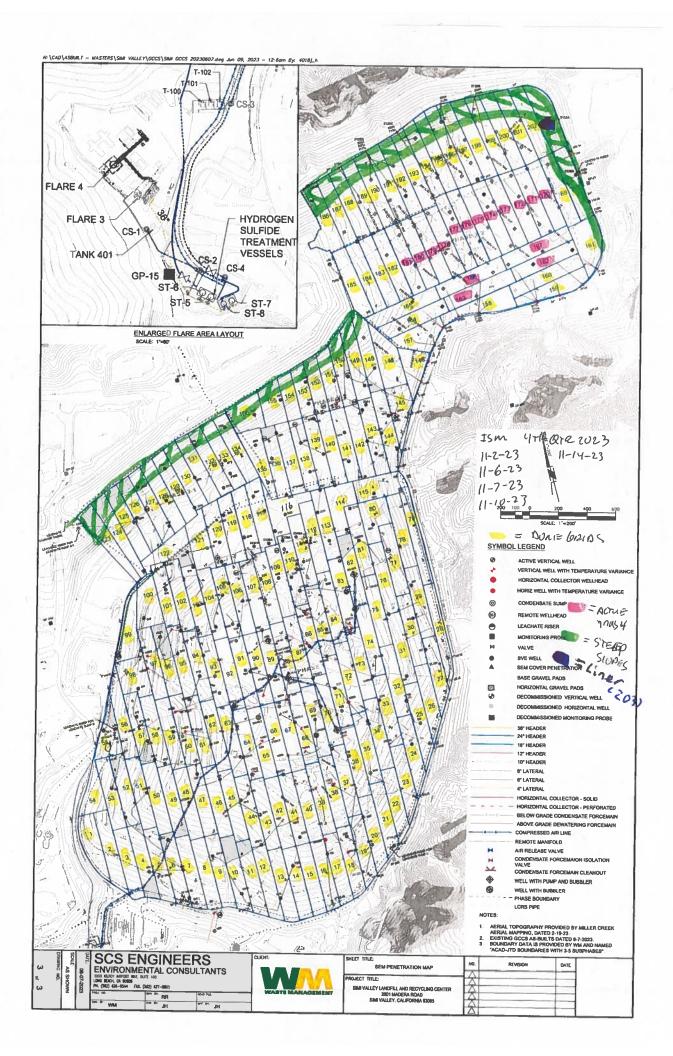
Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

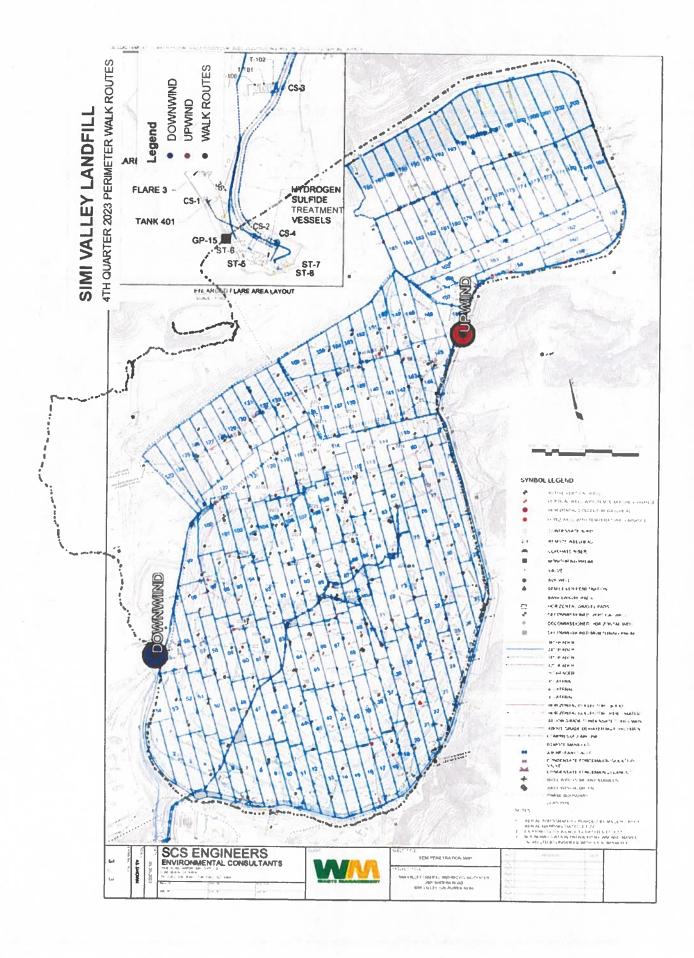
¹ / ₂ ξ M	Quarter / Year: 4TH QTR 2023	ar: 4TH QTR				7	4th Corre	2023		Page 1 of 1 Pages
Monitoring Event Pied Reading Date Pied Reading Pied Reading Reading Reading Pied Reading Rea	Technician: 1	MIKE ORUE		THE WAY THE			MIKE ORY			
Field Nonitoring Event Period Reading Date Remedial Date Field Reading Date Remedial Date Field Reading	nstrument: 1	INSPECTRA					TV191000			
Flag Number Location Field Reading Date Remedial Date Field Reading Field Reading Reading Field Reading Reading Reading Field Reading Reading Reading Reading Reading Read	Campragron	standard.					50088	W		
Flag Number Location (ppm) Field Reading Monitored (ppm) Date Monitored (ppm) Remedial Monitored (ppm) Prick (ppm) Monitored (200 ppm) 200 ppm		Initi	al Monitoring E	vent		a la	e-Monitoring	Event - 10 Day	(S	Comments
B13 SIMVV1811 VIV. VIV	Grid	Flag Number	Location	Field Reading	Date	Remedial	Date	Field Reading		
B14 SIM2332A 404.2 11/6/2026 53.2 B15 SIMVV2080 395.8 11/6/2026 197 B16 SIM2117A 322.2 11/6/2026 10.7 B17 SIM2333A 293.9 11/6/2026 10.7 B18 SIMVV2070 285.9 11/6/2026 15.6 B20 SIMVV2094 259.7 11/6/2026 16.7 B21 SIMNV2094 255.7 11/6/2026 23.5 B22 SIMHO017 255.5 11/6/2026 16.3 B23 SIMVV2082 20.3 11/6/2026 16.3 B24 SIMVV2082 20.3 11/6/2026 √ 3.2.3 B25 SIMVV2082 20.3 11/6/2026 √ 3.2.3	143	B13	SIMW1811	407.8	11/6/2026		11-15-23	179		SIMW1811
B15 SIMW2080 395.8 11/6/2026 42. B16 SIMZ17A 322.2 11/6/2026 0.7 B17 SIMZ33A 293.9 11/6/2026 0.7 B18 SIMW2070 285.9 11/6/2026 1.5 B20 SIMW2094 259.7 11/6/2026 7.5 B21 SIMSVE03 257.1 11/6/2026 7.3 B22 SIMH0017 255.5 11/6/2026 25.5 B23 SIMV2077 230.3 11/6/2026 25.6 B24 SIMW2077 230.3 11/6/2026 25.6 B25 SIMV2082 203.8 11/6/2026 25.2 B25 SIMV2077 230.3 11/6/2026 25.2 B25 SIMV2078 203.8 11/6/2026 25.2	193	B14	SIM2332A	404.2	11/6/2026			53.2		SIM2332A
B16 SIM2117A 322.2 11/6/2026 107 B17 SIM233A 293.9 11/6/2026 47.7 B18 SIMVV2070 285.9 11/6/2026 1.56 B20 SIMVV2094 259.7 11/6/2026 141.6 B21 SIMVV2094 259.7 11/6/2026 141.2 B22 SIMHO017 255.5 11/6/2026 23.5 B23 SIMVV2077 230.3 11/6/2026 46.7 B24 SIMVV2082 16/2026 46.7 B25 SIMVV2082 20.3 11/6/2026 22.3 B25 SIMVV2082 20.3 11/6/2026 22.5 B26 SIMVV20R 20.3 20.3 20.3 B27 SIMVX20T 20.3 20.3 20.3 B28 SIMVX20T 20.3 20.3 20.3 B29 2	135	B15	SIMW2080	395.8	11/6/2026			182		SIMW2080
B17 SIMZ333A 293.9 11/6/2026 47.7 B18 SIMVV2070 285.9 11/6/2026 15.6 B19 SIMZ116A 280.3 11/6/2026 11.2 B20 SIMVX094 259.7 11/6/2026 17.2 B21 SIMSVE03 257.1 11/6/2026 23.5 B22 SIMXVE07 255.5 11/6/2026 54.8 B23 SIMXV2077 230.3 11/6/2026 54.8 B24 SIMVV2077 230.3 11/6/2026 52.5 B25 SIMVV2082 203.8 11/6/2026 52.5 B26 SIMVV20R2 203.8 11/6/2026 23.2.3 B27 SIMVV20R2 203.8 11/6/2026 23.2.3 B28 SIMVV20R2 203.8 11/6/2026 23.2.3	191	B16	SIM2117A	322.2	11/6/2026			107		SIM2117A
B18 SIMW2070 285.9 11/6/2026 15.6 B19 SIMXV2094 259.7 11/6/2026 11.2 B20 SIMXV2094 259.7 11/6/2026 16.1 B21 SIMSVE03 257.1 11/6/2026 23.5 B22 SIMHO017 255.5 11/6/2026 54.8 B23 SIMXV2077 230.3 11/6/2026 44.7 B24 SIMXV2082 203.8 11/6/2026 √ 3.2.3 B25 SIMXV2082 203.8 11/6/2026 √ 3.2.3 B26 SIMXV2082 203.8 11/6/2026 √ 3.2.3	197	B17	SIM2333A	293.9	11/6/2026			87.7		SIM2333A
B19 SIMZ116A 280.3 11/6/2026 11.2 11.6 11.2 11.6 12.2 11/6/2026 14.1 12.3 11/6/2026 14.1 12.3 11/6/2026 14.1 12.3 11/6/2026 14.2 14.3 11/6/2026 14.2 14.3 11/6/2026 14.2 14.3 11/6/2026 14.2 14.3 11/6/2026 14.2 14.3 11/6/2026 14.2 14.3 11/6/2026 14.3 11/6/2026 14.3 11/6/2026 14.3 11/6/2026 14.3 11/6/2026 14.3 11/6/2026 14.3 11/6/2026 14.3 11/6/2026 14.3 11/6/2026 14.3	144	B18	SIMW2070	285.9	11/6/2026			156		SIMW2070
B20 SIMVV2094 259.7 11/6/2026 191 11/6/2026 123.5	188	B19	SIM2116A	280.3	11/6/2026			711		SIM2116A
B21 SIMSVE03 257.1 11/6/2026 23.5 B22 SIMH0017 255.5 11/6/2026 54.8 B23 SIMXV2077 230.3 11/6/2026 10.2 B24 SIMWV2082 203.8 11/6/2026	132	B20	SIMW2094	259.7	11/6/2026			161		SIMW2094
B22 SIMH0017 255.5 11/6/2026 54.8	144	B21	SIMSVE03	257.1	11/6/2026					SIMSVE03
B23 SIM2111A 243.5 11/6/2026 10-3 10-3 B24 SIMVV2082 230.3 11/6/2026	16	B22	SIMH0017	255.5	11/6/2026			54.8		SIMH0017
B24 SIMW2077 230.3 11/6/2026	159	B23	SIM2111A	243.5	11/6/2026			103		SIM2111A
B25 SIMW2082 203.8 11/6/2026	128	B24	SIMW2077	230.3	11/6/2026			796		SIMW2077
	143	B25	SIMW2082	203.8	11/6/2026		>	2		SIMW2082
				o						

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

					77.5	174 Por 020 1177	7 6176		Lage of T
Technician: MIKE ORUE					V	7.000	7 77		Pages
Instrument: INSPECTRA						TO SCORING	25		
Calibration Standard: 500PPM						Cort own	2		
Initial	Initial Monitoring Event	vent			Re-1	onitoring	Re-Monitoring Event - 10 Days	Davs	Commente
Grid Number	Flag	Location	Deading (ppm)	Date Monitored	Remedial Work	Date	Preto Descring <200 ppm	Dazding >200 opm	
2023Q4_083_ISM	B26	2023Q4 083 ISM	486.1	11/10/2023		11-20-23	101	Table 1	SURFACE
2023Q4_148_ISM	B27	2023Q4 148 ISM	361.4	11/10/2023		->	46.34		SURFACE
									3
	=								

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log


Pages				ts		T	T	T																	V	
Page 1 of 1				Comments			SURFACE	SURFACE	SURFACE	SURFACE	SURFACE	SURFACE	SURFACE	SURFACE	SURFACE	SURFACE	SURFACE	SURFACE	SURFACE	SURFACE						
	9			10 Days	FleId Reading	>200 ppm																				
2023	BARTIN	0	7	H.	Field Reading		-	121.15	15 25	12.31	30.57	10.03	15.42	44,19	18.31	27.21	15.67	36.17	23.71	43,21						
470 AR 2023	Doben B	1	50000m	Re-Monitoring Event	Date		11-21-23	1												>						
h	Sto	7		Re-M	Remedial	Work)					
					Date	Monitored	11/14/2023	11/14/2023	11/14/2023	11/14/2023	11/14/2023	11/14/2023	11/14/2023	11/14/2023	11/14/2023	11/14/2023	11/14/2023	11/14/2023	11/14/2023	11/14/2023						
					Field Reading	(mdd)	495.9	4/9.4	408.4	342.7	294.1	273.9	262.7	260.5	241.1	241	234.2	233.7	233.2	222.1			1			
				Event	Location																					
				gui	Flag			679	B30	B31	B32	B33	B34	B35		B37	B38	B39	B40	B41						
Quarter / Year: 4TH QTR 2023	Technician: MIKE ORUE	Instrument: INSPECTRA	Calibration Standard: 500PPM	Initial Monitori	Grid	aper 1	2023Q4 199 ISM	ZUZ3Q4 189 ISIM	2023Q4_197_ISM	2023Q4_136_ISM	2023Q4_152_ISM	2023Q4_195_ISM	2023Q4_130_ISM	2023Q4_127_ISM	2023Q4_153_ISM	2023Q4_137_ISM	2023Q4_138_ISM	2023Q4_191_ISM	2023Q4_129_ISM	2023Q4_185_ISM						


Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Quarter / Year: 4TH QTR 2023						4th are	5207		Page 1 of 1 Pages
Technician: MIKE ORUE						MIKE OF	opue		
Instrument: INSPECTRA						1	o Q		
Calibration Standard: 500PPM						Sooppm	Pm		
Initial Monitori	ng	Event			Re-M	Re-Monitoring Event	1	10 Days	Comments
Grid	Flag	Location	Field Reading	Date	Remedial	Date	Field Reading	Field Reading	
Number	Number		(mdd)	Monitored	Work	Monitored	<200 ppm	>200 ppm	
2023Q4_135_ISS	B42		465.7	11/29/2023		12-8-23	176		SURFACE
2023Q4_142_ISS	B43		372.4	11/29/2023			70)		SURFACE
2023Q4_075_ISS	B44		361.2	11/29/2023			11,7		SURFACE
2023Q4_136_ISS	B45		325.2	11/29/2023			2.48		SURFACE
2023Q4_110_ISS	B46		290.5	11/29/2023			53,2		SURFACE
2023Q4_106_ISS	B47		244.1	11/29/2023			139		SURFACE
2023Q4_115_ISS	B48		228.5	11/29/2023			186		SURFACE
2023Q4_141_ISS	B49		213.5	11/29/2023		2	41.8		SURFACE
To manufacture and the second									
The state of the s									:
				,					

Blue Flag (200-499 ppm) Landfill Surface Emissions Monitoring 10 Day Exceedances and Monitoring Log

Page 1 of 1 Pages				Comments																
				Days	Field Reading	>200 ppm														
R 2023	Pue	20	pm	우	Field Reading	<200 ppm	10	m	85.2	93.2	178									
4th arre	MIKE OBUE	TVALOOC	SOOPPIM	Re-Monitoring Event -	Date	Monitored	12-8-23				8									
				Re-M	Remedial	Work														
					Date	Monitored '	11/30/2023	11/30/2023	11/30/2023	11/30/2023	11/30/2023									
					Field Reading	(mdd)		399.8	353.8	270.6	252.6									
				Event	Location															
-				D.	Flag		B50	B51	B52	B53	B54				100 mg					
Quarter / Year: 4TH QTR 2023	Technician: MIKE ORUE	Instrument: INSPECTRA	Calibration Standard: 500PPM	Initial Monitorir	Grid			2023Q4_182_ISS	2023Q4_130_ISS	2023Q4_190_ISS	2023Q4_149_ISS				200					

Attachment B

Integrated Surface Emission Monitoring Event Records

Personnel: MI ABrahaya	D. Anderson		
Cittughes		Cal. Gas Ex	p. Date: <u>4/27</u>
Date: 11-15-23 Instrument Us	ed: <u>Inspectou</u>	Grid Spacing:	25 PT
Temperature: <u>32°</u> Precip:	Upwind BG:	1.9 Downwine	d BG: 2.7

GRID ID	STAFF	START TIME	STOP	TOC I				REMARKS
9		TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REPIARES
	MA	0810	0835	4.17	L	2.	2	
10	MA	0335	0900	8.32	1	2.	16	
11	mA	0900	0930	5.41	O	1	14	
12	mA	0930	0955	10.43	 1	2	6	
13	mn	1000	1025	4.60	3	3	4	
14	MA	1025	1055	5.19	2	3	6	
15	mA	1055	1115	4.56	4	b	· lo	
46	GR	0807	0332	18.63	1	2	2,	
45	GR	0833	0358	16.47	1	2	16	
44	GR	0900	0925	19.09	0	1	14	
43	GR	0926	0951	18.03	i	2	8	
42	GR	0952	1017	17.72	2	3	6	-
41	GR	1018	1043	17.71	3	5	12	
40	GR	1044	105	17.70	4	و	12	
47	CH	0807	0832	8.25	i	2	2	
48	CH	0835	0900	9.44	1	2	طا	
49	C14	0902	0927	6.52	0	1	14	
50	C14	0931	0955	4.96	1	2	(v.	- 1111
51	C14	1000	1075	5.91	 3	3	6	
5z	СН	1030	1055	4.71	2	3	2	
8	DA	0808	0829	2.14		2	2	
7	DA	0831	0855	1.24	1	2	110	
6	DA	0857	0922	1.69	0	1	14	
5	DA	0928	0953	2,37		2		
4	DA	1000	1023	379	2	3	6	
3	DA	1025	1047	3,63	3	4	10	
*					,			

Attach Calibration Sheet Attach site map showing grid ID

Personnel: T. Lewis	GILOPEZ			
Personnel: T. Lewis	N. JAME (SON)	T III		
A. Canales		Cal. Gas Exp. Date: $\frac{9/27}{2}$		
Date: 11-28-23 Instrument Us	ed: Inspected Gr	id Spacing: 2567		
Temperature: 54° Precip: 6	D Upwind BG: 1. A	Downwind BG: 2, 4		

GRID	STAFF	START	STOP	тос		WIN	D INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	•	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REPIARES
8	TL	0744	0759	2.14		3	4	13	vegetation
7	TL	0800	0875	1.24		2	2	14	Vertation
6	TL	0836	0847	1.69		3	5	14	Vegetation Vegetation
5	TL	0848	0912	2.37		3	4	16	Veyetation
4	TL	0914	0930	3.78		2	3	16	vayetation/steepslope
3	TL	0930	0947	3.63	·	1	2	14	Vegetation / Henry Equipment
2	TL	0949	1009	2.10		3	2	8	vajetychon/Henry Egyppma
1	π	1010	1025	3.54		3	5	8	Havy Cow PMENT
54	N	1029	1054	4.58		3	5	Ú	Heavy Egui Pront
91	TL	1115	11140	2.32		2	3	11	7
90	TL	1141	1706	2.36		2	4	10	
17	GR	0750	0811	2.69		3	5	13	STEEP SLOPE
18	4R	0825	0842	2.56		3	5	14	mulch
19	GR	0845	0910	2.56		3	4	طا	
20	GR	0912	0937	2.80		2,	3	14	
21	GR	0938		2.63		3	4	14	
22	GR	1003	1023	3.20		3	5	8	TRAFFIC
23	GR	1023	1044	2.97		3	5	10	Obstauction
24	GR	1044	1104	3.11		2	4	10	TRAFFIC
63	GR	1128	1144	3.79		2	3	16	losse footing
64	(IR	1146	1206	3.39		2	4	10	1005e footing
39	AC	0813	0827	2.31		2	2	14	DIRT StockPile
38	AC.	0830	0841	1.70		. 3	5	14	DIRT Stockfile
37	AC	0843	0856	1.86		1	4	16	DIRT STOCKPILE
36	AC	0858	0918	1.71		3	4	16	
35	AC	0919	0942	2.34		1	2	14	
34	AC	0944	1007	1.15		3	4	6	Transcond I
33	AC	1010		3.05		1	3	å	
32	AC	1037	1059	2.39		.3	5	11	Slope
89	AC	1141	1203	2.67		2	4	(0	BAGS of Rocks
		ion Chan					1 1	1 10	1.041023 01 1

Attach Calibration Sheet Attach site map showing grid ID

Page _ 1 _ of _ 2

Personnel: T. LCWIS (7) ROBLES	G. Lofez N. JAMESSON		
A. Conales		Cal. Gas E	xp. Date: 4/27
Date: 11-28-23 Instrument Us	sed: Inspector	Grid Spacing: _	2587
Temperature: 54° Precip:	Upwind BG:	1.6 Downwi	nd BG: 2.4

GRID	STAFF	START	STOP	тос		WIN	D INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	2	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
88	AC	1120	1140	3.33		2	3	N.	GRAVEL Pile
92	GL	0759	0824	5.50		2	2	14	
93	GL	0826	0851	5.23		1	니	16	-
94	GL	0920	0945	6.56		1	2	14	
95	GL	0946	1011	4.88		3	4	Ś	
96	GL	1012	1037	6.44			3	8	
97	GL	1038	1102	7.38		2	4	10	
98	GL	1103	1128	5.44		3	5	11	
99	91	1129	1141	5.51		2	3	10	itteP Stofe
67	96	1156	1216	3.31			2	10	unaussuble Slope
62	N2	6808	0833	3.94		2	4	14	
61	NJ	0834	0859	3.17		2	3	16	
60	NJ	5090	0922	5.91		3	4	16	
59	LN	9724	0944				2	14	
58	NJ	0946	1001	5.43		3	4	6	STEEPSTOPE
57	NJ	1002	1027	5.95		3	5	Q	
56	NJ	1028	1044	4.29		3	5	10	STEEP Slope
55	NJ	1045	1112	8,50		2	4	9	-
65	NJ	1134	1149	4.57		2	3	10	Heavy Equipment STEEP
66	NJ	1159	1214	4.05	1	1	2	10	Henry Equilment / STEET

Attach Calibration Sheet Attach site map showing grid ID

Page 2 of 2

Personnel: Tilewis	(1) Robles	
A. Lopez	N. JAmerson	
G. Lopez		Cal. Gas Exp. Date: 4/21
Date: <u>//-29-23</u> Instrument	Used: INSpectRa	Grid Spacing: 25fT
Temperature: 49° Precip:	O Upwind BG: /	3 Downwind BG: 2.6

GRID	STAFF	START	STOP	тос	WII	ND INFOR	MATION	DEMARKS
ID	INITIALS	TIME	TIME	PPM	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
118	TL	0735	0800	41.74	3	5	2	# 12-6-2521.7
117	TL	0800	0820	41.76	3	5	2	Rock Pile H 1715
116	TL	0823	0848	15.00	3	4	16	
135	TL	0849	0904	59.29	2	4	2	STEEP Slope # 24
136	TL	0908	0923	36.54	2	3	2,	STEEP STOPE - ROCK Pile
137	TL	0923	0938	44.17	2	4	2	STEEP Slope - Rock Ale
138	TL	0939	0954	29.13	2	3	14	Henry Equipment
139	TL	0956	1012	33.41	2	4	12	Henry Cambring - Rukfile
115	TL	1026	1041	11.61	1	3	No	SHEP SLOPE
84	TL	1059	1115	7.88	4	6	ID	5 TEEP Slope
72	n	1115	1141	3.75	4	b	10	315-1 2(0)6
75	AL	0755	0820	23.46	3	5	2	
81	AL	0872	0847	20.15	3	4		
80	AL	0848	0913	8.29	3	4	110	
76	AL	0914	0939	13.61	2	4	2	
31	AL	0940	1005	5.76	1	2.	12	7
25	AL	1006	1031	2.49	1	2	12	
26	AL	1032	1057	4.29	 2	5	10	
30	AL	1058	1123	3.26	4	7	11	
68	AL	1134	1159	4.45	4	7		Rock Pile
108	GL	0743	0808	35.61	2	4	2	H 12-8-23 17.7
109	GL	0811	0836		3	5		11.00
110	GL	0838	0903	14.60	2	4	2	
111	(1L	0914	0934	15.77	2	4	2	STEEP Slofe
112	GL	0935	0956	16.20	2	3	14	STEEP STOPE
113	GL	0958	1022	20.64	1	3		
114	62	1023	1048	10.37	2	3	10	Henry Equipment
85	GL	1104	1129	4.73	4	7	11	Havy by wiftmat/skell
71	GL	1130	1155	6.12	 4	7	11	
107	GIR	0738	0804	29.42	 2	4	2	4
Attach	Calibrati							

Attach Calibration Sheet

Attach site map showing grid ID

Page _____ of ______

Personnel: Ti Cewis	G. RoBles	
A. Lopez	N. TAMERSON	
G. Lofez		Cal. Gas Exp. Date: 4/27
Date: 11-21-23 Instrument L	Jsed: Inspection	Grid Spacing: 25 FT
Temperature: 49° Precip:	O Unwind BG:	1.) Downwind BG: 2,6

GRID	STAFF	START	STOP	TOC	i,	NI	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	,,	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
106	GR	0806	0827	5.42		2	4	1	loose feeting
105	GR	0826	0851	10.50		3	4	160	DIRT Pile
104	GR	0854	0914	10.33		3	4	2	DIRTBIL
103	GR	0916	0940	6.39		2	4	2	loose footing
102	GR	0944	1007	13.22		1	2	12	Vegetation
101	GR	1012	1027	6.68			2	12.	DIRT Stockfile
100	GR	1034	1059	5.40		3	4	lo	
86	GR	N13	И33	4.13		5	6	16	STEEP STOPE
70	GR	1134	1154	3.77		4	7	il	ROCK PILE
140	NJ	0744	0809	18.23		2	4	2	
141	NJ	0810	0877	28.78		2	3	1	STEEP STOREH 12,1
142	NJ	0828	0853	3.52		3	4	160	STEEP STOPE
143	NI	0856	0911	23.36		3	+	2	STEEP Slofe
144	NJ	0914	0934	16.33		2	4	2	
145	NJ	0937	1002	19.01		1	2	12	12- 8
146	NJ	1004	1018	49.32		1	1_	14	TRAFFIL + 22.3
147	NJ	1024	1049	44.82			3	lo	17-8- TRAFFIL # 22.3 # 12-5-2 STEEP STORE
83	NJ	1110	1130	5.45		5	6	10	STEEP Slope
73	NJ	1131	1152	4.91		4	7	11	
				Ī					
				ì					

Attach Calibration Sheet Attach site map showing grid ID

Page 2 of 2

Personnel: Ticowis	AILUPEZ	
G. Lobles	P. Jameson	
la, Lugez		Cal. Gas Exp. Date: <u>4/27</u>
Date: <u>11-30-23</u> Instrument	Used: INSPECTION	Grid Spacing:25f+
Temperature: 54° Precip:	O Upwind BG:	1.4 Downwind BG: 2,4

REMARKS	MATION	D INFOR	WIN	тос	STOP	START	STAFF	GRID
KEHANG	DIRECTION 16 POINT	MAX. SPEED	AVG SPEED	PPM	TIME	TIME	INITIALS	ID
Rock Pile	2	5	4	9.91	0822	0807	TL	87
ROCKPIL	2,	4	3	1.96	0840	0823		69
STE 0 51. Da	2	3	2	5.16	0900	0845	T	74
STHP 510Pe 6.6	با	7	4	25.00	0920	0900	TL	82
TRAFFIC	6	7	4	9.13	0948	0938	TL	157
TRAFFIC	4	7	4	14.13	1004	0949	TL	164
6-40 81 0	. 6	7	5	11.75	1025	1004	T	165
STEEP STURPHIS	6	1	5	28.75	1047	1027	TL	182
5766 51 20 526		3	2	170.28	c8a5	0755	(1R	130
mulell	Ż	5	4	109.37	0820	0810	GR	159
STEEP SLOPE TONE	2	5	4	68.05	0831	0821	GR	128
mulch this	2	4	3	47.62	0842	0832	(7R	127
STEEP Slope	2	3	2	23.45	0900	0845	GR	126
STEEP Slofe	4	3	2	16.63	0911	0901	GR	175
SANCE PIR	6	8	6	11.101	0924	0914	GR.	124
STEEP STOPE	6	7	4	12.77	0938	0925	GR	123
Construction #12-5	6	ما	4	35.49	1010	0951	GR	190
mulch# 12-3-25	6	1	5	57.01	1029	1012	(1R	189
OBSTRUCTION	6	1	5	8.62	1051	1032	GR	188
mulch # 171.8.23	1	9	7	29.24	1116	1056	(1R	183
STORP 5 1000 2014	2	5	4	191.27	0821	0759	6,6	131
STEG P STOPP 23.4	2	4	3	194.83		0822	GL	132
STEEPS 10 PE 21.16 STEEPS 10 PE 21.16	2	3	2	14449	0900	6844	GL	133
5766PS10P02411	6	1	4	223.27	0922	0902	GL	134
	4	6	4	6.93	0957	0932	(76	185
	6	1	5	3.51	1027	1002	GL	186
	6	1	5	3.1\	1053	1058	GL	187
	1	9	1	8.91	1121	1056	GL	184
	3	5	4	2.87	0831	080%	AL	77
STEEP Slufe	2	+	3	1.97	6852	6832	AL	78_

Attach Calibration Sheet Attach site map showing grid ID

Personnel: Ticewis Girables Girables	A. Lopez U, JAMERSON			
G. Lifez		Ca	al. Gas Ex	(p. Date: 1/27
Date: 11-30-23 Instrument Used	: Inspection	Grid Spa	acing: _	25fo
Temperature: 54° Precip:	Upwind BG:	1.4 [)ownwin	d BG . 2 4

GRID	STAFF	START	STOP	тос		WIN	ID INFOR	RMATION	DEMARKS
ID	INITIALS	TIME	TIME	PPM		AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	REMARKS
29	AL	0853	0913	1.47		2	5	V	very mon Sice I Stole
27	Pru	0914	0934	1.89		4	7	L	STEEP SICPE
28	AL	0935	0955	2.15		4	4	6	TRAFFIC
79	AL	0956	1016	2.77		4	6	6	TRAFFIC
194	AL	1031	1056	13.24		5	7		TIPMITIC
195	AL	1057	1130	26.39		1	9	7	# 12-5-23 9,6
148	NJ	0759	0814	40.23		2	2	16	STEP Slope 14.3
149	NJ	0815	0833	46.73		4	5	2	STEEP STOPH
150	ZN.	0835	0855	20,23		2	3	2	3117 31676
151	NJ	0853	0910	21.69		2	5	6	STEEP Slofe
152	NJ	0916	0922	51.30		4	7	6	STEEP 510 PE 21.5
153	NJ	0923	0933	35.57		4	7	6	STEEP STOPE 1618
154	NJ	0935	0945	13.87		4	1	6	STEEP Slope
155	NJ	0946	0955	680		4	4	4	STEEP STORE
156	NJ	0957	1002	9.19		4	1	6	STEP Slope
158	NJ	1012	1032	12.65		5	1	6	Jair sioje
159	NJ	1035	1052	7.104		5	7	6	
160	NJ	1054	1107	8.46		6	9	6	Henry Con Popular
161	NJ	1109	1129	5.41		5	10	b	Henry by c. Pmont
						-U. 2 M			
			11 15						
					_				
								J. Pran	Section 19 and 19
						,	- +		
		150						-	

Attach Calibration Sheet

Attach site map showing grid ID

Page Z of Z

Person	nel: Mor	206								
								Cal. Gas Exp	. Date: _	
Date	: 11-30-	23 <u> </u>	nstrumer	nt Used:			Grid Sp	pacing:		S and
					Upwind E					
GRID	STAFF	START	STOP	TOG	ROTO-MTR,	WIN	ID INFOR	MATION		
ID	INITIALS	TIME	TIME	TOC PPM	CC/MIN	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	R	EMARKS
162	/ ₍₂₀₀			111					Actur	772184
163										
166							162			
167								FL T		
168										
169	5.6									
170		* W4_								
171			LAL III LI							
172		W I		A III		<u> </u>				
173		F 2	11.7		716					
174						200				
175										
176										
177						on 1				100
178										
179						1				
180										
181				3_3	less de min					M -,1 - 1
196					3,1744.4					
197										
198										
199	2112									
200	- 1 - 2, 1-		V==	n 0			4			
201										
202								i la	A	/
119									Harry ca	us freeze well
120		-10							3-7	
121										
122										
191	I								1111	/

Attach Calibration Sheet Attach site map showing grid ID

Page _ of _ Z

Person	nel: M.O.	2ut							
								Cal. Gas Exp.	Date:
Date	11-30-2	3 I	nstrumen	t Used:			Grid Sp	pacing:	
Tem	perature:		_ Precip:		Upwind E	3G:	1	Downwind	BG:
GRID	STAFF	START	STOP	тос	ROTO-MTR,	WIN	ID INFOR	MATION	REMARKS
ID	INITIALS	TIME	TIME	PPM	CC/MIN	AVG SPEED	MAX. SPEED	DIRECTION 16 POINT	
192						E (-			Acture TRABA Liner
193						HELD		1164 -	
203									Liner
			1=1						
								,	
	V V						Harrier I		
				- 1					
						7			
		FE T							
								T Ent	
							1, ,-		
								L D	
						<u> </u>			
			10					-	
		-				4.3			

Attach Calibration Sheet Attach site map showing grid ID

Page 2 of 2

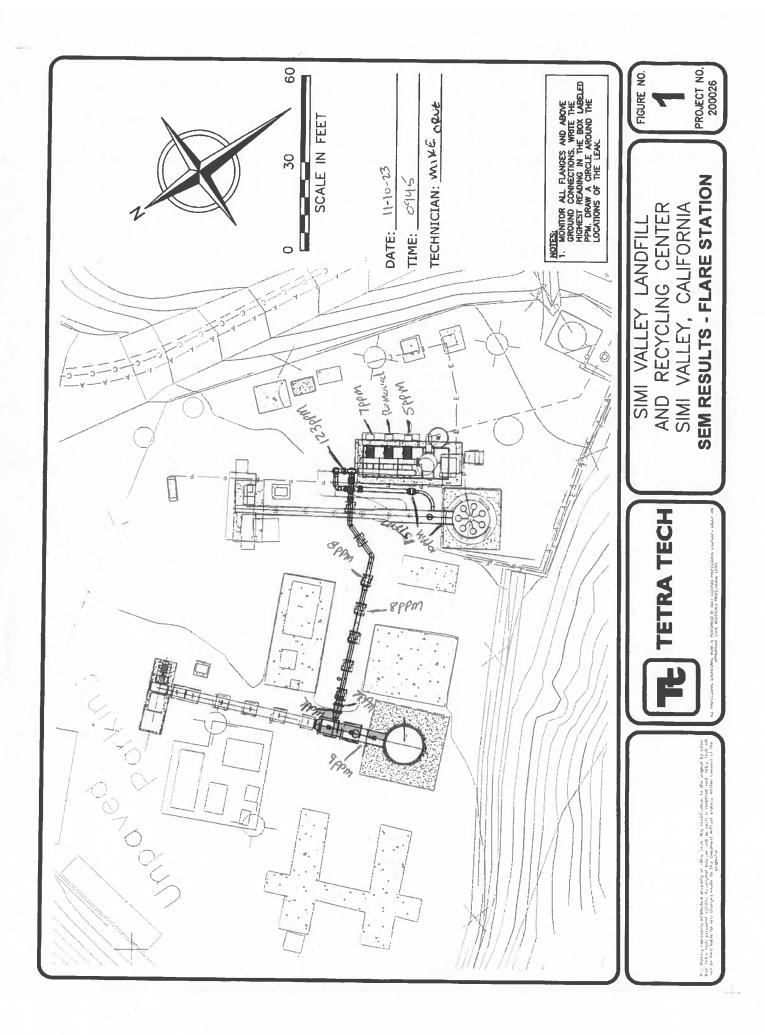
Integrated Surface Sampling 10 Day Exceedances and Monitoring Log

Site: SIMI VALLEY LANDFILL

age 1 of 1 Pages

	7-11									
Quarter / Year:	41H/ 2023	2	4th 9th / 2023							
Technician:	MIKE ORUE	UE	Tony Lewis							
Instrument:	INSPECTRA	RA	DOO! AVT			1,0				
Calibration Standard:	25PPM		mad st							
Initial Monitoring Event	toring Ever	ıt	First Re-Monitoring Event 10 Days	event - 10 Da	ys		Second Re-Monitoring Event - 10 Days	Event - 10 Da	ys	
Grid	Fleid Reading	Date	Remedial	Date	No Excd.	Exed.	Remedial	Date	No Excd.	Excd.
Number	(mdd)	Monitored	Work	Monitored	<25 ppm	>25 ppm	Work	Monitored	<25 ppm	>25 ppm
117	41.761	11/29/2023		12-8-23	17.5					
118	61.746	61.746 11/29/2023			21.7					
147	44.822	44.822 11/29/2023			٦٩. ٦					
146	49.327	11/29/2023			27.3					
135	58.297				34.8					
136	36.546	36.546 11/29/2023			10.2					
141	28.78	11/29/2023			12-1					
138	29.134	11/29/2023			12.4					Γ
137	44.17	11/29/2023			して・ナ					
139	33.413	11/29/2023			16.17					
108	35.617	11/29/2023			רינו					
107	29.427	11/29/2023		-;	11.6					
										i.
				100						

Integrated Surface Sampling 10 Day Exceedances and Monitoring Log

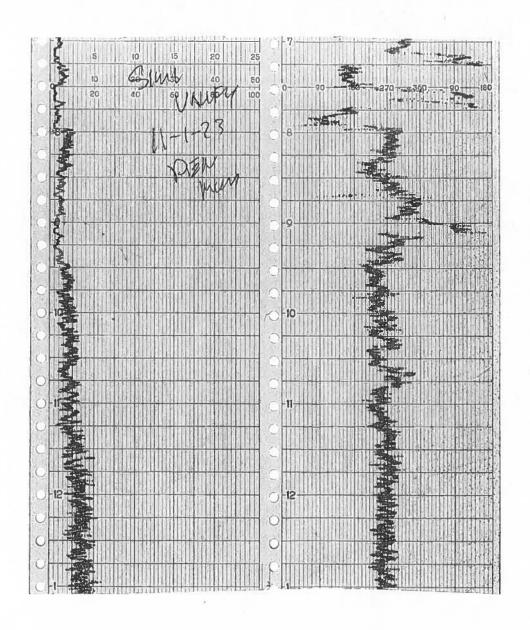

Site: SIMI VALLEY LANDFILL

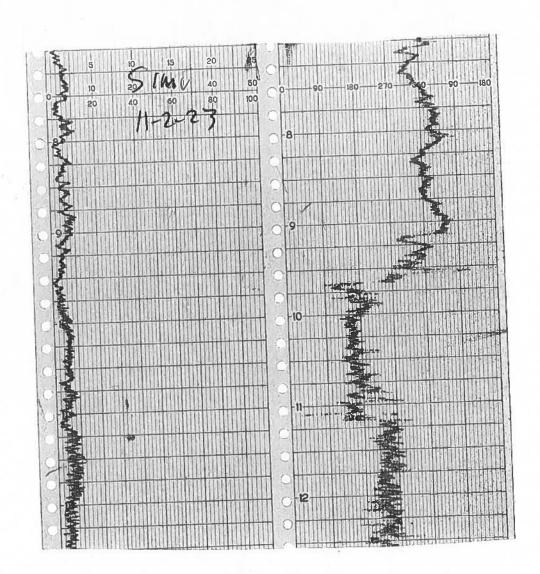
age 1 of 1 Pages

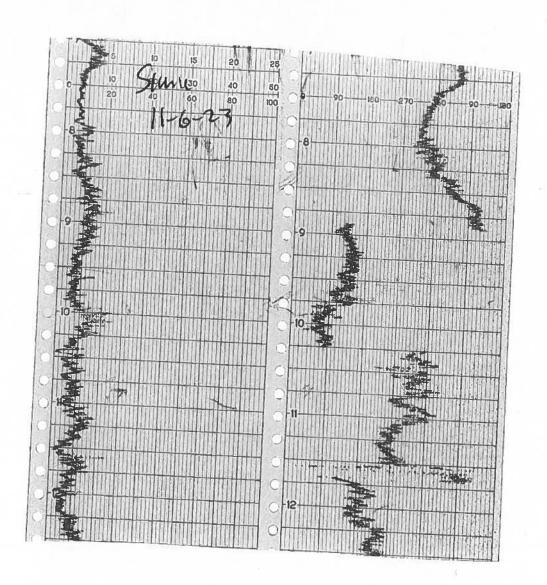
Quarter / Year:	4TH/ 2023	~	C. 10 1 2003							
	MIKE ORUE	37	13							
Instrument:	INSPECTRA	RA	1 -							
Calibration Standard:	25PPM		5						4	
Initial Monit	Initial Monitoring Event	ıt	First Re-Monitoring Event – 10 Days	Event - 10 Da	1/3		Second Re-Monitoring Event 10 Days	Event - 10 Day	sk	
Grid	Field Reading	Date	Remedial	Date	No Excd.	Excd.	Remedial	Date	No Excd.	Excd.
Number	(mdd)	Monitored	Work	Monitored	<25 ppm	>25 ppm	Work	Monitored	wdd 52>	>25 ppm
134	223.277	11/30/2023		17-8-73	24.1					
195	26.394	11/30/2023		_	9.5					
132	194.833	194.833 11/30/2023			23.4					
189	57.018	11/30/2023			h. 61					
131	191.271	11/30/2023		:	3008					
148	60.239	60.239 11/30/2023			1403					
133	144.496	11/30/2023			22.6				15.	
183	29.241	11/30/2023			11 4 4					
129	109.398	109.398 11/30/2023			16.2					
182	28.755	28.756 11/30/2023			1501					
130	170.285	11/30/2023			23.6					
190	33.497	11/30/2023			1705					
149	46.735	11/30/2023			2001					
152	51.3	11/30/2023			21.5					
82	25.009	11/30/2023		J	9.9					
128	68.057	11/30/2023			10.8					
153	35.575	11/30/2023			8 - 9					
127	47.624	11/30/2023		→	13°4					

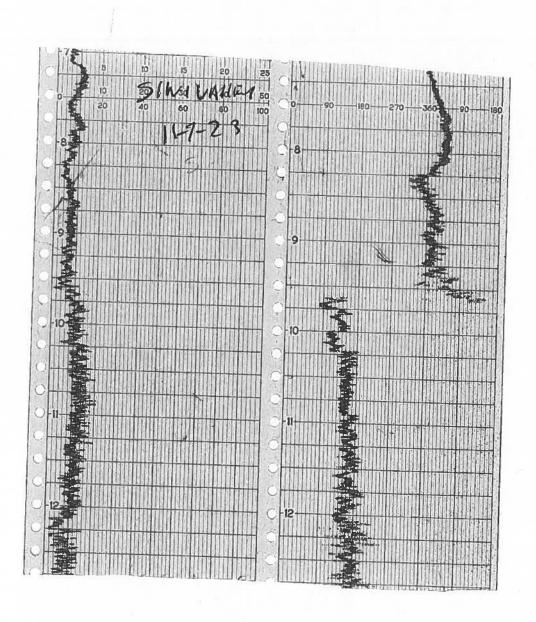
Attachment C

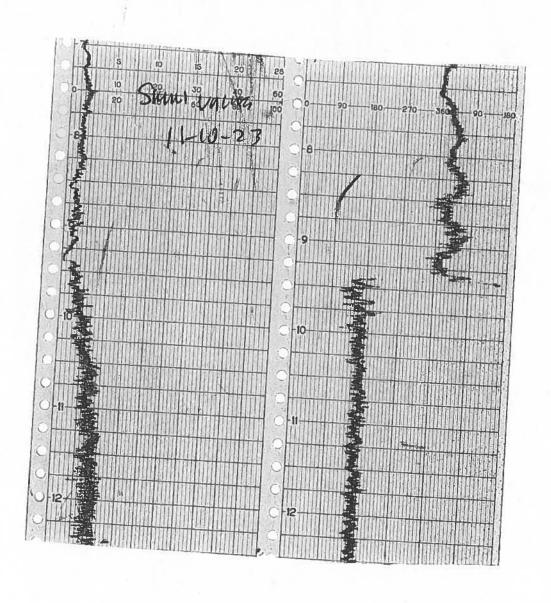
Component Leak Monitoring Event Records

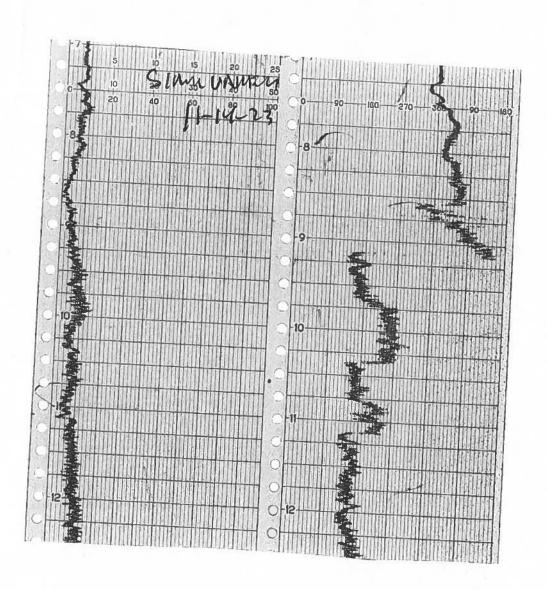


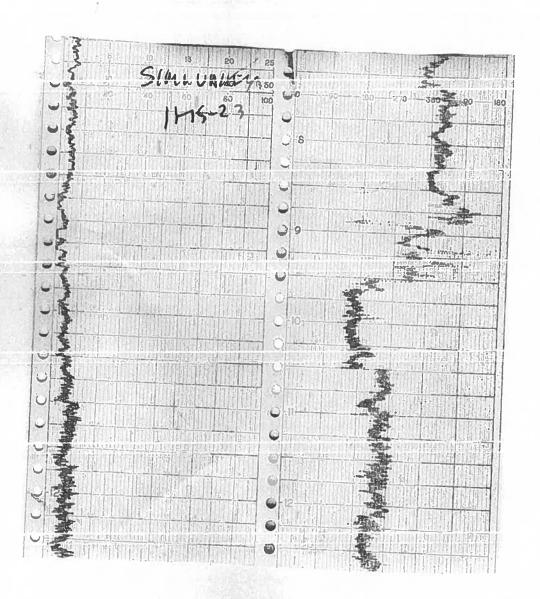

Attachment D

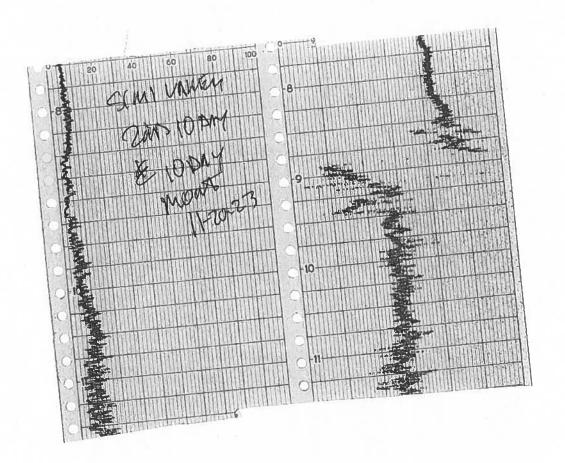

Weather Station Data

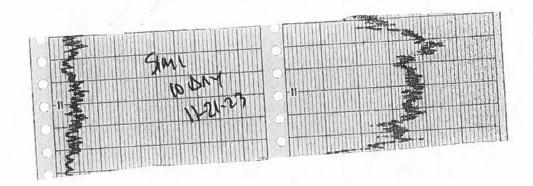


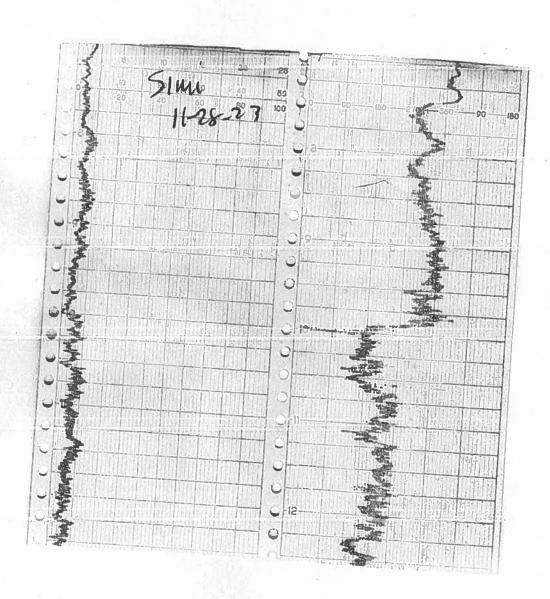

	16-POINT W	VIND DIRECTION	INDEX	
NO	DIRECTION		DEGREES	
		FROM	CENTER	<u>TO</u>
16	NORTH (N)	348.8	<u>369.û</u>	0.1.3
	NORTH-NORTHEAST (NNE)	011.3	022.5	033.8
2	NORTHEAST (NE)	033.8	045.0	056.3
3	EAST-NORTHEAST (ENE)	056.3	067.5	078.8
1	EAST (E)	078.8	090.0	101.3
5	EAST-SOUTHEAST (ESE)	101.3	112.5	123.8
5	SOUTHEAST (SE)	123.8	135.0	146.3
,	SOUTH-SOUTHEAST (SSE)	146.3	<u>157.5</u>	168.8
	SOUTH (S)	168.8	180.0	191.3
	SOUTH-SOUTHWEST (SSW)	191.3	202.5	213.8
10	SOUTHWEST (SW)	213.8	225.0	236.3
1	WEST-SOUTHWEST (WSW)	236.3	<u>247.</u> 5	258.8
2	WEST (W)	258.8	<u>270.0</u>	281.3
3	WEST-NORTHWEST (WNW)	281.3	292.5	303.8
4	NORTHWEST (NW)	303.8	315.0	326.3
5	NORTH-NORTHWEST (NNW)	326.3	337.5	348.8

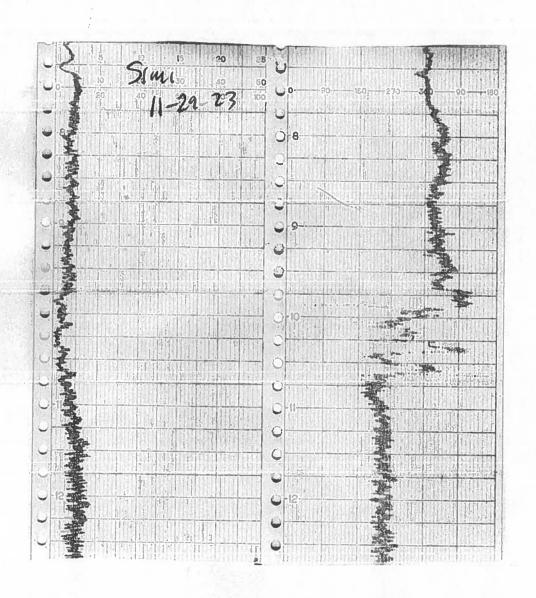


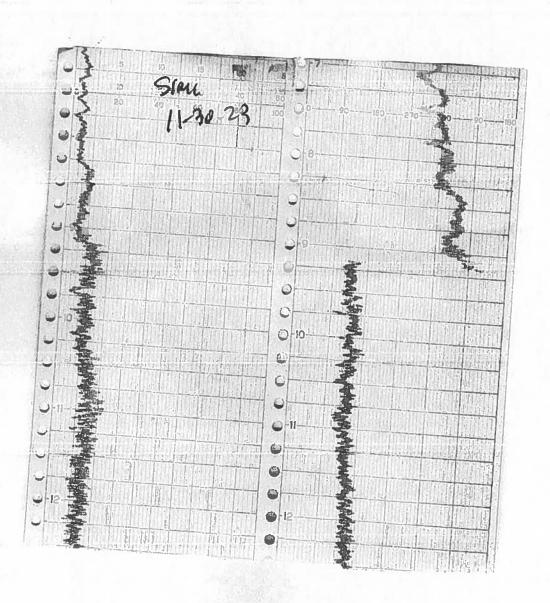


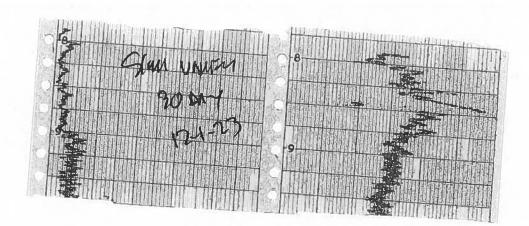


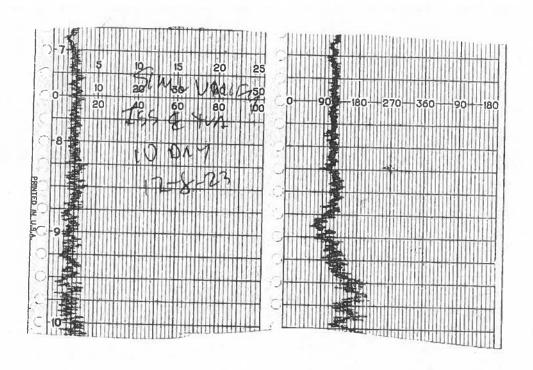


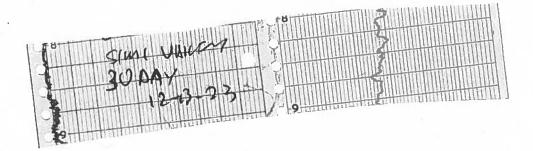


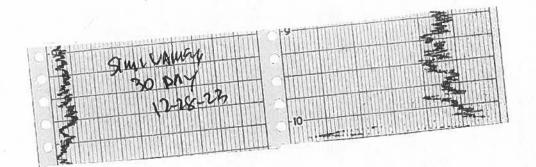












Attachment E

Calibration Records

End one malic.

CALIBRATION PROCEDURE AND BACKGROUND	REPORT	- INSTANTANEOUS
--------------------------------------	--------	-----------------

LA	NDFI	LL NAME SIMI VALLEY		NSTRUME	INT MAKE THE CMO
MC	DEL	NA LOCO EQUIPMENT #	10		SERIAL # 10363 46773
MC	NITO	DRING DATE 11-10-23		_ TIME	0706
Cal	ibrat	ion Procedure:			
	1 2 3	Allow instrument to zero itself while introducing Introduce calibration gas into the probe. Stab Adjust meter settings to read 500 ppm.	ig air oilized rea	ding =	504 ppm

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
2.3 ppm	3, 4 ppm	2,8 ppm

Background Value = 2.8 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	Using	90% of the Stabilized Reading			Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	506	ppm		450	ppm	7	
#2	504	ppm	y	450	ppm	7	
#3	501	ppm		450	ppm	/	
	Calculate Response Ti	me (<u>1</u> -	2+3)			6.6	#DIV/0
						Must be less than 30	seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision [STD – (B)]		
#1	011	ppm	506	ppm	6
#2	6,3	ppm	504	ppm	4
#3	0.13	ppm	504	ppm	4
Calculate Precision	on [STD-B1] + [S	TD-B2] + [\$		100	0.9% #DIVI
				20 CO	Must be less than 10%

Performed By MIKE GRUE	Date/Time 11-10-23 /0 700	
------------------------	---------------------------	--

CALIBRATION PROCEDURE AND BACKGROUND REPORT	- INSTANTANEOUS
---	-----------------

LANDFILL NAME: SIM	INSTRUMENT MAKE: THIS 2410				
MODEL: YUA 1000	EQUIPMENT #	36	SERIAL #:	0332603195	
MONITORING DATE:	11-20-23	TIME:	0730		

- Allow instrument to zero itself while introducing air.
 Introduce calibration gas into the probe. Stabilized reading = \$\int \text{900} \text{ ppm}\$
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Reading:	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
1,2 ppm	2,2 ppm	1.7 ppm

Background Value = /,7

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Calibration Gas	ng Using	90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	500	ppm	450	ppm	5	
#2	501	ppm	450	ppm	\$	
#3	501	ppm	450	ppm	6	
	Calculate Response	Time (1-	+2+3)		5,3	#DIV/0!
				Yes.	Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for 2			Meter Reading for Calibration Gas (B)		[STD - (B)]
#1	0,69	ppm	500	ppm	0	
#2	0,61	ppm	SOI	ppm	1	
#3	0,63	ppm	SUI	ppm	(
Calculate Precision	on [STD-B1] + [STD-B2] + [S		1 100 1	0.1	#DIV/0!
					Must be less that	ın 10%

Performed By: St BURCING Date/Time:	11-20-23	0130	
-------------------------------------	----------	------	--

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOUS

LANDFILL NAME 5/A	11 VAILEY	INSTRUMEN	T MAKE: TH	ERMO
MODEL: TUA 1000	EQUIPMENT #:	36	SERIAL #:	0332603195
MONITORING DATE:	11-21-23	TIME:	0800	

Calibration Procedure:

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = $\frac{500}{100}$ ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
1,6 ppm	2,8 ppm	2,2 ppm

Background Value = 2.2 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readin Calibration Gas	90% of the Stabil Reading	ized	Time to Reach 90 Stabilized Readin switching from Zo Calibration Gas	g after	
#1	501	ppm	450	ppm	6	
#2	501	ppm	450	ppm	5	
#3	501	ppm	450	ppm	b	
	Calculate Response	Time (1-	+2+3)		516 Must be less than 3	#DIV/0!

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Ze	g for Zero Air (A) Meter Reading for Calibration Gas (B)		Calculate Precision [STD	ion [STD – (B)]	
#1	0.45	ppm	501	ppm	1	
#2	0.60	ppm	501	ppm		-:
#3	0,49	ppm	SOI	ppm	1	
Calculate Precision	on [STD-B1] + [S	TD-B2] + [9 3	STD-B3] X <u>1</u> X 500	<u>100</u> 1	0,2 Must be less than 10%	#DIV/0!

Performed By: S. BONCHINS	Date/Time:	11-21-23	0800	
---------------------------	------------	----------	------	--

CALIBRATION PROCEDURE AND BACKGROUND	REPORT - INSTANTANEOUS
--------------------------------------	------------------------

LANDFILL NAME	LVALLEY	IN	STRUMENT	MAKE:	415,124.10
MODEL: TUA 1000	EQUIPMENT#:_	36		_SERIAL#_	0332603195
MONITORING DATE:	12-1-23		TIME:	0800	

- Allow instrument to zero itself while introducing air.
 Introduce calibration gas into the probe. Stabilized reading = \$\sumegac{\$\infty}{O}\$ ppm
 Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
/.2 ppm	2 1 ppm	/16 ppm

Background Value = 16 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	500	ppm	450	ppm	6	
#2	SOZ	ppm	450	ppm	6	
#3	503	ppm	450	ppm	~	
	Calculate Response Ti	ime (<u>1-</u> 3	+2+3)		SIL	#DIV/0!
					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Measurement #	asurement # Meter Reading for Zero Air (A) Meter Reading for Calibration Gas (B)				Calculate Precision [S	TD – (B)]
#1	0.62	ppm	500	ppm	0	
#2	0165	ppm	SUZ	ppm	2	
#3	0.71	ppm	503	ppm	3	
Calculate Precisio	n [STD-B1] + [S	TD-B2] + [\$	STD-B3] X <u>1</u> X 500	100 1	0.3 Must be less than	#DIV/0!

Performed By: SI HURUITI	Date/Time:	12-1-23	0800	
--------------------------	------------	---------	------	--

CALIBRATION	PROCEDURE	AND	BACKGROUND	DEDODT	- INSTANTANEOUS
CALIBITATION	PROCEDURE	MID	BUCKRUOND	KEPUKI	<u> – INSTANTANEUUS</u>

LANDFILL NAME: SIMI VALLEY	INSTRUMENT MAKE: Therme	
MODEL: TVA 1000 EQUIPMENT #:	03 SERIAL #: 15865884	_
MONITORING DATE: 12-8-23	TIME:TIME:TIME:TIME:	

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = 500 ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest in 30 seconds)	Background Value: (Upwind + Downwind) 2
Į ppm	(ppm	3 ppm

Background Value = ____ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #			90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	503	ppm	450	ppm	9	
#2	500	ppm	450	ppm	11	
#3	501	ppm	450	ppm	10	
	Calculate Response	Time (1- 3	+2+3)		/ / / / / / / / / / Must be less than :	#DIV/0!

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Z	ero Air (A)	Meter Reading Calibration Ga		Calculate Precision [STD - (B)]
#1	1.0	ppm	503	ppm	562.00
#2	1.50	ppm	500	ppm	498.50
#3	1.0	ppm	501	ppm	500.00
Calculate Precision	n [STD-B1] + [S	3 3	STD-B3] X <u>1</u> X 500	100	#DIV/0! Must be less than 10%

Performed By: Tony Lew	Date/Time:	12-	8-27	

CALIBRATION PROCEDURE AND BACKGROUND REPORT - INSTANTANEOU	<u>CA</u>	LIBRATION PROCE	DURE AND I	BACKGROUND	REPORT -	INSTANTANEOUS
--	-----------	-----------------	------------	------------	----------	---------------

LANDFILL NAME: 5/	MI VALLEY	INSTRUMEN	T MAKE:	HERMO
MODEL: TUA-1000	EQUIPMENT #:	#2	SERIAL #:	7784545
MONITORING DATE:	12-13-23	TIME:	0800	

- 1. Allow instrument to zero itself while introducing air.
- Introduce calibration gas into the probe. Stabilized reading = <u>SOO</u> ppm
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Backgrou Reading: (Highest in 30 secon		Downwind Background Reading: (Highest in 30 seconds)	Background Value (Upwind + Dow 2	2.0
116	ppm	2,8 ppm	2,2	ppm

Background Value = 2,2 ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Reading Using Calibration Gas		90% of the Stabilized Reading		Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas	
#1	500	ppm	450	ppm	6	
#2	501	ppm	450	ppm	5	
#3	501	ppm	450	ppm	~	
	Calculate Response	Time (<u>1</u> -	+2+3)		5,3	#DIV/0!
The second secon					Must be less than	30 seconds

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for a	Zero Air (A)	Meter Reading Calibration G		Calculate Precision [STD – (B
#1	0.69	ppm	Soo	ppm	0
#2	0.74	ppm	501	ppm	ı
#3	0.78	ppm	Sol	ppm	
Calculate Precision	[STD-B1] + [STD-B2] + [S	STD-B3] X <u>1</u> > 500		Ø1/ #DIV
				. V []	Must be less than 10%

Performed By: S , BUDGHARS	Date/Time:	0800	12-12-23	
----------------------------	------------	------	----------	--

LANDFILL NAME Simi Valley	INSTRUMENT MAKE TVILLIGIO
MODEL TOA COO EQUIPMENT#	# SER,AL # /6320832
MONITOR;NG DATE 17 - 7 5 - 23	TIME 0900

- 1. Allow instrument to zero itself while introducing air.
- 2. Introduce calibration gas into the probe. Stabilized reading = _____ppm___ppm___
- 3. Adjust meter settings to read 500 ppm.

Background Determination Procedure

Upwind Background Reading: (Highest in 30 seconds)	Downwind Background Reading: (Highest In 30 seconds)	Background Value: (Upwind + Downwind) 2
ppm	2 ppm	2 ppm

Background Value = __ (___ ppm

INSTRUMENT RESPONSE TIME RECORD

Measurement #	Stabilized Readin Calibration Gas	g Using	90% of the Stabi Reading	lized	Time to Reach 90% of Stabilized Reading after switching from Zero Air to Calibration Gas		
#1	500	ppm	450	ppm	8		
#2	501	ppm	1450	ppm	10		
#3	500	ppm	730	ppm	10		
	Calculate Response	Time (1-3	+2+3)		10	#DIV/0!	
					Must be less than	30 seconds	

CALIBRATION PRECISION RECORD

Measurement #	Meter Reading for Zero Air (A)	Meter Reading for Calibration Gas (B)	Calculate Precision [STD - (B)]
#1	1.0 ppm	500 ppm	
#2	O s 30, ppm	,100	प्यति ए
#3	Danie ppm	3.52	550 76
Calculate Precision		STD-B3] X 1 X 100	799. 35 1 7. #DIV/0
		500 1	Must be less than 10%

Performed By: Toria Lessons	_ Date/Time:	12-7	8-23		
-----------------------------	--------------	------	------	--	--

Project:

RES_SimiValley landfill

Date/Time:

11/2/2023 4:34:44 AM

Model Number:

INSPECTRA

Serial Number:

1011221

Latitude :

34.0563057

Longitude:

-117.3072187

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Nov-02 04:35 using one span gas.

		Measu	rement #1	Measu	rement #2	Measu	rement #3				
GAS USED		Т90	Reading	T90	Reading	T90	Reading	Average Algebraic Difference	Calibration Precision	Calibration Precision < 10	Average Response Time
	(ppm)	(sec)	(ppm)	(sec)	(ppm)	(sec)	(ppm)		(%)		(s)
ZERO	0				117-4		.1-11-11	11 11			
Calibration Gas #1	500	6.9	479.8	6.9	479.8	6.8	479.2	20.4	4.1%	Yes	6.9

Gas Sequence ID:

0

Date/Time :

11/2/2023 4:34:44 AM

Gas Manufacturer:

intermountain

Gas Lot Number:

20-7421

intermountain

Gas Expiration Date:

7/10/2024

Misc Ref No:

N/A

UN#:

N/A

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Gas Sequence ID:

Gas Manufacturer :

- 1

Premier Safety

Gas Expiration Date:

3/1/2025

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

11/2/2023 4:34:44 AM

Gas Lot Number:

2-055-87

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Project:

RES_SimiValley landfill

Date/Time:

11/2/2023 4:38:32 AM

Model Number:

INSPECTRA

Serial Number:

811121

Latitude:

34.0563149

Longitude:

-117.3072291

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Nov-02 04:39 using one span gas.

	Measurement #1 Measurement #2 Measurement #		rement #3				Mark Mark				
GAS USED		T90	Reading	T90	Reading	T90	Reading	Average Algebraic Difference	Calibration Precision	Calibration Precision < 10	Average Response Time
	(ppm)	(sec)	(ppm)	(sec)	(ppm)	(sec)	(ppm)		(%)		(s)
ZERO	0	_									
Calibration Gas #1	500	6.6	482.1	6.7	480.8	6.8	482	18.4	3.7%	Yes	6.7

Gas Sequence ID :
Gas Manufacturer :

0

intermountain

Gas Expiration Date:

7/10/2024

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

11/2/2023 4:38:32 AM

Gas Lot Number:

20-7421

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Gas Sequence ID :
Gas Manufacturer :

- 1

Premier Safety

Gas Expiration Date:

3/1/2025

Misc Ref No:

N/A

UN#:

N/A

Date/Time :

11/2/2023 4:38:32 AM

Gas Lot Number:

2-055-87

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Project:

RES_SimiValley landfill

Date/Time:

11/2/2023 4:32:51 AM

Model Number:

INSPECTRA

Serial Number:

881221

Latitude :

34.0564205

Longitude:

-117.3072497

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Nov-02 04:34 using one span gas.

大生有4000000000000000000000000000000000000		Measu	rement #1	Measu	rement #2	Measu	rement #3	THE PERSON NAMED IN			DANS TON
GAS USED		T90 (ppm) (sec)	Reading (ppm)	T90 (sec)	Reading (ppm)	T9D (sec)	Reading (ppm)	Average Algebraic Difference	Calibration Precision (%)	Calibration Precision < 10	Average Response Time (s)
	(ppm)										
ZERO	0				7.1						
Calibration Gas #1	500	4.7	480.5	6.6	482.2	6.7	484.3	17.7	3.5%	Yes	6.0

Gas Sequence ID :

0

Date/Time :

11/2/2023 4:32:51 AM

Gas Manufacturer:

intermountain

Gas Lot Number:

20-7421

intermountain

Gas Expiration Date:

7/10/2024

Misc Ref No:

N/A

UN#:

N/A

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Gas Sequence ID:

Gas Manufacturer :

Premier Safety

Gas Expiration Date:

3/1/2025

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

11/2/2023 4:32:51 AM

Gas Lot Number:

2-055-87

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Project:

RES_SimiValley landfill

Date/Time:

11/2/2023 4:36:40 AM

Model Number:

INSPECTRA

Serial Number:

761121

Latitude :

34.0563294

Longitude:

-117.3073061

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Nov-02 04:37 using one span gas.

		Measu	rement #1	Measu	rement #2	Measu	rement #3				
GAS USED		T90	Reading (ppm)	T90 (sec)	Reading (ppm)	T90	Reading (ppm)	Average Algebraic Difference	Calibration Precision (%)	Calibration Precision < 10	Average Response Time (s)
	(ppm)	(sec)									
ZERO	0										
Calibration Gas #1	500	6.7	477.7	6.6	478.7	6.6	478.7	21.6	4.3%	Yes	6.6

Gas Sequence ID :

0

Gas Manufacturer: Gas Expiration Date :

7/10/2024

intermountain

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

11/2/2023 4:36:40 AM

Gas Lot Number:

20-7421

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Gas Sequence ID :
Gas Manufacturer :

- 1

Premier Safety

Gas Expiration Date:

3/1/2025

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

11/2/2023 4:36:40 AM

Gas Lot Number:

2-055-87

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Gas Sequence ID :

Gas Manufacturer :

- 1

Premier Safety

Gas Expiration Date :

3/1/2025

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

11/2/2023 4:36:40 AM

Gas Lot Number :

2-055-87

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Project:

RES_SimiValley landfill

Date/Time:

11/2/2023 4:30:43 AM

Model Number:

INSPECTRA

Serial Number:

1001221

Latitude:

34.0563764

Longitude:

-117.3072753

Test Status:

Completed

Test Notes:

Test successfully completed at 2023-Nov-02 04:32 using one span gas.

	STREET	Measu	rement #1	Measu	rement #2	Measu	rement #3		ASSESSED FOR THE PARTY OF THE P	The state of the s	
GAS USED		T90	Reading (ppm)	T90 (sec)	Reading (ppm)	T90 (sec)	Reading (ppm)	Average Algebraic Difference	Calibration Precision (%)	Calibration Precision < 10	Average Response Time (s)
	(ppm)	(sec)									
ZERO	0					V					
Calibration Gas #1	500	9.3	463.5	7.2	465.2	7.8	464.4	35.6	7.1%	Yes	8.1

Gas Sequence ID:

0

intermountain

Gas Manufacturer :
Gas Expiration Date :

7/10/2024

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

11/2/2023 4:30:43 AM

Gas Lot Number:

20-7421

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

Gas Sequence ID:

- 1

Gas Manufacturer:

Premier Safety

Gas Expiration Date:

3/1/2025

Misc Ref No:

N/A

UN#:

N/A

Date/Time:

11/2/2023 4:30:43 AM

Gas Lot Number:

2-055-87

Bottle Pressure:

1000

Technical Name:

N/A

Cylinder ID:

CUSTOMER: 265	UNIT #2
SERIAL NUMBER:	7784545
TECHNICIAN:	M DATE: 10-6-27

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	501	+/- 125
10000	10000	10,100	+/- 2500
<1	ZERO GAS	0.129	< 3
	PII	D	_
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50		+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
<1	ZERO GAS	/	< 3

CUSTOMER: NES UNA #3	
SERIAL NUMBER: 15865 884	
TECHNICIAN: DATE: _	10-6-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	99	+/- 25
500	500	500	+/- 125
10000	10000	10,000	+/- 2500
<1	ZERO GAS	0.07	< 3
	Pil)	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS.(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50		+/- 12.5
100	100		+/- 25
500	500		+/- 125
<1	ZERO GAS		< 3

CUSTOMER: NES UNIX +	+9
SERIAL NUMBER: 16319830	
TECHNICIAN: My My	DATE: 106-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	Fil	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,701	+/- 2500
<1	ZERO GAS	0:61	< 3
	PII	0	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50		+/- 12.5
100	100		+/- 25
500	500	/	+/- 125
< 1	ZERO GAS	1	< 3

CUSTOMER: NES UNIT #5	
SERIAL NUMBER: 4919480	
TECHNICIAN: DATE: _	10-6-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	Fil	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	[0,000	+/- 2500
<1	ZERO GAS	0,01	< 3
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50		+/- 12.5
100	100		+/- 25
500	500	6	+/- 125
<1	ZERO GAS		< 3

CUSTOMER: NES UND #6	•
SERIAL NUMBER: 0720723626	
TECHNICIAN: M DATE:	10-6-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

FID				
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)	
100	100	100	+/- 25	
500	500	SOU	+/- 125	
10000	10000	10,000	+/- 2500	
< 1	ZERO GAS	0163	< 3	
	PII	D		
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)	
50	50	1	+/- 12.5	
100	100		+/- 25	
500	500		+/- 125	
<1	ZERO GAS	/	< 3	

CUSTOMER: Ris Vant #7		
SERIAL NUMBER: 0720723627		
TECHNICIAN: M	DATE:	10-6-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	Fil	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	99	+/- 25
500	500	494	+/- 125
10000	10000	14,101	+/- 2500
<1	ZERO GAS	0.69	< 3
	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	/	+/- 12.5
100	100	/	+/- 25
500	500		+/- 125
<1	ZERO GAS		< 3

CUSTOMER: <u>DFS UNUM</u> #9	
SERIAL NUMBER: 0532113801	
TECHNICIAN: M DATE: _	10-6-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	(00	+/- 25
500	500	500	+/- 125
10000	10000	(0,000	+/- 2500
<1	ZERO GAS	12.63	< 3
,	PII	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS_(ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50		+/- 12.5
100	100		+/- 25
500	500		+/- 125
<1	ZERO GAS		< 3

Site:				
Purpose:				
Operator:	M			7.7
Date:		Time:	0515	
lodel #				
erial# <u>#1 1632083</u>	2			
INSTRUMENT INTEGRITY	CHECKLIST	INSTR	RUMENT CALIBRA	ATION
attery test	Pass/ Fail	CA Calibration	LIBRATION CHEC	CK %
eading following ignition	_21/ ppm	Gas (ppm)	(ppm)	Accuracy
eak test	Pass / Fail / NA	500	500	100%
ean system check heck valve chatter)	Pass / Fail / NA	Calibration Gas, p	RESPONSE TIME	500
supply pressure gauge cceptable range 9.5 - 12)	Pags / Fail / NA	90% of Calibration		(S D as ppm
ate of last factory calibration	10-6-23	2.	5	
actory calibration record instrument within 3 months	Pass/Fail	Average 5 Equal to or less th	.3	Ø N
omments:				
				-

465

Site:				
Purpose:				
Operator:	My M	1		
Date://-3-23		Time:	0530	
Model # 7/10/00				
Serial # #2 77845	45			
INSTRUMENT INTEGRITY CHECKLIST		INSTR	UMENT CALIBRA	ATION
Sattery test	82 3(5-1)	CA	LIBRATION CHE	CK
	Pass / Fail	Calibration Gas (ppm)	Actual (ppm)	% Accuracy
eading following ignition	2.3 ppm			Accuracy
eak test	Pass / Fail / NA	500	500	100%
			RESPONSE TIME	
ean system check heck valve chatter)	Pass / Fail / NA	Calibration Gas, ppm S@O		
HOOK VAIVE CHALLEN				
supply pressure gauge	(Pass / Fail / NA	1. (a		
cceptable range 9.5 - 12)				
ate of last factory calibration	10-6-23	2. 0		
		3.	5	
actory calibration record instrument within 3 months	Pass / Fail	Average S, 6		
MOULUS MICHINI S MOULUS	Equal to or less than 30 seconds? (Y) N Instrument calibrated to CI49 gas.			
			C 147	_gas.
	8:			
omments:			4-4	

Date://-3-23	Time: 0545	
Nodel # TVA 1000 Serial # #3 15865884		
INSTRUMENT INTEGRITY CHECKLIST	INSTRUMENT CALIBRATION	
teading following ignition teading following ignition teak test teading following ignition teak test teach system check theck valve chatter) to supply pressure gauge	RESPONSE TIME Calibration Gas, ppm 90% of Calibration Gas, ppm Time required to attain 90% of Cal Gas ppm 1.	

urpose:				
perator:	VII M			0
ate: 1/-3-23		Time:	0600	
odel# TVA 1000)			
erial# #4 (6319)	83			
INSTRUMENT INTEGRIT	Y CHECKLIST	INSTR	RUMENT CALIBR	ATION
attery test	Pass / Fail	CA Calibration	ALIBRATION CHE Actual	CK %
eading following ignition	215 ppm	Gas (ppm)	(ppm)	Accuracy
ak test	Pass / Fail / NA	500	500	100%
ean system check neck valve chatter)	Fase / Fail / NA	Calibration Gas, p	RESPONSE TIME	≣ %00
supply pressure gauge ceptable range 9.5 - 12)	Pass / Fail / NA	90% of Calibration Time required to a 1.	Gas, ppm	Gas ppm
te of last factory calibration	10-6-23	2.		
ctory calibration record nstrument within 3 months	Pass / Fail	Average S Equal to or less the Instrument calibra		
				_ yas.

465

Site:				
Purpose:			2	
Operator:	MY			
ate: /1-3-23	Time;	0615		
odel#				
erial# #5 4919480	<u>)</u>			
INSTRUMENT INTEGRITY CHE	CKLIST IN	INSTRUMENT CALIBRATION		
	Calibration Gas (ppm)	(ppm)	% Accuracy	
ean system check neck valve chatter)	S / Fail / NA S / Fail / NA Calibration G 90% of Calibr	RESPONSE TIME as, ppm ration Gas, ppm	100 y,	
ceptable range 9.5 - 12)	Ss / Fail / NA Time required 1	d to attain 90% of Cal G	as ppm	
_	3. Average Equal to or le	5.6 ss than 30 seconds?		
mments:				

Purpose:				
Operator:	1 /11			
Date://-3-2-3		Time:	0630	
Model # + 1000				
Serial # # 6 07207	123626			
INSTRUMENT INTEGRITY	CHECKLIST	INS	TRUMENT CALIBR	ATION
Battery test	Pass / Fail	Calibration	CALIBRATION CHE Actual	CK %
Reading following ignition	21 ppm	Gas (ppm)	(ppm)	Accuracy
Leak test	Pass / Fail / NA	500	800	1007
Clean system check	Pass / Fail / NA		RESPONSE TIM	E
check valve chatter)	Gas / Lail / NA	Calibration Gas		SOO
-l ₂ supply pressure gauge acceptable range 9.5 - 12)	Pass / Fail / NA	90% of Calibration Gas, nom 1150		
Date of last factory calibration	10-6-23	2. 3.	5	
Factory calibration record w/instrument within 3 months	Fase / Fail	Average <u>5.6</u> Equal to or less than 30 seconds? N Instrument calibrated to <u>(by</u> gas.		
Comments:	1841			

465

SURFACE EMISSION MONITORING INSTRUMENT CALIBRATION LOG

INSTRUMENT INTEGRITY CHECKLIST INSTRUMENT CALIBRATION INSTRUMENT CALIBRATION INSTRUMENT CALIBRATION INSTRUMENT CALIBRATION CALIBRATION CHECK Calibration Actual % Gas (ppm) (ppm) Accurace Gas (ppm) (ppm) Accurace Fass / Fail / NA RESPONSE TIME Calibration Gas, ppm 500 90% of Calibration Gas, ppm 450 Time required to attain 90% of Cal Gas ppm 1. 2. 3. 4. Average 5.3 Equal to or less than 30 seconds?	Perator:	1/1	Time	0645	
rattery test Pase / Fail Pase / Fail Pase / Fail Calibration Gas (ppm) Calibration Gas (ppm) Fase / Fail / NA RESPONSE TIME Calibration Gas, ppm Pase / Fail / NA RESPONSE TIME Calibration Gas, ppm Pase / Fail / NA Calibration Gas, ppm Pase / Fail / NA Calibration Gas, ppm Pase / Fail / NA Calibration Gas, ppm Time required to attain 90% of Cal Gas ppm 1. 2. 3. Average Average Average Actual % Calibration CHECK Actual % Calibration Gas, ppm I O O Accuracy Accu	7	3627			
Pase / Fail Pase / Fail Pase / Fail Calibration Gas (ppm) Calibration Gas (ppm) Calibration Gas (ppm) Calibration Gas (ppm) Accuracy Calibration Gas (ppm) Calibration Gas (ppm) Calibration Gas, ppm Soo 90% of Calibration Gas, ppm Time required to attain 90% of Cal Gas ppm 1. Calibration Gas, ppm 90% of Calibration Gas, ppm Time required to attain 90% of Cal Gas ppm 1. Calibration Gas, ppm 90% of Calibration Gas, ppm 1. Calibration Gas, ppm 90% of Calibration Gas, ppm Time required to attain 90% of Cal Gas ppm 1. Calibration Gas, ppm 90% of Calibration Gas, ppm Accuracy Calibration Gas, ppm 90% of Calibration Gas, ppm Time required to attain 90% of Cal Gas ppm 1. Calibration Gas, ppm 90% of Calibration Gas, ppm Accuracy A	INSTRUMENT INTEGRITY	CHECKLIST	INSTR	UMENT CALIBI	RATION
past test Pass / Fail / NA RESPONSE TIME Calibration Gas, ppm 500 Supply pressure gauge coeptable range 9.5 - 12) Inte of last factory calibration record Pass / Fail / NA RESPONSE TIME Calibration Gas, ppm 500 90% of Calibration Gas, ppm 450 Time required to attain 90% of Cal Gas ppm 1. 2. 3. Average 5.3			Calibration	Actual	%
Instrument calibrated to CIM gas.	ean system check neck valve chatter) supply pressure gauge ecceptable range 9.5 - 12) ate of last factory calibration ectory calibration record	Pass / Fail / NA Pass / Fail / NA	Calibration Gas, p. 90% of Calibration Time required to a 1. 2. 3. Average Equal to or less the	pm Gas, ppm ttain 90% of Cal	\$\omega \text{SOO} \\ \(\psi_{50} \) Gas ppm

SURFACE EMISSION MONITORING INSTRUMENT CALIBRATION LOG

Purpose:				
Operator: /ht	Me			
Date: 11-3-23		Time:	0200	
Model # TUA (000				
Serial # #9 0532				
INSTRUMENT INTEGRITY	CHECKLIST	INSTR	RUMENT CALIBR	ATION
Battery test	Pass / Fail	Calibration	LIBRATION CHE	
Reading following ignition	21 ppm	Gas (ppm)	Actual (ppm)	% Accuracy
eak test	Pass / Fail / NA	500	500	100%
clean system check	Fas / Fail / NA		RESPONSE TIME	E
check valve chatter)	igs/rail/lyA	Calibration Gas, p	F	Soo
1/2 supply pressure gauge acceptable range 9.5 - 12)	Pass / Fail / NA	90% of Calibration Time required to a 1.	n Gas, ppm attain 90% of Cal (Gas ppm
ate of last factory calibration	10-6-23	2. (2	
actory calibration record /instrument within 3 months	Fase / Fail	Average 5 Equal to or less the Instrument calibra		
comments:			1	

Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com

"Your calibration gas manufacturer since 1992"

CERTIFICATE OF ANALYSIS

Composition Analytical Accuracy (+/-) Certification

Oxygen

20.9 %

2%

Nitrogen

Balance UHP

Lot#

20-7421

Mfg. Date:

5/20/2020

Expiration Date:

Transfill Date:

see cylinder

Parent Cylinder ID NY02268

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By:

Tony Janquart

Title:

Quality Assurance Manager

Certificate Date:

5/20/2020

Accuracy (%aloM) notisting

20.9% Oxygen

nagonin Jea.

LOH: 20-7421 DIS4 000't pur 4.001 0 Mas and

103 [

001-10:NA

6960-727 (949) XRT 0218-102 (008) 757-0363 Main Avenue, Irvine, CA 92614

103-01-100

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road ● Nampa ● Idaho ● 83687 800-552-5003 ● www.isgases.com

CERTIFICATE OF ANALYSIS

Composition

Certification

Analytical Accuracy

Methane

25 ppm

 $\pm 5\%$

Air

Balance

Lot#

17-6074

Mfg. Date:

10/16/2017

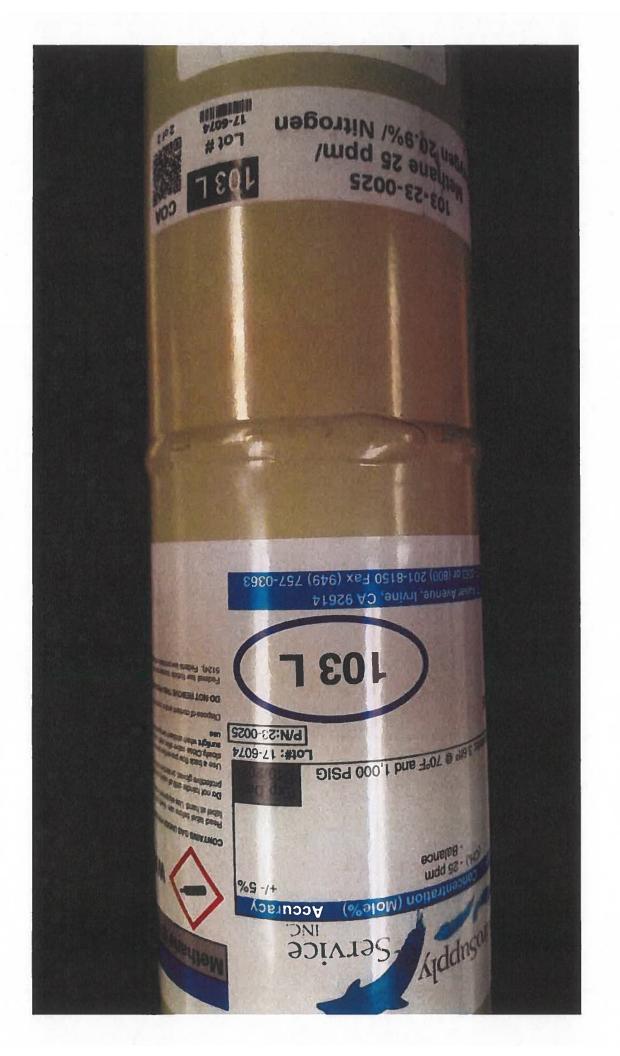
Parent Cylinder ID

17161

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled


Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 10/16/2017

INTERMOUNTAIN SPECIALTY GASES

520 N. Kings Road • Nampa • Idaho • 83687 800-552-5003 • www.isgases.com

CERTIFICATE OF ANALYSIS

Composition

Methane

Air

Certification

25 ppm

Balance

Analytical Accuracy

± 5%

Lot#

17-6074

Mfg. Date:

10/16/2017

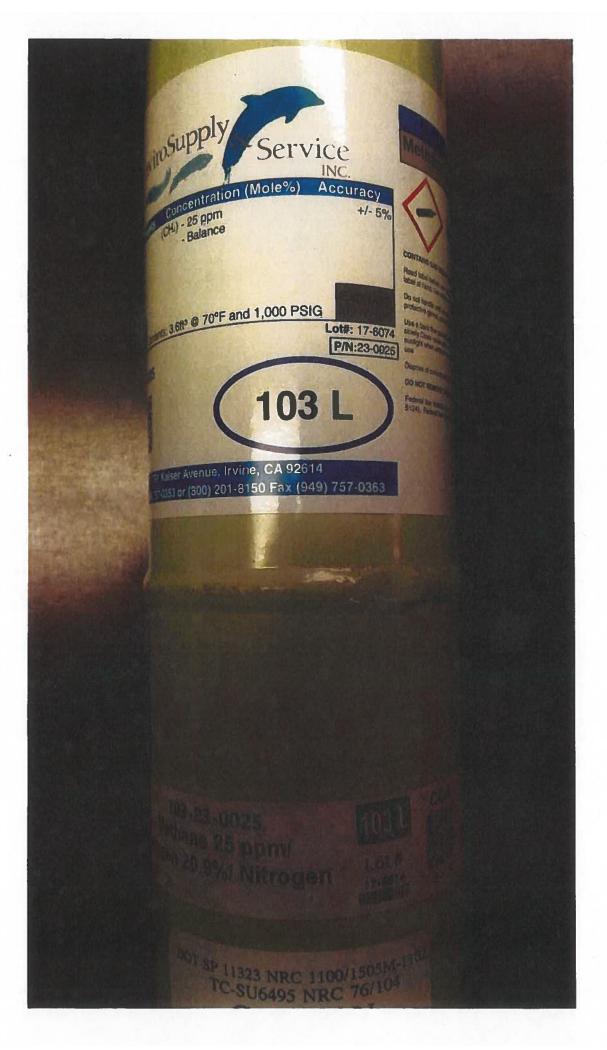
Parent Cylinder ID

17161

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled


Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By: Tony Janquart Quality Assurance Manager

800-552-5003

Certificate Date: 10/16/2017

Intermountain Specialty Gases

520 N. Kings Road Nampa, ID 83687 (USA) Phone (800) 552-5003, Fax (208) 466-9143 www.isgases.com

"Your calibration gas manufacturer since 1992"

CERTIFICATE OF ANALYSIS

Composition Certification Analytical Accuracy (+/-) Methane 500 ppm 2% Oxygen 20.9 % 2% Nitrogen Balance UHP

Lot# 20-7497

Mfg. Date: 7/10/2020

Expiration Date:

Transfill Date: see cylinder

Parent Cylinder ID TWC001763

Number:

Method of Preparation:

Gravimetric/Pressure Transfilled

Method of Analysis:

The parent mix was prepared gravimetrically and is traceable to the NIST by certified weights (ID #CA10814) used to calibrate the scale.

Analysis By:

Tony Janquart

Title:

Quality Assurance Manager

Certificate Date: 7/10/2020

Methane (0) Service Accuracy ilion (Mole%) +/- 2% CONTAINS GAS UNCER PROPERTY Find label before one day or father of franchities equipment or Do not handle until at sub-10 To F and 1,000 PSIG Use a back flow process a slowly Glose valve and auritight when antiact was une Lot#: 20-7497 P/N:23-0500 Dispose of corters are a co DO HOT REMOVE THE PRO Poderal law looks turned 0124). Federal law publis brue, Irvine, CA 92614 201-8150 Fax (949) 757-0363

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Cust Number 07152 Order Number 69671309 PO Number 08361523

Lot Number Norlab Part#

2-108-80 J1971500PA 103 Liter

Cylinder Size Number of Cyl 1

Date on Manufacture **Expires** 6/10/2022 06/2025

Analytical Accuracy

+/- 2 %

Customer Part# N/A

Component Methane

Air

Reported

Concentration 500 ppm Balance

Requested

Concentration 500 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers are available upon request.

Approved:

Dielus Lab Technician

Date Signed:

6/10/2022

898 W. GOWEN ROAD • BOISE, IDAHO 83705 Phone (208) 336-1643 • Fax (208) 331-3038 • 800-657-6672

PREMIER

800.962.7837

33596 Sterling Posterling Height

Components

Methane

Concentration (Mol:

500 ppm Balance

Lott: 2-108-80

Accuracy: +/- 2 %

J1971500PA

fortanta; 103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

5/5/2022

05/2025

CALIBRATION GAS

NON-FLAMMABLE GAS

CERTIFICATE OF ANALYSIS

Norco, Inc Twin Falls Warehouse 203 S. Park Ave. West Twin Falls, ID 83301 Cust Number WH012 Order Number 71846398 PO Number 04A35563

Lot Number 3-088-88
Norlab Part# J1971500PA
Cylinder Size 103 Liter
Number of Cyl 5

 88
 Date on Manufacture
 4/7/2023

 600PA
 Expires
 04/2027

 ter
 Analytical Accuracy
 +/- 2 %

Customer Part# N/A

Component Methane Air Reported
Concentration
500 ppm
Balance

Requested
Concentration
500 ppm
Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers are available upon request.

Approved:

Date Signed:

4/7/2023

898 W. GOWEN ROAD • BOISE, IDAHO 83705 Phone (208) 336-1643 • Fax (208) 331-3038 • 800-657-6672

500 962.7837 our products afety com

33596 Sterling herging

components

Melhane

Concentration (Man

500 ppm Balance

3-088-88

Marie N-2%

J1971500PA

103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

477223

CALIBRATION GAS

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312 Cust Number 07152 Order Number 69679439 PO Number 04906817

Lot Number Norlab Part# 2-154-85

Cylinder Size

J1002 103 Liter

1

Number of Cyl

Customer Part# N/A

Date on Manufacture

6/13/2022

Expires

06/2025

Analytical Accuracy

Certified

Component

Air Oxygen T.H.C. (as Methane) Nitrogen Reported

Concentration
Zero Grade
20.9 %
< 1.0 ppm

Balance

Requested

Concentration
Zero Grade
20.9 %
< 1.0 ppm
Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

Minor constituents tested with standards traceable to NIST by mass or comparison to SRM's (Standard Reference Materials).

NIST Traceable Numbers are available upon request.

Approved:

David Reed Lab Technician Date Signed:

6/13/2022

898 W. GOWEN ROAD • BOISE, IDAHO 83705 Phone (208) 336-1643 • Fax (208) 331-3038 • 800-657-6672

PREMIER

800.962.7837 promiers afety.com

335% Sterling House

components

ongen TH.C. (as Methane) progen

Concentration

Zero Grade 20.9 % < 1.0 ppm Balance

2-154-85

Centified

31000

103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

Exp. Date:

8/13/2022

06/2025

CALIBRATION GAS

NON-FLAMMABLE GAS

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312 Cust Number 07152 Order Number 73732858 PO Number 04B70733

Lot Number Norlab Part# 3-340-61 J1971500PA

Cylinder Size

103 Liter

Number of Cyl

Customer Part# N/A

Date on Manufacture

12/7/2023

Expires

12/2027

Analytical Accuracy

+/-2%

Component Methane

Air

Reported
Concentration
500 ppm
Balance

Requested
Concentration
500 ppm
Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs.

NIST Traceable Numbers are available upon request.

Approved:

Aaron Schwenken Lab Manager Date Signed:

12/7/2023

SAFETY Source of the Same Safe ETY

Sheriling H

Components

Concentration

500 ppm Balance

Late 3-340-61

Accuracy: +/- 2 %

MFG Date: Exp. Date:

1971500PA

Soments: 103Liters-3.6Cu.Ft.,-1000psig

CALIBRATION GAS

CERTIFICATE OF ANALYSIS

Premier Safety & Service

33596 Sterling Pond Blvd Sterling Hights MI 48312

Cust Number 07152 Order Number 73732858 PO Number 04B70733

Lot Number Norlab Part#

3-340-62 J197125PA

Cylinder Size

103 Liter

Number of Cyl

Customer Part# N/A

Date on Manufacture

12/7/2023

Expires

12/2027

Analytical Accuracy

+/- 5 %

Component Methane Air

Reported Concentration 25 ppm

Balance

Requested Concentration 25 ppm Balance

Storage:

Keep away from heat, flames, and sparks. Store and use with adequate ventilation. Close valve when not in use and when empty. Never allow cylinder temperature to exceed 125 degrees F.

The cylinders in this lot were transfilled from cylinders prepared gravimetrically and traceable to the NIST by the certified weights used to calibrate the scale. The transfilled cylinders were then analyzed against standards traceable to the NIST by weights or SRMs. NIST Traceable Numbers are available upon request.

Approved:

Aaron Schwenken Lab Manager

Date Signed:

12/7/2023

soo.962.7837 openiersafety.com

33396 Sterling Parking Sterling Height, Mile

@mponents

Concentration (Mole)

lethane

25 ppm Balance

3-340-82

10% 4-5%

J197125PA

103Liters-3.6Cu.Ft.,-1000psig

MFG Date:

12/7/2023

Exp. Date:

12/2027

CALIBRATION GAS

Environmental Inc.

CUSTOMER:	Ris UND	#1	
SERIAL NUMBER:	16320832		
TECHNICIAN:	u M	DATE: _	10-6-23

GAS CALIBRATION CHECK (PERFORMED AT ROOM TEMPERATURE)

	FI	D	
METHANE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
100	100	100	+/- 25
500	500	500	+/- 125
10000	10000	10,000	+/- 2500
<1	ZERO GAS	1045	< 3
	Pil	D	
ISOBUTYLENE GAS NOMINAL (ppm)	CALIBRATION GAS (ppm)	TVA READING (ppm)	TOLERANCE (ppm)
50	50	1	+/- 12.5
100	100		+/- 25
500	500		+/- 125
< 1	ZERO GAS	1	< 3

All measurement standards are calibrated at scheduled intervals by the National Institute of Standards and Technology (NIST), or against certified standards, which are traceable to the National Institute of Standards and Technology.